JP2677691B2 - Compound detector - Google Patents

Compound detector

Info

Publication number
JP2677691B2
JP2677691B2 JP1336664A JP33666489A JP2677691B2 JP 2677691 B2 JP2677691 B2 JP 2677691B2 JP 1336664 A JP1336664 A JP 1336664A JP 33666489 A JP33666489 A JP 33666489A JP 2677691 B2 JP2677691 B2 JP 2677691B2
Authority
JP
Japan
Prior art keywords
reflecting mirror
center
hole
primary
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1336664A
Other languages
Japanese (ja)
Other versions
JPH03199989A (en
Inventor
哲夫 佐渡
淳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1336664A priority Critical patent/JP2677691B2/en
Publication of JPH03199989A publication Critical patent/JPH03199989A/en
Application granted granted Critical
Publication of JP2677691B2 publication Critical patent/JP2677691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、マイクロ波、ミリ波等の電磁波と赤外線
等の光波の複合パッセブ受信を行う複合探知装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a composite detection apparatus for performing composite Passive reception of electromagnetic waves such as microwaves and millimeter waves and light waves such as infrared rays.

(従来の技術) 従来より、目標捜索システムにあっては、電磁波走査
により目標を粗探知し、光波により精探知する複合探知
方式のものがある。この方式のアンテナには通常電磁波
と光波の複合パッセブ受信が可能がアンテナが用いられ
る。
(Prior Art) Conventionally, there is a target detection system of a composite detection system in which a target is roughly detected by electromagnetic wave scanning and finely detected by light waves. For this type of antenna, an antenna is used that is capable of composite pass-wave reception of electromagnetic waves and light waves.

一般に、電磁波と光波の複合パッセブ受信を行う場
合、第6図に示すように、金属板(一般にはアルミニウ
ム)を鏡面研磨してなる一次反射鏡(放物面)11と二次
反射鏡(双曲面)12を対向配置してカセグレン方式のア
ンテナを形成し、一次反射鏡11の焦点面Aに電磁波及び
光波を検知する検知器13を配置する方式がとられる。
Generally, in the case of composite pass-wave reception of electromagnetic waves and light waves, as shown in FIG. 6, a primary reflecting mirror (parabolic surface) 11 and a secondary reflecting mirror (double reflecting mirror) formed by mirror polishing a metal plate (generally aluminum) are used. (Curved surface) 12 are arranged to face each other to form a Cassegrain type antenna, and a detector 13 for detecting electromagnetic waves and light waves is arranged on the focal plane A of the primary reflecting mirror 11.

この方式の場合、一次反射鏡11の開口径D[m]と使
用波長[λ]とで電磁波の瞬時視野θは一義的に θ2.4×(λ/D)[rad] ……(1) で決まり(電磁波ではアンテナの半値ビーム幅と称
す)、焦点距離f[m]は f=D・F(Fは明るさ) ……(2) で与えられ、通常の電波の場合はF>1.1である。一
方、光波の場合も瞬時視野(光学系の解像度)はほぼ同
様な式で与えられるが、焦点面における視野θは、結像
径をd[mm]とすると、 θ=d/f[rad] ……(3) で与えられる。検知器は4個の電磁波受信用の一次放射
素子を正方形頂点に配置して構成され、また光波用受光
素子はn×m画素の二次元アレイで構成される。その寸
法は数ミリメートル程度である。
In the case of this method, the instantaneous visual field θ 0 of the electromagnetic wave is uniquely θ 0 2.4 × (λ / D) [rad] (1) by the aperture diameter D [m] of the primary reflecting mirror 11 and the used wavelength [λ]. ) (For electromagnetic waves, it is called the half-value beam width of the antenna), the focal length f [m] is given by f = DF (F is brightness) (2), and in the case of normal radio waves, F> It is 1.1. On the other hand, in the case of light waves, the instantaneous field of view (resolution of the optical system) is given by almost the same formula, but the field of view θ at the focal plane is θ = d / f [rad] when the imaging diameter is d [mm]. … Given in (3). The detector is constructed by arranging four primary radiation elements for electromagnetic wave reception at the square vertices, and the light receiving element for light waves is a two-dimensional array of n × m pixels. Its dimensions are on the order of a few millimeters.

