JP2673284B2 - SQUID magnetometer calibration device - Google Patents

SQUID magnetometer calibration device

Info

Publication number
JP2673284B2
JP2673284B2 JP6134886A JP13488694A JP2673284B2 JP 2673284 B2 JP2673284 B2 JP 2673284B2 JP 6134886 A JP6134886 A JP 6134886A JP 13488694 A JP13488694 A JP 13488694A JP 2673284 B2 JP2673284 B2 JP 2673284B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetometer
current
magnetic
squid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6134886A
Other languages
Japanese (ja)
Other versions
JPH07318624A (en
Inventor
哲夫 吉田
正法 ▲樋▼口
貴紀 小室
久 賀戸
Original Assignee
株式会社超伝導センサ研究所
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社超伝導センサ研究所, 工業技術院長 filed Critical 株式会社超伝導センサ研究所
Priority to JP6134886A priority Critical patent/JP2673284B2/en
Publication of JPH07318624A publication Critical patent/JPH07318624A/en
Application granted granted Critical
Publication of JP2673284B2 publication Critical patent/JP2673284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、SQUID(Supercon
ducting Quantum Interference Device :超伝導量子干
渉デバイス)を使用して磁場を計測するSQUID磁束
計あるいはフラックスゲート等の磁束計のシステム校正
のためのキャリブレーション装置に関する。ここに、S
QUIDとは、液体ヘリウムや液体窒素等により断熱容
器(クライオスタットやデュワー等)内で低温状態に維
持され、ループ内にジョセフソン接合を含む超伝導ルー
プであるSQUIDループに直流電流をバイアス電流と
して印加して駆動し、このSQUIDループ内に、ピッ
クアップコイルや入力コイル等を介して外部からの磁束
を結合して印加すると、SQUIDループに周回電流が
誘起され、ループ内のジョセフソン接合における量子的
な干渉効果により、印加された外部磁束の微弱な変化を
出力電圧の大きな変化に変換するトランスデューサとし
て動作することを利用して、微小磁束変化を測定する素
子である。
The present invention relates to a SQUID (Supercon
ducting Quantum Interference Device: A calibration device for system calibration of a magnetic flux meter such as a SQUID magnetometer or a fluxgate that measures a magnetic field using a superconducting quantum interference device. Where S
A QUID is a DC current as a bias current applied to a SQUID loop, which is a superconducting loop that is maintained in a low temperature state in a heat insulating container (cryostat, Dewar, or the like) by liquid helium, liquid nitrogen, or the like and includes a Josephson junction in the loop. When a magnetic flux from the outside is coupled and applied to this SQUID loop via a pickup coil, an input coil, and the like, a circulating current is induced in the SQUID loop, and a quantum current in the Josephson junction in the loop is generated. This element measures a small change in magnetic flux by utilizing the fact that it operates as a transducer that converts a small change in the applied external magnetic flux into a large change in the output voltage due to the interference effect.

【0002】[0002]

