JP2673294B2 - Aircraft control test method and its equipment - Google Patents

Aircraft control test method and its equipment

Info

Publication number
JP2673294B2
JP2673294B2 JP5341576A JP34157693A JP2673294B2 JP 2673294 B2 JP2673294 B2 JP 2673294B2 JP 5341576 A JP5341576 A JP 5341576A JP 34157693 A JP34157693 A JP 34157693A JP 2673294 B2 JP2673294 B2 JP 2673294B2
Authority
JP
Japan
Prior art keywords
flying
measurement
measurement platform
control
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5341576A
Other languages
Japanese (ja)
Other versions
JPH07167595A (en
Inventor
正修 湯川
栄一郎 武藤
英明 納土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP5341576A priority Critical patent/JP2673294B2/en
Publication of JPH07167595A publication Critical patent/JPH07167595A/en
Application granted granted Critical
Publication of JP2673294B2 publication Critical patent/JP2673294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、飛しょう体を発射する
ことなく、地上にて実飛しょう環境を模擬し、機体制御
に関するデータの取得ならびに評価を行う滑走式の機体
制御試験方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gliding-type aircraft control test method for simulating an actual flying environment on the ground without acquiring a flying vehicle, and acquiring and evaluating data relating to the aircraft control. Regarding the device.

【0002】[0002]

【従来の技術】従来、飛しょう体を発射することなく機
体の制御を行う試験装置としては、特開平3−5050
0号公報に記載の飛しょう体の試験装置が提案されてい
る。この飛しょう体の試験装置は、図6に示すように飛
しょう体Fに機体ピッチ方向P及び機体ロール方向Rの
回転自由度を持たせながら飛しょう体Fに搭載された姿
勢制御装置(TVC装置)20の性能試験を行う装置で
あって、飛しょう体Fを機体ピッチ方向P及び機体ロー
ル方向Rのうちいずれか一方の自由度方向に回転自在に
軸受支持する支持体21を、ベース部材(テーブル)2
2に対し他方の自由度方向に回転自在に軸受支持させた
ことを特徴とするものである。
2. Description of the Related Art Conventionally, as a test apparatus for controlling a body without firing a flying body, Japanese Patent Laid-Open No. 3-5050
A flying object test apparatus described in Japanese Patent No. 0 has been proposed. As shown in FIG. 6, this flying body testing apparatus is an attitude control device (TVC) mounted on the flying body F while allowing the flying body F to have rotational freedom in the machine body pitch direction P and the machine body roll direction R. A device for performing a performance test of the device 20. A base member is a support member 21 for rotatably supporting the flying body F in either one of the machine body pitch direction P and the machine body roll direction R. (Table) 2
The bearing is supported rotatably in the other direction of freedom with respect to 2.

【0003】この飛しょう体の試験装置に於いて、図6
に示されるように実際の飛しょう体Fを試験装置にセッ
トして起動させると、飛しょう体Fに搭載された各制御
機能部(図示せず)の働きにより姿勢制御装置(TVC
装置)20が実際の飛しょう状態と同様に作動し、同時
に飛しょう体Fは試験部材(テーブル)22に対してピ
ッチ及びロール方向の自由度を有している為に、各自由
度の変位を伴うことになる。そして飛しょう体Fに搭載
されている各制御機能部を予め外部の計測表示機能部に
接続しておくことにより、各制御機能部の出力信号をモ
ニタリングして姿勢制御装置(TVC装置)20の働き
を評価できる。
FIG. 6 shows the structure of this flying body test apparatus.
When the actual flying object F is set in the test device and activated as shown in Fig. 3, each control function unit (not shown) mounted on the flying object F causes the attitude control device (TVC) to operate.
(Equipment) 20 operates in the same manner as in the actual flying state, and at the same time, since the flying body F has the degree of freedom in the pitch and roll directions with respect to the test member (table) 22, the displacement of each degree of freedom is Will be accompanied. By connecting each control function unit mounted on the flying body F to an external measurement display function unit in advance, the output signal of each control function unit is monitored to detect the attitude control device (TVC device) 20. You can evaluate your work.