しかしながら、実際には第6図のように理想的にはで
きず、光波側の焦点距離を短くする必要があり、光波の
視野と電磁波のビーム幅を同一焦点距離で構成すること
は困難である。また、光波の中心光束を十分使用できな
いので、その受信歪みが大きいという問題を有する。
However, in reality, as shown in FIG. 6, this is not ideal, and it is necessary to shorten the focal length on the light wave side, and it is difficult to configure the field of view of the light wave and the beam width of the electromagnetic wave at the same focal length. . Further, since the central light flux of the light wave cannot be used sufficiently, there is a problem that its reception distortion is large.

そこで、従来の複合パッセブ受信用の複合探知装置と
して、第7図及び第8図に示す装置が開発されている。
第7図の装置は、一次反射鏡11の焦点面には電磁波検知
器14を配置し、二次反射鏡12の前に光波検知器15を配置
し、この光波検知器15に光波用レンズ16を用いて入射光
波を結像するようにしたものである。また、第8図の装
置は、二次反射鏡17として一次反射鏡11からの電磁波を
透過しつつ、光波を反射するような材料、例えば水晶に
より形成し、一次反射鏡11の焦点面には光波検知器15を
配置し、二次反射鏡17の透過焦点面には電磁波検知器14
を配置するようにしたものである。
Therefore, the device shown in FIGS. 7 and 8 has been developed as a conventional composite detection device for composite pass reception.
In the apparatus shown in FIG. 7, the electromagnetic wave detector 14 is arranged on the focal plane of the primary reflecting mirror 11, the light wave detector 15 is arranged in front of the secondary reflecting mirror 12, and the light wave lens 16 is arranged on the light wave detector 15. Is used to form an image of the incident light wave. The device shown in FIG. 8 is made of a material, such as quartz, that transmits the electromagnetic wave from the primary reflecting mirror 11 and reflects the light wave as the secondary reflecting mirror 17, and the focal plane of the primary reflecting mirror 11 is An optical wave detector 15 is arranged, and an electromagnetic wave detector 14 is provided on the transmission focal plane of the secondary reflecting mirror 17.
Is arranged.

しかしながら、第7図及び第8図の装置では、共にカ
セグレンアンテナの二次反射鏡の前方に光学系や検知器
を配置するため、寸法及び重量バランスの関係で制約が
生じ、設計の自由度が小さい。特に、第8図の装置では
電磁波に比べて光波が狭視野となるため、光波側の焦点
距離を電磁波側の焦点距離より短くすることは困難であ
る。
However, in the apparatus shown in FIGS. 7 and 8, both the optical system and the detector are arranged in front of the secondary reflector of the Cassegrain antenna, so that there are restrictions in terms of size and weight balance, and the degree of freedom in design is increased. small. In particular, in the device shown in FIG. 8, since the light wave has a narrow field of view compared to the electromagnetic wave, it is difficult to make the focal length on the light wave side shorter than the focal length on the electromagnetic wave side.

(発明が解決しようとする課題) 以上述べたように従来の方式による複合探知装置で
は、電磁波のビーム幅と光波の視野をほぼ同一にするこ
とは困難であり、両波を同一焦点面に結像することは容
易でない。焦点面を別々にすれば、重量バランスの悪
化、大型化の問題を生じてしまう。
(Problems to be Solved by the Invention) As described above, it is difficult to make the beam width of the electromagnetic wave and the field of view of the light wave almost the same in the conventional composite detection apparatus, and both waves are formed on the same focal plane. It's not easy to image. If the focal planes are separated, problems of weight balance deterioration and upsizing occur.