【従来の技術】従来、測定する磁場強度とSQUID磁
束計の出力電圧値との関係を校正するキャリブレーショ
ン装置としては、デュワー等の断熱容器内の底部付近等
に設置されたSQUID磁束計の近傍に一つの円形コイ
ルあるいは直線電線などを設置し、この円形コイルある
いは直線電線に制御装置から電流を印加して磁場を発生
させ、このときの電流値とSQUID磁束計までの距離
とからSQUID磁束計位置での磁場強度の理論値を計
算し、SQUID磁束計から出力される出力電圧値との
関係からSQUID磁束計の磁場感度のキャリブレーシ
ョンを行う装置が知られている。上記のSQUID磁束
計キャリブレーション装置においては、キャリブレーシ
ョン用の磁場を発生させる円形コイル等に電流を印加す
る校正制御装置が必要であり、この校正制御装置は、主
に電流供給源、発生磁場制御部、通信信号制御部から構
成されていた。
2. Description of the Related Art Conventionally, as a calibration device for calibrating the relationship between the magnetic field strength to be measured and the output voltage value of the SQUID magnetometer, the vicinity of the SQUID magnetometer installed near the bottom of a heat insulating container such as Dewar. One circular coil or straight electric wire is installed in this, and a magnetic field is generated by applying a current from the control device to this circular coil or straight electric wire. From the current value at this time and the distance to the SQUID magnetometer, the SQUID magnetometer There is known a device that calculates a theoretical value of the magnetic field strength at a position and calibrates the magnetic field sensitivity of the SQUID magnetometer from the relationship with the output voltage value output from the SQUID magnetometer. The above SQUID magnetometer calibration device requires a calibration control device that applies a current to a circular coil or the like that generates a magnetic field for calibration. This calibration control device mainly uses a current supply source and a generated magnetic field control device. And a communication signal control unit.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来は、上記
の校正制御装置の全部又は一部は磁気シールドルーム
(磁気遮蔽室)の外部に設置され、磁気シールドルーム
内のキャリブレーション装置本体とは別体の構成となっ
ていた。このため、キャリブレーション装置全体の構成
が複雑となり、またシールドルーム内の磁場発生コイル
等へ制御電流を送るケーブル等を通して雑音が混入す
る、といった欠点があった。本発明は、上記の問題点を
解決するためになされたものであり、簡易な構成でかつ
低雑音でSQUID磁束計の磁場感度を正確に校正しう
るキャリブレーション装置を提供することを目的とす
る。
However, conventionally, all or part of the above-mentioned calibration control device is installed outside the magnetically shielded room (magnetically shielded room), and is different from the calibration device main body in the magnetically shielded room. It was a separate structure. For this reason, there are drawbacks that the configuration of the entire calibration device becomes complicated, and that noise is mixed through a cable or the like that sends a control current to the magnetic field generating coil or the like in the shield room. The present invention has been made to solve the above problems, and an object of the present invention is to provide a calibration device that can accurately calibrate the magnetic field sensitivity of an SQUID magnetometer with a simple configuration and low noise. .