【0004】然し乍ら、この飛しょう体の試験装置は、
飛しょう体Fそのものが支持体21に軸受支持されて、
自由飛しょう状態が模擬されるものではないので、飛し
ょう体Fに空気力が与えられず、従って飛しょう環境下
での機体制御に関するデータの取得ならびに評価(フラ
イトパスの直接的評価)を行うことができない。
However, this flying body testing device is
The flying body F itself is bearing-supported by the support body 21,
Since the free flight state is not simulated, the aerodynamic force is not applied to the flying body F, and therefore, the acquisition and evaluation of the data regarding the aircraft control under the flying environment (the direct evaluation of the flight path) are performed. I can't.

【0005】従来、飛しょう体に空気力を与え飛しょう
環境下での機体制御に関するデータを取得する場合は、
風胴を用いてきたが、この時ロケットモータの噴流の影
響は計測不可能であった。また、風胴試験による空力デ
ータは安定した一様流体内の特性であり、精度良く初期
安定飛しょう(経路)を評価することができない。
Conventionally, when aerodynamic force is applied to a flying body to obtain data on the body control under a flying environment,
The wind tunnel has been used, but the effect of the rocket motor jet was not measurable at this time. Further, the aerodynamic data obtained by the wind tunnel test is a characteristic in a stable uniform fluid, and the initial stable flight (path) cannot be accurately evaluated.

【0006】精度良く初期安定飛しょう(経路)を評価
するには、飛しょう体を発射する本試験が非常に有効で
あるが、1回の発射試験でデータ取得ならびに評価を行
うことができず、何百発も発射試験を行ったとしても、
その都度条件が異なる為、安定したデータの取得や評価
が得られない。しかも、何百発もの発射試験は、安全上
の点からも費用の点からも実際には行うことができな
い。
In order to evaluate the initial stable flight (path) with high accuracy, the main test of launching a flying object is very effective, but data acquisition and evaluation cannot be performed in one launch test. , Even if you have done hundreds of firing tests,
Since the conditions are different each time, stable data acquisition and evaluation cannot be obtained. Moreover, hundreds of firing tests cannot be performed in practice due to safety and cost.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、飛し
ょう体を発射することなく、地上で飛しょう体の自由飛
しょう状態を模擬し、機体制御に関するデータの取得な
らびに評価を行うことができ、特に発射直後の低速飛し
ょう性能に関するデータの取得ならびに評価を行うこと
のできる飛しょう体の機体制御試験方法及びその装置を
提供しようとするものである。
Therefore, according to the present invention, it is possible to acquire and evaluate data regarding airframe control by simulating a free-flying state of a flying body on the ground without firing the flying body. In particular, it is an object of the present invention to provide an aircraft control test method for a flying vehicle and a device therefor capable of acquiring and evaluating data on low-speed flying performance immediately after launch.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の本発明の飛しょう体の機体制御試験方法は、飛しょう
体を、ヨー方向,ピッチ方向,ロール方向に回転可能な
機体支持機構に支持し、次にこの機体支持機構を備えた
計測架台を加速用ロケットモータを用いてレール上を滑
走させて飛しょう体に空気力を与えると同時に飛しょう
体のロケットモータを点火させて飛しょう体の自由飛し
ょうを模擬し、次いで飛しょう体の操舵装置を作動し、
それに応じた飛しょう体の挙動を計測架台にて計測する
と共に実外力,実モーメントを計測し、且つその実外
力,実モーメントを作用させて飛しょう体の機体制御を
行いつつ計測し、動的飛しょう性能を評価することを特
徴とするものである。
[Means for Solving the Problems] A method for testing a vehicle body control of a flying vehicle according to the present invention for solving the above-mentioned problems is a vehicle body supporting mechanism capable of rotating a flying vehicle in a yaw direction, a pitch direction and a roll direction. Support and then slide the measuring platform equipped with this airframe support mechanism on the rails using the rocket motor for acceleration to give aerodynamic force to the flying vehicle and at the same time ignite the rocket motor of the flying vehicle. Simulate the free flight of the body, then operate the flight body steering device,
According to that, the behavior of the flying vehicle is measured on the measurement stand, the actual external force and the actual moment are measured, and the actual external force and the actual moment are applied to control the flying vehicle to measure the dynamic flying. It is characterized by evaluating shoaling performance.