この発明は上記の問題を解決するためになされたもの
で、電磁波のビーム幅と光波の視野を容易に同一にして
両波を同一焦点面に結像することができ、重量バランス
の最良化、小型化に供し得る複合探知装置を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and it is possible to easily make the beam width of an electromagnetic wave and the visual field of a light wave the same to form both waves on the same focal plane, and to optimize the weight balance, It is an object of the present invention to provide a composite detection device that can be used for miniaturization.

[発明の構成] (課題を解決するための手段) 上記目的を達成するためにこの発明に係る複合探知装
置は、 中心に貫通孔を有し、放物面状に形成してなる一次反
射鏡と、 この一次反射鏡の放物面焦点に配置され、光波透過材
料により、一次反射鏡側をその反射電磁波が前記中心に
向けて反射されるように双曲面状に形成し、その反対側
を入射光波が前記中心に向けて結像されるように非球面
状に形成してなる光学レンズによる二次反射鏡と、 前記一次反射鏡の貫通孔の周囲にその中心点について
点対称に配置され、それぞれ前記二次反射鏡からの反射
電磁波を受信する複数個の電磁波検知器と、 前記一次反射鏡に形成された貫通孔の後部に配置さ
れ、前記貫通孔を通過した光波を受光する光波検知器
と、 を具備して構成される。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, a compound detection apparatus according to the present invention has a through-hole at the center and is a parabolic reflector. And is arranged at the focal point of the parabolic surface of this primary reflecting mirror, and the primary reflecting mirror side is formed into a hyperboloid shape so that the reflected electromagnetic wave is reflected toward the center by the light wave transmitting material, and the opposite side is formed. A secondary reflecting mirror with an optical lens formed in an aspherical shape so that an incident light wave is imaged toward the center, and is arranged around the through hole of the primary reflecting mirror in a point-symmetrical manner with respect to its center point. A plurality of electromagnetic wave detectors that respectively receive reflected electromagnetic waves from the secondary reflecting mirror, and a light wave detector that is arranged at the rear of the through hole formed in the primary reflecting mirror and receives the light wave that has passed through the through hole. And a container.

(作用) 上記構成による複合探知装置では、一次反射鏡と二次
反射鏡とでカセグレンアンテナを構成しているので、電
磁波のビーム幅(瞬時視野)は一次反射鏡の直径と電磁
波の波長で自由に設定可能である。一方、二次反射鏡で
入射光波を一次反射鏡の中心に形成した貫通孔を通過さ
せ、一次反射鏡後部に設けた光波検知器に導くので、光
波の視野は二次反射鏡の直径と貫通孔の直径とで自由に
設定可能である。
(Operation) In the composite detection device having the above configuration, since the Cassegrain antenna is composed of the primary reflecting mirror and the secondary reflecting mirror, the beam width of the electromagnetic wave (instantaneous field of view) is free depending on the diameter of the primary reflecting mirror and the wavelength of the electromagnetic wave. Can be set to. On the other hand, since the incident light wave is passed through the through hole formed in the center of the primary reflecting mirror by the secondary reflecting mirror and is guided to the light wave detector provided in the rear part of the primary reflecting mirror, the field of view of the light wave is the same as the diameter of the secondary reflecting mirror. It can be freely set by the diameter of the hole.

(実施例) 以下、第1図乃至第5図を参照してこの発明の一実施
例を説明する。尚、ここでは電磁波を大気の窓を有する
30GHz帯のミリ波とし、光波を同様に大気の窓を有する1
0μm帯の赤外線とする複合探知装置を例にとって説明
する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. In addition, here, the electromagnetic wave has a window of the atmosphere.
The millimeter wave in the 30 GHz band is used, and the light wave also has an atmospheric window 1
A description will be given by taking an example of a compound detection device using infrared rays in the 0 μm band.