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本願の第1の発明に係るSQUID磁束計のキャリ
ブレーション装置は、校正すべきSQUID磁束計の近
傍に設置位置が既知の磁場発生手段を設置し、当該磁場
発生手段に電流値が既知の既知電流を電流供給手段によ
り印加した場合に前記SQUID磁束計の出力電圧を測
定し、前記既知電流が印加された磁場発生手段による前
記SQUID磁束計の位置で作る磁場の理論値が前記S
QUID磁束計の出力電圧の測定値と等しくなるように
演算手段により校正するSQUID磁束計のキャリブレ
ーション装置であって、前記SQUID磁束計と前記磁
場発生手段と前記電流供給手段は磁気遮蔽室内に設置さ
れるように構成される。上記において、前記電流供給手
段は、電流供給源と、当該電流供給源から前記磁場発生
手段へ印加する電流値を制御する電流制御手段と、を備
えてもよい。また、本願の第2の発明に係るSQUID
磁束計のキャリブレーション装置は、校正すべきSQU
ID磁束計の近傍に設置位置が既知の磁場発生手段を設
置し、当該磁場発生手段に電流を電流供給手段により印
加した場合に前記SQUID磁束計の出力電圧を測定
し、前記電流供給手段による既知電流が印加された磁場
発生手段による前記SQUID磁束計の位置で作る磁場
の理論値が前記SQUID磁束計の出力電圧の測定値と
等しくなるように演算手段により校正するSQUID磁
束計のキャリブレーション装置であって、前記磁場発生
手段に印加される電流値を含む情報は、前記磁場発生手
段に印加される電流の印加方法に関する情報に変換さ
れ、前記SQUID磁束計により検出されて前記演算手
段に送られるように構成される。また、本願の第3の発
明に係るSQUID磁束計のキャリブレーション装置
は、校正すべきSQUID磁束計の近傍に設置位置が既
知の磁場発生手段を設置し、当該磁場発生手段に電流を
電流供給手段により印加した場合に前記SQUID磁束
計の出力電圧を測定し、前記電流供給手段による既知電
流が印加された磁場発生手段による前記SQUID磁束
計の位置で作る磁場の理論値が前記SQUID磁束計の
出力電圧の測定値と等しくなるように演算手段により校
正するSQUID磁束計のキャリブレーション装置であ
って、前記磁場発生手段に印加される電流値を含む情報
は、磁気通信手段により磁気信号に変換されて送信さ
れ、前記SQUID磁束計により検出されて前記演算手
段に送られるように構成される。上記において、前記磁
気通信手段は、情報を電気信号に変換する通信制御手段
と、当該通信制御手段からの電気信号を磁気信号に変換
して送出する磁気信号送出手段と、を備えてもよい。
In order to solve the above-mentioned problems, a calibration device for an SQUID magnetometer according to a first invention of the present application generates a magnetic field whose installation position is known near the SQUID magnetometer to be calibrated. Means is provided, the output voltage of the SQUID magnetometer is measured when a known current having a known current value is applied to the magnetic field generation means by the current supply means, and the SQUID by the magnetic field generation means to which the known current is applied. The theoretical value of the magnetic field created at the position of the magnetometer is S
A calibration device for an SQUID magnetometer, wherein the SQUID magnetometer is calibrated by an arithmetic means so as to be equal to a measured value of an output voltage of the QUID magnetometer, wherein the SQUID magnetometer, the magnetic field generating means and the current supplying means are installed in a magnetically shielded room Is configured to be. In the above, the current supply unit may include a current supply source and a current control unit that controls a current value applied from the current supply source to the magnetic field generation unit. The SQUID according to the second invention of the present application
The calibration device of the magnetometer is the SQU to be calibrated.
A magnetic field generating means whose installation position is known is installed in the vicinity of the ID magnetometer, and when an electric current is applied to the magnetic field generating means by the current supplying means, the output voltage of the SQUID magnetometer is measured and known by the current supplying means. A SQUID magnetometer calibration device that calibrates by a computing means such that the theoretical value of the magnetic field created at the position of the SQUID magnetometer by the magnetic field generating means to which a current is applied becomes equal to the measured value of the output voltage of the SQUID magnetometer. Therefore, the information including the current value applied to the magnetic field generating means is converted into information regarding the application method of the current applied to the magnetic field generating means, detected by the SQUID magnetometer and sent to the computing means. Is configured as follows. Further, a calibration apparatus for an SQUID magnetometer according to a third invention of the present application installs a magnetic field generating means whose installation position is known in the vicinity of the SQUID magnetometer to be calibrated, and supplies a current to the magnetic field generating means. The output voltage of the SQUID magnetometer is measured and the theoretical value of the magnetic field created at the position of the SQUID magnetometer by the magnetic field generating means to which the known current from the current supply means is applied is the output of the SQUID magnetometer. A calibration device for a SQUID magnetometer, which calibrates by a calculation means so as to be equal to a measured value of a voltage, wherein information including a current value applied to the magnetic field generation means is converted into a magnetic signal by a magnetic communication means. It is configured to be transmitted, detected by the SQUID magnetometer, and transmitted to the computing means. In the above, the magnetic communication means may include communication control means for converting information into an electric signal, and magnetic signal sending means for converting an electric signal from the communication control means into a magnetic signal and sending the magnetic signal.

【0005】[0005]