【0009】また、上記試験方法を実施するための本発
明による飛しょう体の機体制御試験装置は、レールと、
該レールに保持されて滑走する計測架台と、該計測架台
に装備された加速用ロケットモータ及び制動装置と、計
測架台に内蔵された計測装置と、計測架台上に設けられ
飛しょう体をヨー方向,ピッチ方向,ロール方向に回転
可能に支持する機体支持機構とよりなるものである。
Further, the airframe body control test apparatus according to the present invention for carrying out the above-mentioned test method includes a rail,
A measurement platform that slides while being held by the rails, an acceleration rocket motor and a braking device that are equipped on the measurement platform, a measurement device that is built in the measurement platform, and a flying object that is provided on the measurement platform in the yaw direction. , A machine body support mechanism that rotatably supports the pitch direction and the roll direction.

【0010】[0010]

【作用】上記のように本発明の飛しょう体の機体制御試
験方法では、飛しょう体の自由飛しょうを模擬でき、飛
しょう体の操舵装置を作動することにより、それに応じ
た飛しょう体の挙動即ちヨー方向,ピッチ方向,ロール
方向への機体姿勢の変化が計測でき、しかも実外力,実
モーメントを飛しょう体に作用させて機体制御を行うの
で、飛しょう体を発射する本試験と同様な動的飛しょう
性能を評価できる。特に、発射直後の低速度域における
機体空力性能及び制御性能(飛しょう経路)に関するデ
ータの取得ならびに評価を行うことができる。
As described above, in the airframe control test method for a flying object of the present invention, it is possible to simulate free flight of a flying object, and by operating the flying device steering device, The behavior, that is, changes in the aircraft attitude in the yaw direction, pitch direction, and roll direction can be measured, and since the external body force and actual moment are applied to the flying vehicle to control the flying vehicle, the same as in the main test for launching a flying vehicle The dynamic flight performance can be evaluated. In particular, it is possible to obtain and evaluate data relating to the aircraft aerodynamic performance and control performance (flying route) in the low speed range immediately after launch.

【0011】また、上記のように本発明による飛しょう
体の機体制御試験装置は、飛しょう体をヨー方向,ピッ
チ方向,ロール方向に回転可能に支持する機体支持機構
を有し、この機体支持機構をレールに保持されて滑走す
る計測架台上に設けられ、この計測架台に加速用ロケッ
トモータが装備されているので、上記の機体制御試験方
法を円滑,容易に行うことができ、しかも同一条件で機
体制御試験方法を繰り返し実施でき、従って安定した機
体制御に関するデータの取得ならびに評価ができる。
Further, as described above, the airframe body control test apparatus according to the present invention has the airframe support mechanism for rotatably supporting the airframe in the yaw direction, the pitch direction and the roll direction. The mechanism is provided on a sliding measurement pedestal that is held by rails, and this measurement pedestal is equipped with an acceleration rocket motor, so the above-mentioned airframe control test method can be carried out smoothly and easily, and under the same conditions. The airframe control test method can be repeatedly carried out, and thus stable airframe control data can be acquired and evaluated.