第1図はその全体構成を示すもので、21は一次反射鏡
で、その反射面は放物面状上に形成され、図示しない駆
動機構により任意の方向に指向制御されるものである。
また、22は二次反射鏡で、この二次反射鏡22は一次反射
鏡21の放物面焦点位置にステー23a〜23cにより固定配置
され、光波透過材料により、一次反射鏡21側がその反射
電磁波を一次反射鏡21の中心に向けて反射するように双
曲面状に形成され、その反射側が入射光波を一次反射鏡
21の中心に向けて結像するように非球面状に形成された
接眼レンズを備えた、複数枚の赤外線レンズ群により構
成される。一次反射鏡21の中心には窓部21aが形成され
ており、この窓部21aには第2図に示すマイクロストリ
ップ基板によるミリ波検知器24が装着される。
FIG. 1 shows the overall structure thereof. Reference numeral 21 denotes a primary reflecting mirror, the reflecting surface of which is formed in a parabolic shape and whose direction is controlled in an arbitrary direction by a driving mechanism (not shown).
Further, 22 is a secondary reflecting mirror, and this secondary reflecting mirror 22 is fixedly arranged at the focal point of the parabolic surface of the primary reflecting mirror 21 by stays 23a to 23c, and the primary reflecting mirror 21 side reflects the electromagnetic wave reflected by the light wave transmitting material. Is formed in a hyperboloid shape so as to reflect toward the center of the primary reflecting mirror 21, and the reflecting side of the primary reflecting mirror reflects the incident light wave.
It is composed of a plurality of infrared lens groups each including an eyepiece lens formed in an aspherical shape so as to form an image toward the center of 21. A window portion 21a is formed at the center of the primary reflecting mirror 21, and a millimeter wave detector 24 using a microstrip substrate shown in FIG. 2 is attached to the window portion 21a.

このミリ波検知器24の基板24aには、第3図に拡大し
て示すように、その中心に直径3mm(後述する赤外線検
知器26の寸法に相当する径)の貫通孔24bが形成され、
その中心について点対称となるようにその周囲に30GHz
帯ミリ波受信用の4個の一次放射素子(ピックアップア
ンテナ)24a〜25dが正方形の頂点に配設される。さら
に、基板24aには、各一次放射素子25a〜25dを給電する
ための給電線路と、各一次放射素子25a〜25dの検出信号
から和チャンネル信号Σ及び差チャンネル信号ΔAZ,ΔE
Lを生成出力するモノパルス用プリコンパレータ回路が
マイクロ波ストリップ回路によって形成される。このよ
うに構成された基板24aによるミリ波検知器24は、第4
図に示すように、放物面中心と基板24aの貫通孔中心と
が一致するようにして一次反射鏡21に装着される。
A through hole 24b having a diameter of 3 mm (a diameter corresponding to the dimension of an infrared detector 26 described later) is formed in the center of the substrate 24a of the millimeter wave detector 24 as shown in an enlarged scale in FIG.
30 GHz around it so that it is point-symmetric about its center
Four primary radiating elements (pickup antennas) 24a to 25d for receiving band millimeter waves are arranged at the vertices of a square. Further, on the board 24a, a feed line for feeding each of the primary radiating elements 25a to 25d, and a sum channel signal Σ and a difference channel signal ΔAZ, ΔE from detection signals of the primary radiating elements 25a to 25d.
A monopulse pre-comparator circuit that generates and outputs L is formed by a microwave strip circuit. The millimeter wave detector 24 based on the substrate 24a configured as described above is
As shown in the figure, it is mounted on the primary reflecting mirror 21 so that the center of the paraboloid and the center of the through hole of the substrate 24a are aligned.