【作用】上記構成を有する本願の第1の発明に係るSQ
UID磁束計のキャリブレーション装置によれば、SQ
UID磁束計校正用の磁場発生発生手段および電流供給
手段は磁気シールドルーム等により磁気遮蔽されるの
で、従来のように、磁気シールドルーム外の電流供給源
から磁気シールドルーム内のキャリブレーション装置本
体までケーブル等を配線する必要がなく、外部からの磁
気雑音の混入が防止される。また、上記構成を有する本
願の第2の発明に係るSQUID磁束計のキャリブレー
ション装置によれば、各磁場発生手段に印加した磁場発
生電流値等の制御情報等の情報は、磁場発生手段に印加
される電流の印加方法に関する情報に変換され、SQU
ID磁束計により検出されて演算手段に送られるので、
従来のように、演算用の電流値等を送信するためのケー
ブル等を磁気シールドルーム内から磁気シールドルーム
外へ配線する必要がなく、この点においても外部からの
磁気雑音を拾うおそれがない。また、上記構成を有する
本願の第3の発明に係るSQUID磁束計のキャリブレ
ーション装置によれば、各磁場発生手段に印加した磁場
発生電流値等の制御情報等の情報は、磁気通信手段によ
り磁気信号に変換されて送信され、SQUID磁束計に
より検出されて演算手段に送られるので、従来のよう
に、演算用の電流値等を送信するためのケーブル等を磁
気シールドルーム内から磁気シールドルーム外へ配線す
る必要がなく、この点においても外部からの磁気雑音を
拾うおそれがない。
The SQ according to the first invention of the present application having the above-mentioned structure is provided.
According to the calibration device of UID magnetometer, SQ
Since the magnetic field generating means for calibrating the UID magnetometer and the current supply means are magnetically shielded by the magnetic shield room, etc., as in the conventional case, from the current supply source outside the magnetic shield room to the calibration device main body inside the magnetic shield room. There is no need to wire cables, etc., and magnetic noise from the outside is prevented. Further, according to the SQUID magnetometer calibration device according to the second aspect of the present invention having the above-mentioned configuration, the information such as the control information such as the magnetic field generation current value applied to each magnetic field generating means is applied to the magnetic field generating means. SQU
Since it is detected by the ID magnetometer and sent to the calculation means,
Unlike the conventional case, it is not necessary to wire a cable or the like for transmitting a current value for calculation from inside the magnetic shield room to outside the magnetic shield room, and in this respect also, there is no possibility of picking up magnetic noise from the outside. Further, according to the SQUID magnetometer calibration device according to the third invention of the present application having the above-mentioned configuration, information such as control information such as a magnetic field generation current value applied to each magnetic field generation unit is controlled by the magnetic communication unit. Since it is converted into a signal and transmitted, detected by the SQUID magnetometer and sent to the computing means, a cable for transmitting a current value for computation is sent from inside the magnetic shield room to outside the magnetic shield room as in the conventional case. There is no need to wire to, and in this respect also there is no risk of picking up magnetic noise from the outside.

【0006】[0006]

【実施例】以下、図面に基づき本発明の実施例を説明す
る。図1は本発明の第1実施例であるSQUID磁束計
キャリブレーション装置の構成を示す図である。図に示
すように、デュワー2内には校正を行うSQUID磁束
計1が設置されている。このSQUID磁束計1の出力
はSQUID出力回路3から演算手段であるコンピュー
タ4に出力され、出力電圧値のモニタ及び記録がなされ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a SQUID magnetometer calibration device according to a first embodiment of the present invention. As shown in the figure, the SQUID magnetometer 1 for calibrating is installed in the dewar 2. The output of the SQUID magnetometer 1 is output from the SQUID output circuit 3 to the computer 4 which is the calculating means, and the output voltage value is monitored and recorded.

【0007】上記のSQUID磁束計1は、SQUID
ループに入力する磁束を磁束電圧変換係数dV/dΦ
(V:電圧,Φ:磁束)で電気信号に変換し、電圧とし
て出力する。この磁束電圧変換係数dV/dΦがSQU
ID磁束計1の磁場感度を表わす。
The above-mentioned SQUID magnetometer 1 is a SQUID magnetometer.
The magnetic flux input to the loop is converted to the magnetic flux voltage conversion coefficient dV / dΦ
(V: voltage, Φ: magnetic flux) is converted into an electric signal and output as a voltage. This magnetic flux voltage conversion coefficient dV / dΦ is equal to SQUA
The magnetic field sensitivity of the ID magnetometer 1 is shown.