【0012】[0012]

【実施例】本発明の飛しょう体の機体制御試験方法及び
その装置の一実施例を説明する。先ず、飛しょう体の機
体制御試験方法を実施する為の装置の一実施例を図によ
って説明すると、図1に示すように長さ300Mの長尺
基台1上にレール2が一直線に敷設固定され、このレー
ル2に計測架台3が底面に設けられたスライダ4にて滑
走可能に保持されている。計測架台3の前側には速度制
御ならびに停止する為の制動装置5が装備され、後側に
は加速用ロケットモータ6が装備されている。計測架台
3の内部には計測架台3の制御,機体制御に関するデー
タ通信機能を有する電子回路を組込んだ計測装置(図示
省略)が装備されている。計測架台3上には飛しょう体
Fにヨー方向,ピッチ方向,ロール方向に回転可能に支
持する機体支持機構7が設けられている。この機体支持
機構7は、図2に示すように計測架台3上に立設された
垂直な中空軸8にヨー軸9が回転自在に図3に示すよう
に支持され、ヨー軸9の上端に図2に示すように上向き
開口の半円状の支持腕10の中間が固定され、支持腕1
0の両端に水平にピッチ軸11が設けられ、この両ピッ
チ軸11の先端に円筒状の機体支持具12がピッチ軸1
1と直交して図4に示すようにベアリング13を介して
回転可能に支持され、機体支持具12の外周面には図5
に示すようにベアリング14を介して飛しょう体Fがロ
ール方向に回転可能に支持されるようになっている。
[Embodiment] An embodiment of a method and apparatus for controlling a body of a flying vehicle according to the present invention will be described. First, an embodiment of an apparatus for carrying out the airframe control test method of a flying object will be described with reference to the drawing. As shown in FIG. 1, a rail 2 is laid and fixed in a straight line on a long base 1 having a length of 300M. A measurement stand 3 is slidably held on the rail 2 by a slider 4 provided on the bottom surface. A braking device 5 for speed control and stopping is installed on the front side of the measurement platform 3, and an acceleration rocket motor 6 is installed on the rear side. Inside the measuring gantry 3, a measuring device (not shown) incorporating an electronic circuit having a data communication function for controlling the measuring gantry 3 and controlling the machine body is provided. A body support mechanism 7 that supports the flying body F rotatably in the yaw direction, the pitch direction, and the roll direction is provided on the measurement base 3. In this machine body support mechanism 7, as shown in FIG. 2, a yaw shaft 9 is rotatably supported by a vertical hollow shaft 8 standing on the measurement stand 3 as shown in FIG. As shown in FIG. 2, the middle of a semicircular support arm 10 having an upward opening is fixed and the support arm 1
The pitch shafts 11 are horizontally provided at both ends of the pitch 0, and the cylindrical machine tool support 12 is provided at the tips of the pitch shafts 11.
1 is rotatably supported through a bearing 13 as shown in FIG.
The flying body F is rotatably supported in the roll direction via a bearing 14 as shown in FIG.