上記構成において、一次反射鏡21の開口径Dを約25cm
とすれば、波長λ=10mmであるから、(1)式より30GH
z帯ミリ波のアンテナ半値ビーム幅は約5.5゜となり、Σ
チャンネルのアンテナパターンのアンテナビーム幅は約
3゜となる。また、カセグレンアンテナのF値は1.1を
使用するのが一般的である。したがって、ミリ波アンテ
ナの焦点距離fは(2)式より275mm相当となる。一
方、第3図に示したように、基板24に形成する貫通孔24
aは、赤外線検知器26の寸法に相当するように、直径φ
=3mmで形成されるので、赤外線視野θは3mm相当分とな
る。このため、赤外線視野θをミリ波のビーム幅と同様
に3゜とするためには、(3)式より焦点距離fを約59
mmとミリ波の焦点距離より短くする必要がある。
In the above configuration, the opening diameter D of the primary reflecting mirror 21 is about 25 cm.
Then, since the wavelength λ is 10 mm, 30GH from the formula (1)
The half-width beam width of the z-band millimeter-wave antenna is about 5.5 °, and Σ
The antenna beam width of the channel antenna pattern is about 3 °. Moreover, it is general to use 1.1 as the F value of the Cassegrain antenna. Therefore, the focal length f of the millimeter wave antenna is equivalent to 275 mm from the equation (2). On the other hand, as shown in FIG. 3, the through holes 24 formed in the substrate 24
a is the diameter φ, which corresponds to the size of the infrared detector 26.
= 3 mm, the infrared field of view θ is equivalent to 3 mm. Therefore, in order to set the infrared visual field θ to 3 ° similarly to the beam width of the millimeter wave, the focal length f should be about 59 according to the equation (3).
It must be shorter than the focal length of mm and millimeter waves.

このようなことから、二次反射鏡22は第5図に示すよ
うに、ゲルマニウムGeを主材質として用いた複数枚の赤
外線レンズ22a〜22cで構成する。これらの赤外線レンズ
群のうち、接眼レンズ22aの一次反射鏡21側は一次反射
鏡21の放物面に対応して双曲面となるように形成する。
この接眼レンズ22aはGe(半導体)を主材料とするた
め、ミリ波を反射する。これにより、一次反射鏡21で反
射されたミリ波は接眼レンズ22aで反射され、上記基板2
4aの一次放射素子25a〜25dの配置部分に集光される。一
方、接眼レンズ22aの赤外線入射側は他のレンズ22b,22c
と共に入射された赤外線光を上記焦点距離59mmで結像さ
せるため、非球面となるように形成する。赤外線検知器
26には、60×60画素即ち受光面3mm×3mmの正方形の内接
視野を有する2次元アレイを使用する。
For this reason, as shown in FIG. 5, the secondary reflecting mirror 22 is composed of a plurality of infrared lenses 22a to 22c using germanium Ge as a main material. Of these infrared lens groups, the primary reflecting mirror 21 side of the eyepiece lens 22a is formed to be a hyperboloid corresponding to the parabolic surface of the primary reflecting mirror 21.
Since the eyepiece lens 22a is mainly made of Ge (semiconductor), it reflects millimeter waves. As a result, the millimeter wave reflected by the primary reflecting mirror 21 is reflected by the eyepiece lens 22a, and the substrate 2
The light is focused on the arrangement portion of the primary radiating elements 25a to 25d of 4a. On the other hand, the infrared ray incident side of the eyepiece lens 22a is connected to the other lenses 22b and 22c.
Infrared light incident along with is imaged at the focal length of 59 mm, so that it is formed as an aspherical surface. Infrared detector
For 26, a two-dimensional array having a square inscribed field of 60 × 60 pixels, that is, a light receiving surface of 3 mm × 3 mm is used.

以上の構造により、30GHz即ち波長10mmのアンテナビ
ーム幅3゜に対し、赤外線波長10μm及び赤外線検知器
26の焦点面寸法3mmの場合の赤外線視野を3゜とし、同
一視野に設定することができる。赤外線検知器26では、
2次元アレイを使用しているため、3゜の視野を1/60の
高分解能(1画素相当の視野)で探知することができ
る。
With the above structure, an infrared wavelength of 10 μm and an infrared detector for an antenna beam width of 3 ° at 30 GHz, that is, a wavelength of 10 mm.
In the case of 26 focal plane dimensions of 3 mm, the infrared field of view can be set to 3 ° and set to the same field of view. In the infrared detector 26,
Since a two-dimensional array is used, a 3 ° field of view can be detected with a high resolution of 1/60 (field of view equivalent to one pixel).