【0008】上記のSQUID磁束計1の近傍には、キ
ャリブレーション装置5が設置されている。キャリブレ
ーション装置5内には、複数の磁場発生手段である磁場
発生コイル(円形コイル)C1 〜CN が配置されてい
る。各磁場発生コイルC1 〜CN の個々のコイル位置
(例えば、所定の原点からのベクトル量など)は既知で
あるとする。また、各磁場発生コイルC1 〜CN は、ケ
ーブルを介して校正制御装置10に接続されている。
A calibration device 5 is installed near the SQUID magnetometer 1. In the calibration device 5, magnetic field generating coils (circular coils) C1 to CN, which are a plurality of magnetic field generating means, are arranged. It is assumed that the individual coil positions of the magnetic field generating coils C1 to CN (for example, the vector amount from a predetermined origin) are known. The magnetic field generating coils C1 to CN are connected to the calibration control device 10 via cables.

【0009】本実施例では、校正制御装置10はキャリ
ブレーション装置5に内蔵されており、校正制御装置1
0を含めたキャリブレーション装置5全体およびSQU
ID磁束計1が磁気シールドルーム(磁気遮蔽室)内に
収められて磁気遮蔽され、このSQUID磁束計1の校
正を行うように構成されている。
In this embodiment, the calibration control device 10 is built in the calibration device 5, and the calibration control device 1
Calibration device 5 including 0 and SQU
The ID magnetometer 1 is housed in a magnetically shielded room (magnetically shielded room) so as to be magnetically shielded, and the SQUID magnetometer 1 is calibrated.

【0010】校正制御装置10内には、各磁場発生コイ
ルC1 〜CN に電流を供給するための電流供給源6と、
各磁場発生コイルC1 〜CN への電流を制御する発生磁
場制御部7が設けられている。ここに、電流供給源6と
発生磁場制御部7は電流供給手段を構成している。ま
た、発生磁場制御部7は電流制御手段に相当している。
発生磁場制御部7からの電流は、図示しない切換スイッ
チの切換動作により、個々の磁場発生コイルに電流が順
次印加されるように構成されている。
In the calibration controller 10, a current supply source 6 for supplying a current to each of the magnetic field generating coils C1 to CN,
A generated magnetic field controller 7 for controlling the current to each magnetic field generating coil C1 to CN is provided. Here, the current supply source 6 and the generated magnetic field control unit 7 constitute a current supply means. The generated magnetic field controller 7 corresponds to a current controller.
The current from the generated magnetic field control unit 7 is configured so that the current is sequentially applied to the individual magnetic field generation coils by the switching operation of a changeover switch (not shown).

【0011】また、上記校正制御装置10内には、各磁
場発生コイルC1 〜CN に印加した磁場発生電流値(電
流値、周波数、波形など)等の制御情報を上記コンピュ
ータ4に送信するため、通信信号制御部8が設けられて
おり、磁場発生電流値等の制御情報を電流値に変換し、
通信信号制御部8からの電気信号は通信用コイル9に送
られて磁気信号に変換され送出される。この磁気信号は
SQUID磁束計1により検出・受信され、コンピュー
タ4に送られる。ここに、通信信号制御部8と通信用コ
イル9は磁気通信手段を構成しており、通信信号制御部
8は通信制御手段に相当し、通信用コイル9は磁気信号
送出手段に相当している。
In the calibration controller 10, control information such as the magnetic field generation current value (current value, frequency, waveform, etc.) applied to each of the magnetic field generation coils C1 to CN is transmitted to the computer 4. A communication signal controller 8 is provided to convert control information such as a magnetic field generation current value into a current value,
The electric signal from the communication signal control unit 8 is sent to the communication coil 9, converted into a magnetic signal, and sent out. This magnetic signal is detected and received by the SQUID magnetometer 1 and sent to the computer 4. Here, the communication signal control unit 8 and the communication coil 9 constitute a magnetic communication unit, the communication signal control unit 8 corresponds to the communication control unit, and the communication coil 9 corresponds to the magnetic signal transmission unit. .