【0013】次に上述のように構成された飛しょう体の
機体制御試験装置を用いて実施する飛しょう体の機体制
御試験方法について説明すると、図2に示すように飛し
ょう体Fを機体支持機構7における円筒状の機体支持具
12の外周にベアリング14を介して回転可能に支持す
る。その結果、飛しょう体Fは、機体支持具12上でロ
ール方向に回転可能となり、機体支持具12を介してピ
ッチ軸11上でピッチ方向に回転可能となり、機体支持
具12,ピッチ軸11,支持腕10を介してヨー軸9に
て中空軸8上でヨー方向に回転可能となる。次に機体支
持機構7を備えた計測架台3を加速用ロケットモータ6
を用いてレール2上を300m/sec で滑走させて飛し
ょう体Fに空気力を与えると同時に飛しょう体Fのロケ
ットモータMを点火させて飛しょう体Fの自由飛しょう
を模擬する。次いで飛しょう体Fの操舵装置(図示せ
ず)を作動し、それに応じた空気力を機体に働かせる。
そしてその実外力,実モーメントを計測するのみなら
ず、飛しょう体Fの挙動、即ち、ヨー方向,ピッチ方
向,ロール方向への機体姿勢,加速度等を制御しつつ計
測架台3に内蔵された計測装置(図示せず)にて計測す
れば、飛しょう体Fの動的飛しょう性能を評価すること
が可能となる。かくして、飛しょう体Fを発射すること
なく、地上にて飛しょう体Fの実飛しょう環境を模擬で
きて、機体制御に関するデータの取得ならび評価が得ら
れ、特に飛しょう体発射直後の低速度域における機体空
力性能及び制御性能(飛しょう経路)に関するデータの
取得ならびに評価を行うことができる。
Next, an explanation will be given of a method for controlling the aircraft body control of the aircraft carried out by using the aircraft body control test apparatus constructed as described above. As shown in FIG. A cylindrical machine body support 12 of the mechanism 7 is rotatably supported on the outer periphery of the mechanism via bearings 14. As a result, the flying body F can rotate in the roll direction on the machine body support 12, and can rotate in the pitch direction on the pitch axis 11 via the machine body support 12, and the machine body support 12, the pitch axis 11, The yaw shaft 9 can be rotated in the yaw direction on the hollow shaft 8 via the support arm 10. Next, the measurement platform 3 equipped with the machine body support mechanism 7 is attached to the acceleration rocket motor 6
Is used to slide on the rail 2 at 300 m / sec to apply aerodynamic force to the flying body F and at the same time ignite the rocket motor M of the flying body F to simulate the free flying of the flying body F. Next, the steering device (not shown) of the flying body F is operated, and the aerodynamic force corresponding thereto is applied to the airframe.
Then, not only the actual external force and the actual moment are measured, but also the behavior of the flying body F, that is, the attitude of the vehicle in the yaw direction, the pitch direction, the roll direction, the acceleration, and the like are controlled, and the measurement device built in the measurement pedestal 3 is used. The dynamic flight performance of the flying body F can be evaluated by measuring (not shown). Thus, it is possible to simulate the actual flying environment of the flying body F on the ground without launching the flying body F, and obtain and evaluate the data regarding the aircraft control, especially the low speed immediately after launching the flying body. It is possible to obtain and evaluate data on airframe aerodynamic performance and control performance (flying route) in the area.

【0014】そして、上記機体制御試験方法は、機体制
御試験装置にて同一条件にて繰り返し実施することによ
り、安定した機体制御に関するデータの取得ならびに評
価ができる。
The above-mentioned machine control test method can be carried out in the machine control test apparatus repeatedly under the same conditions to obtain and evaluate stable machine control data.

【0015】[0015]

【発明の効果】以上の通り本発明の飛しょう体の機体制
御試験方法によれば、飛しょう体を発射することなく、
地上で飛しょう体の自由飛しょう状態を模擬し、機体制
御に関するデータの取得ならびに評価を行うことがで
き、特に発射直後の低速飛しょう性能に関するデータの
取得ならびに評価を行うことができるので、発射試験前
の機体制御(オートパイロット)系の地上最終確認試験
方法として最適である。
As described above, according to the airframe control test method for a flying vehicle of the present invention, without launching a flying vehicle,
It is possible to simulate the free-flying state of the flying object on the ground and acquire and evaluate the data related to the aircraft control. Especially, the data related to the low-speed flying performance immediately after the launch can be acquired and evaluated. It is most suitable as the final ground confirmation test method for the airframe control (autopilot) system before the test.

【0016】また、本発明の飛しょう体の機体制御試験
装置によれば、上記の機体制御試験方法を円滑,容易に
行うことができ、しかも同一条件で機体制御試験方法を
繰り返し実施でき、従って、機体制御に関する安定した
データの取得ならびに評価ができる。
Further, according to the airframe body control test apparatus of the present invention, the above-mentioned airframe control test method can be smoothly and easily carried out, and further, the airframe control test method can be repeatedly carried out under the same conditions. , It is possible to acquire and evaluate stable data regarding airframe control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の飛しょう体の機体制御試験装置による
飛しょう体の機体制御試験方法を示す図である。
FIG. 1 is a diagram showing a method for testing a vehicle body control of a flying vehicle using a vehicle body control testing apparatus for a flying vehicle of the present invention.

【図2】図1の機体制御試験装置における機体支持機構
を示す拡大斜視図である。
FIG. 2 is an enlarged perspective view showing a machine body support mechanism in the machine body control test apparatus of FIG.