尚、実際に組み込む赤外線検知器26は、マイクロスト
リップ基板24aに形成された貫通孔24bを通過する赤外線
光をリレーレンズ26aで赤外線検知素子26bの受光面上に
結像させるようにする。この構造によれば、一次反射鏡
21の後部を寸法的に有効活用して、重量バランスを良好
に設定することが可能となる。
In addition, the infrared detector 26 to be actually incorporated is configured such that the infrared light passing through the through hole 24b formed in the microstrip substrate 24a is imaged on the light receiving surface of the infrared detecting element 26b by the relay lens 26a. According to this structure, the primary reflecting mirror
It is possible to effectively utilize the rear part of the 21 dimensionally and set a good weight balance.

したがって、上記構成による複合探知装置は、ミリ波
と赤外線光について同一視野内の自然放射を探知するこ
とができることができるので、ミリ波で粗な探知(目標
があるかないか)を行い、赤外線光で同一視野内をn×
mの高分解能な精な探知を行うことができる。また、赤
外線光の場合は入射光束の中心部分を十分に使用するの
で、高感度かつ高精度な探知を行うことが可能である。
特に、二次反射鏡の構造が比較的簡単で小型であるた
め、重量バランスを最良化することができ、装置全体を
小型化することができる。
Therefore, the compound detection device having the above-described configuration can detect natural radiation in the same field of view for millimeter waves and infrared light, and therefore performs rough detection with millimeter waves (whether there is a target or not) to detect infrared light. Within the same field of view n ×
High-resolution precise detection of m can be performed. Further, in the case of infrared light, since the central portion of the incident light flux is sufficiently used, it is possible to perform detection with high sensitivity and high accuracy.
In particular, since the structure of the secondary reflecting mirror is relatively simple and small, the weight balance can be optimized and the entire apparatus can be downsized.

さらに、この複合探知装置を空間安定化したジンバル
構造体に搭載し、機械的な走査を行えば、捜索視野を広
げることができる。この場合、検出信号を角度弁別回路
に入力して目標角度を求め、この情報をジンバル駆動部
にフィードバックすれば、追尾装置にも利用できる。
Furthermore, by mounting this composite detection device on a space-stabilized gimbal structure and performing mechanical scanning, the search field of view can be expanded. In this case, if the detection signal is input to the angle discriminating circuit to obtain the target angle and this information is fed back to the gimbal drive unit, it can also be used in the tracking device.

尚、上記実施例では電磁波にミリ波を、光波に赤外線
光を例にとって説明したが、他の周波数帯のものであっ
ても同様に実施可能であることはいうまでもない。
In the above embodiment, the millimeter wave is used as the electromagnetic wave and the infrared light is used as the light wave. However, it is needless to say that the invention can be similarly applied to other frequency bands.