【0012】上記のように構成することにより、SQU
ID磁束計校正用の磁場発生コイルの電流供給源および
発生磁場制御部をキャリブレーション装置5に内蔵する
ことができ、これらすべてとSQUID磁束計1は磁気
シールドルームに収められるので、従来のように、磁気
シールドルーム外の電流供給源から磁気シールドルーム
内のキャリブレーション装置本体までケーブル等を配線
する必要がなく、外部からの磁気雑音の混入が防止され
る。また、各磁場発生コイルに印加した磁場発生電流値
等の制御情報等の情報は、通信信号制御部8と通信用コ
イル9により磁気信号に変換されて送信され、SQUI
D磁束計1により検出されてコンピュータ4に送られる
ので、従来のように、各磁場発生コイルC1 〜CN に印
加した磁場発生電流値等の制御情報を送信するためのケ
ーブル等を磁気シールドルーム内から磁気シールドルー
ム外へ配線する必要がなく、この点においても外部から
の磁気雑音を拾うおそれがない。
With the above configuration, the SQU
The current supply source of the magnetic field generating coil for calibrating the ID magnetometer and the generated magnetic field controller can be built in the calibration device 5, and all of them and the SQUID magnetometer 1 can be housed in the magnetic shield room. , It is not necessary to wire a cable or the like from the current supply source outside the magnetic shield room to the calibration device main body inside the magnetic shield room, and the mixing of magnetic noise from the outside is prevented. Further, information such as control information such as a magnetic field generation current value applied to each magnetic field generation coil is converted into a magnetic signal by the communication signal control unit 8 and the communication coil 9 and transmitted.
Since it is detected by the D magnetometer 1 and sent to the computer 4, a cable or the like for transmitting control information such as a magnetic field generation current value applied to each magnetic field generation coil C1 to CN is provided in the magnetic shield room as in the conventional case. There is no need to wire from the outside to the magnetic shield room, and in this respect also there is no risk of picking up magnetic noise from the outside.

【0013】本実施例では、以下の方法により、SQU
ID磁束計1の磁束計位置(例えば、所定の原点からの
ベクトル量など)、検出磁場方向(例えば、所定方向の
単位ベクトルなど)、磁場感度(スカラー値)の各パラ
メータの推定をコンピュータ4によりおこなう。
In this embodiment, the SQU is made by the following method.
The computer 4 estimates the parameters of the magnetometer position of the ID magnetometer 1 (for example, a vector amount from a predetermined origin), the detected magnetic field direction (for example, a unit vector in a predetermined direction), and the magnetic field sensitivity (scalar value). Do it.

【0014】まず、上記のN個の磁場発生コイルC1 〜
CN のうちの磁場発生コイルCj がSQUID磁束計1
の位置で作る磁場の理論値をビオ・サバールの法則によ
り求める。そして、磁場発生コイルCj がSQUID磁
束計1の位置で作る磁場の理論値から、SQUID磁束
計1の出力電圧の理論値Vtheoryを算出する。
First, the above N magnetic field generating coils C1 ...
The magnetic field generating coil Cj of CN is the SQUID magnetometer 1
The theoretical value of the magnetic field created at the position is calculated by the Biot-Savart law. Then, the theoretical value Vtheory of the output voltage of the SQUID magnetometer 1 is calculated from the theoretical value of the magnetic field generated by the magnetic field generating coil Cj at the position of the SQUID magnetometer 1.

【0015】次に、上記のSQUID磁束計1の出力電
圧の理論値Vtheoryと、電流が印加された磁場発生コイ
ルCj により実際にSQUID磁束計1が出力してコン
ピュータ4がモニタした出力電圧測定値Vpjが等しくな
るようにコンピュータ4により校正を行えば、実際の磁
場強度とSQUID磁束計1の出力電圧は正確に対応す
ることになる。しかし、実際には、測定値にはばらつき
があるので、最小自乗法などを用い数値解法を用いて各
パラメータを探索していく。
Next, the theoretical value Vtheory of the output voltage of the SQUID magnetometer 1 and the measured output voltage of the SQUID magnetometer 1 actually output by the SQUID magnetometer 1 by the magnetic field generating coil Cj to which the current is applied are monitored by the computer 4. If the computer 4 calibrates Vpj to be equal, the actual magnetic field strength and the output voltage of the SQUID magnetometer 1 will correspond exactly. However, since the measured values actually vary, each parameter is searched using the numerical solution method such as the least square method.