【図3】図2のA部拡大縦断面図である。FIG. 3 is an enlarged vertical sectional view of a portion A of FIG.

【図4】図2のB部拡大断面図である。FIG. 4 is an enlarged sectional view of a B part in FIG.

【図5】図2のC部拡大断面図である。FIG. 5 is an enlarged sectional view of a portion C in FIG. 2;

【図6】従来の飛しょう体の試験装置を示す斜視図であ
る。
FIG. 6 is a perspective view showing a conventional flying body test apparatus.

【符号の説明】[Explanation of symbols]

2 レール 3 計測架台 5 制動装置 6 加速用ロケットモータ 7 機体支持機構 9 ヨー軸 11 ピッチ軸 12 機体支持具 F 飛しょう体 M ロケットモータ 2 Rails 3 Measuring platform 5 Braking device 6 Rocket motor for acceleration 7 Airframe support mechanism 9 Yaw axis 11 Pitch axis 12 Airframe support tool F Flying vehicle M Rocket motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 納土 英明 岐阜県各務原市川崎町1番地 川崎重工 業株式会社 岐阜工場内 (56)参考文献 特開 平6−64598(JP,A) 特開 平3−50500(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Sato 1 Kawasaki-cho, Kakamigahara-shi, Gifu Kawasaki Heavy Industries, Ltd. Gifu factory (56) Reference JP-A-6-64598 (JP, A) JP HEI 3-50500 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 飛しょう体を、ヨー方向,ピッチ方向,
ロール方向に回転可能な機体支持機構に支持し、次にこ
の機体支持機構を備えた計測架台を加速用ロケットモー
タを用いてレール上を滑走させて飛しょう体に空気力を
与えると同時に飛しょう体のロケットモータを点火させ
て飛しょう体の自由飛しょうを模擬し、次いで飛しょう
体の操舵装置を作動しそれに応じた飛しょう体の挙動を
計測架台にて計測すると共に実外力,実モーメントを計
測し、且つその実外力,実モーメントを作用させて飛し
ょう体の機体制御を行いつつ計測し、動的飛しょう性能
を評価することを特徴とする飛しょう体の機体制御試験
方法。
1. A flying object is controlled in a yaw direction, a pitch direction,
Support the machine support mechanism that can rotate in the roll direction, and then slide the measurement platform equipped with this machine support mechanism on the rail using the rocket motor for acceleration to apply aerodynamic force to the flying body and fly at the same time. The rocket motor of the body is ignited to simulate the free flight of the flying body, and then the flight vehicle steering device is operated to measure the behavior of the flying body in response to the measurement on the measuring stand, and the external force and the actual moment. A method for testing the aircraft control of a flying vehicle, characterized in that the dynamic flight performance is evaluated by measuring and measuring the aircraft while controlling the flying vehicle by applying its actual external force and actual moment.
【請求項2】 レールと、該レールに保持されて滑走す
る計測架台と、該計測架台に装備された加速用ロケット
モータ及び制動装置と、計測架台に内蔵された計測装置
と、計測架台上に設けられ飛しょう体をヨー方向,ピッ
チ方向,ロール方向に回転可能に支持する機体支持機構
とよりなる飛しょう体の機体制御試験装置。
2. A rail, a measurement platform held by the rail and sliding, a rocket motor for acceleration and a braking device equipped on the measurement platform, a measurement device built in the measurement platform, and a measurement platform on the measurement platform. An airframe control test device for a flying body, which is equipped with a body support mechanism that supports the flying body so that it can rotate in the yaw, pitch, and roll directions.
JP5341576A 1993-12-10 1993-12-10 Aircraft control test method and its equipment Expired - Lifetime JP2673294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341576A JP2673294B2 (en) 1993-12-10 1993-12-10 Aircraft control test method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341576A JP2673294B2 (en) 1993-12-10 1993-12-10 Aircraft control test method and its equipment

Publications (2)