[発明の効果] 以上のようにこの発明によれば、電磁波のビーム幅と
光波の視野を容易に同一にして両波を同一焦点面に結像
することができ、重量バランスの最良化、小型化に供し
得る複合探知装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, the beam width of an electromagnetic wave and the field of view of a light wave can be easily made the same so that both waves can be imaged on the same focal plane. It is possible to provide a composite detection device that can be used for conversion.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に係る複合探知装置の一実施例を示す
斜視図、第2図は同実施例のミリ波検知器の構造を示す
パターン構成図、第3図は同検知器の要部を拡大して示
すパターン構成図、第4図及び第5図はそれぞれ同実施
例の構造を断面により示す断面図、第6図は従来の複合
探知装置の原理的な構造を示す断面図、第7図及び第8
図はそれぞれ従来装置の具体的な構造を示す断面図であ
る。 11……一次反射鏡、12……二次反射鏡、13……電磁波/
光波検知器、A……一次反射鏡焦点面、D……一次反射
鏡開口径、14……電磁波検知器、15……光波検知器、16
……光波用レンズ、17……二次反射鏡、21……一次反射
鏡、21a……窓部、22……二次反射鏡、22a……接眼レン
ズ、22b,22c……赤外線レンズ、23a〜23c……ステー、2
4……ミリ波検知器、24a……基板、24b……貫通孔、25a
〜25d……一次放射素子、θ……赤外線視野、26……赤
外線検知器、26a……リレーレンズ、26b……赤外線検知
素子。
FIG. 1 is a perspective view showing an embodiment of the compound detection apparatus according to the present invention, FIG. 2 is a pattern configuration diagram showing the structure of the millimeter wave detector of the embodiment, and FIG. 3 is a main part of the detector. FIG. 4 is an enlarged pattern configuration diagram, FIG. 4 and FIG. 5 are cross-sectional views showing the structure of the same embodiment in cross section, and FIG. 6 is a cross-sectional view showing the principle structure of a conventional compound detection device. 7 and 8
Each of the drawings is a cross-sectional view showing a specific structure of the conventional device. 11 …… Primary reflector, 12 …… Secondary reflector, 13 …… Electromagnetic wave /
Light wave detector, A …… primary reflector focal plane, D …… primary reflector aperture diameter, 14 …… electromagnetic wave detector, 15 …… light wave detector, 16
...... Light wave lens, 17 …… Secondary reflector, 21 …… Primary reflector, 21a …… Window, 22 …… Secondary reflector, 22a …… Eyepiece, 22b, 22c …… Infrared lens, 23a ~ 23c …… Stay, 2
4 ... Millimeter wave detector, 24a ... Substrate, 24b ... Through hole, 25a
~ 25d …… Primary radiation element, θ …… Infrared field of view, 26 …… Infrared detector, 26a …… Relay lens, 26b …… Infrared detection element.

フロントページの続き (56)参考文献 特開 平3−120488(JP,A) 特開 平2−42377(JP,A) 特開 昭63−238578(JP,A) 特開 昭64−25074(JP,A) 実開 昭62−167183(JP,U) 実開 昭62−65576(JP,U) 実開 平2−55186(JP,U) 実開 昭53−29280(JP,U)Continuation of the front page (56) Reference JP-A-3-120488 (JP, A) JP-A-2-42377 (JP, A) JP-A-63-238578 (JP, A) JP-A 64-25074 (JP , A) Actually open 62-167183 (JP, U) Actually open 62-65576 (JP, U) Actually open 2-55186 (JP, U) Actually open 53-29280 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中心に貫通孔を有し、放物面状に形成して
なる一次反射鏡と、 この一次反射鏡の放物面焦点に配置され、光波透過材料
により、一次反射鏡側をその反射電磁波が前記中心に向
けて反射されるように双曲面状に形成し、その反対側を
入射光波が前記中心に向けて結像されるように非球面状
に形成してなる光学レンズによる二次反射鏡と、 前記一次反射鏡の貫通孔の周囲にその中心点について点
対称に配置され、それぞれ前記二次反射鏡からの反射電
磁波を受信する複数個の電磁波検知器と、 前記一次反射鏡に形成された貫通孔の後部に配置され、
前記貫通孔を通過した光波を受光する光波検知器と、 を具備する複合検知装置。
1. A primary reflecting mirror having a through hole in the center and formed in a parabolic shape, and a primary reflecting mirror disposed at the focal point of a parabolic surface of the primary reflecting mirror. By an optical lens formed in a hyperboloid shape so that the reflected electromagnetic wave is reflected toward the center and an aspheric surface on the opposite side so that an incident light wave is imaged toward the center A secondary reflecting mirror, a plurality of electromagnetic wave detectors arranged around the through hole of the primary reflecting mirror in a point-symmetrical manner with respect to the center point thereof, each receiving an electromagnetic wave reflected from the secondary reflecting mirror, and the primary reflection It is placed at the rear of the through hole formed in the mirror,
A composite detection device comprising: a light wave detector that receives a light wave that has passed through the through hole.
【請求項2】前記電磁波検知器は、中心に貫通孔が形成
された基板上に、前記貫通孔の周囲にその中心点につい
て点対称に複数個のピックアップアンテナを配置させ、
これらのアンテナの給電線及び出力信号線をマイクロス
トリップ線路で形成し、前記一次反射鏡の中心部に窓部
を形成してこの窓部に当該基板を前記中心が互いに一致
するように装着することを特徴とする請求項(1)記載
の複合検知装置。
2. The electromagnetic wave detector has a plurality of pickup antennas arranged on a substrate having a through hole formed in the center thereof in a point symmetrical manner with respect to a center point of the through hole,
The feed line and the output signal line of these antennas are formed by microstrip lines, a window is formed in the center of the primary reflecting mirror, and the substrate is mounted in this window so that the centers thereof coincide with each other. The combined detection device according to claim 1, wherein
【請求項3】前記光波検知器は、前記貫通孔と受光部と
の間に結像視野調整用のリレーレンズを設けたことを特
徴とする特徴とする請求項(1)記載の複合検知装置。
3. The combined detector according to claim 1, wherein the light wave detector is provided with a relay lens for adjusting an image forming field between the through hole and the light receiving portion. .
JP1336664A 1989-12-27 1989-12-27 Compound detector Expired - Fee Related JP2677691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336664A JP2677691B2 (en) 1989-12-27 1989-12-27 Compound detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336664A JP2677691B2 (en) 1989-12-27 1989-12-27 Compound detector