Publication Number Publication Date
JPH07167595A JPH07167595A (en) 1995-07-04
JP2673294B2 true JP2673294B2 (en) 1997-11-05

Family

ID=18347150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341576A Expired - Lifetime JP2673294B2 (en) 1993-12-10 1993-12-10 Aircraft control test method and its equipment

Country Status (1)

Country Link
JP (1) JP2673294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192690B (en) * 2011-04-23 2012-04-11 中北大学 Overload test and detection device of gas gun
CN106092499A (en) * 2016-07-08 2016-11-09 重庆大学 The three axle rotation test devices for wind tunnel model

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075119A (en) * 2002-03-16 2003-09-22 장용승 A horizontal rocket launcher
CN102095566B (en) * 2009-12-11 2014-12-31 中国航空工业空气动力研究院 Forced pitching-free yawing wind tunnel test device
CN102175420B (en) * 2011-01-25 2013-04-03 北京航空航天大学 Two-degrees-of-freedom supporting system for wind tunnel test of airplane
CN104483088B (en) * 2014-12-11 2017-07-07 中国航天空气动力技术研究院 The wind-tunnel Multi-bodies Separation free flight test method of simulated engine thrust-drag margin
CN108820249B (en) * 2018-06-05 2021-06-15 西安航天动力测控技术研究所 Test device for checking friction safety of full-size solid engine
CN111504143B (en) * 2020-04-24 2021-12-07 重庆天扬拓扑科技有限公司 Linear acceleration tester
CN112595484B (en) * 2020-12-09 2022-07-29 河北航轮科技有限公司 Bicycle wind tunnel experiment table device
CN112693623B (en) * 2020-12-21 2022-05-27 中国空气动力研究与发展中心高速空气动力研究所 Missile grid rudder hinge moment model claw disc type self-locking positioning structure
CN114636357B (en) * 2022-03-31 2023-11-10 北京中科宇航技术有限公司 Aiming test design method aiming at shaking state of vertical turntable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192690B (en) * 2011-04-23 2012-04-11 中北大学 Overload test and detection device of gas gun
CN106092499A (en) * 2016-07-08 2016-11-09 重庆大学 The three axle rotation test devices for wind tunnel model

Also Published As

Publication number Publication date
JPH07167595A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
JP2673294B2 (en) Aircraft control test method and its equipment
US6427528B1 (en) Apparatus for the method of testing vehicle
US5627311A (en) Transportable three-dimensional calibration wind tunnel system, verification method of flight control system and flight simulator using same
US5561244A (en) Method and apparatus for measuring the dynamic camber of vehicle tires
US4862739A (en) Wind tunnel model support mechanism
CN109795716B (en) Universal small steering engine frequency sweep test equipment and method
CN115014697A (en) Magnetic levitation flight wind tunnel aerodynamic force indirect measurement method
US4768391A (en) Actuator load simulator
US20030024304A1 (en) Support device for a motorised flying instrument in a wind tunnel
US20020023484A1 (en) Support device for a motorised flying instrument in a wind tunnel
JP3694742B2 (en) Dynamic wind test model with control surface drive mechanism
Hossain et al. Propeller dynamometer for small unmanned aerial vehicle
JPH102914A (en) Acceleration generating device and acceleration-sensor measuring device using the device
JP2556905B2 (en) Flying object testing equipment
US4522074A (en) Apparatus for measuring several force components
JPS61223529A (en) Tester for measuring performance of unmanned vehicle
JPH05322693A (en) Wind tunnel test device
CN111473699A (en) Guided missile rolling pilot simulation method and tool
CN113365919A (en) Test equipment, test method and flight test system
KR100670970B1 (en) A Test Equipment for the GPS Receiver System
Langer et al. The unique capabilities of a complete Mach-scaled helicopter model for the DNW-LLF
CN212158345U (en) Missile rolling pilot simulation device
CN112229629B (en) Self-lubricating joint bearing starting torque measuring tool and measuring method
OLEARY Wind-tunnel measurement of aerodynamic derivatives using flexible-sting rigs
US8417469B1 (en) Force measurement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term