Publications (2)

Publication Number Publication Date
JPH03199989A JPH03199989A (en) 1991-08-30
JP2677691B2 true JP2677691B2 (en) 1997-11-17

Family

ID=18301520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336664A Expired - Fee Related JP2677691B2 (en) 1989-12-27 1989-12-27 Compound detector

Country Status (1)

Country Link
JP (1) JP2677691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859293B (en) * 2022-03-15 2024-09-13 北京理工雷科空天信息技术有限公司 Dual-mode composite antenna feeder working at millimeter wave/laser

Also Published As

Publication number Publication date
JPH03199989A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
CA1328918C (en) Multi-spectral imaging system
US4477814A (en) Dual mode radio frequency-infrared frequency system
US6587246B1 (en) Scanning apparatus
US5214438A (en) Millimeter wave and infrared sensor in a common receiving aperture
US5933120A (en) 2-D scanning antenna and method for the utilization thereof
US5327149A (en) R.F. transparent RF/UV-IR detector apparatus
EP0690315B1 (en) RF sensor and radar for automotive speed and collision avoidance applications
AU2003245108B2 (en) Real-time, cross-correlating millimetre-wave imaging system
US6919988B2 (en) Optical system for simultaneous imaging of LWIR and millimeter wave radiation
US6225955B1 (en) Dual-mode, common-aperture antenna system
WO1989004496A1 (en) Millimeter wave imaging device
JPH04232486A (en) Multi-beam light and electromagnetic semi-spherical surface/spherical surface sensor
US6259414B1 (en) Scanning apparatus
CA2166110A1 (en) Radiation sensor
US5298909A (en) Coaxial multiple-mode antenna system
Richter et al. A multi-channel radiometer with focal plane array antenna for W-band passive millimeterwave imaging
JP2677691B2 (en) Compound detector
US5089828A (en) Electromagnetic radiation receiver
US5084711A (en) Microwave and millimetric wave receivers
US7443560B2 (en) Scanning imaging apparatus
JPH0927927A (en) Millimeter wave infrared ray image pickup device
JP2538745Y2 (en) Transceiver
JPH01233381A (en) Radar
RU2234177C1 (en) Common-aperture multispectral transducer
JPS60170304A (en) Antenna system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970701

LAPS Cancellation because of no payment of annual fees