【0016】次に、図2に、本発明の第2実施例である
SQUID磁束計のキャリブレーション装置における磁
気通信方法を示す。この第2実施例では、上記第1実施
例における通信信号制御部8と通信用コイル9のような
磁気通信手段を設けていない。そのかわりに、各磁場発
生コイルC1 〜CN に印加する磁場発生電流の組み合せ
による情報、例えば各磁場発生コイルC1 〜CN に印加
する磁場発生電流の時系列情報などに変換して、各磁場
発生コイルC1 〜CN に印加した磁場発生電流値(電流
値、周波数、波形など)等の制御情報を上記コンピュー
タ4に送信するものである。図2に示す例は、磁場発生
コイルC1 からCN に電流を印加した後、休止期を設
け、この休止期の後に磁場発生コイルC1 への電流印加
が行われることをコンピュータ4に報知する方式であ
る。この他にも、休止期の時間の長さ、各磁場発生コイ
ルへの電流印加の時間間隔、順序等を異ならせることな
どによる電流印加方法の情報に変換することにより、制
御情報を磁場発生コイルC1 〜CN とSQUID1を用
いて磁気通信することができる。
Next, FIG. 2 shows a magnetic communication method in the calibration apparatus for the SQUID magnetometer, which is the second embodiment of the present invention. In the second embodiment, magnetic communication means such as the communication signal controller 8 and the communication coil 9 in the first embodiment is not provided. Instead, it is converted into information by a combination of magnetic field generation currents applied to the magnetic field generation coils C1 to CN, for example, time series information of magnetic field generation currents applied to the magnetic field generation coils C1 to CN, and the like. Control information such as a magnetic field generation current value (current value, frequency, waveform, etc.) applied to C1 to CN is transmitted to the computer 4. The example shown in FIG. 2 is a method of informing the computer 4 that a current is applied to the magnetic field generating coil C1 after the current is applied to the magnetic field generating coil C1 after the current is applied to the magnetic field generating coil C1. is there. In addition to this, the control information is converted into information on the current application method by changing the length of the rest period, the time interval of the current application to each magnetic field generation coil, the order, etc. to change the control information to the magnetic field generation coil. Magnetic communication can be performed using C1 to CN and SQUID1.

【0017】なお、本発明は、上記実施例に限定される
ものではない。上記実施例は、例示であり、本発明の特
許請求の範囲に記載された技術的思想と実質的に同一な
構成を有し、同様な作用効果を奏するものは、いかなる
ものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any device having the same function and effect can be realized by the present invention. It is included in the technical scope of the invention.

【0018】例えば、上記実施例においては、磁場発生
手段として複数の円形コイルを用いたが、これには限定
されず、直線電線でもよく、またこれらはアレイ状に構
成されていてもよい。
For example, although a plurality of circular coils are used as the magnetic field generating means in the above embodiment, the magnetic field generating means is not limited to this, and may be linear electric wires, or may be arranged in an array.

【0019】また、上記実施例においては、通信信号制
御部8と通信用コイル9により送信される情報、あるい
は各磁場発生コイルC1 〜CN に印加する磁場発生電流
の時系列情報などに変換される情報が、各磁場発生コイ
ルC1 〜CN に印加した磁場発生電流値(電流値、周波
数、波形など)等の制御情報である例について説明した
が、これには限定されず、磁場計測に関する他の付加的
な情報であってもかまわない。
In the above embodiment, the information is converted into the information transmitted by the communication signal controller 8 and the communication coil 9, or the time series information of the magnetic field generating currents applied to the magnetic field generating coils C1 to CN. An example in which the information is control information such as a magnetic field generation current value (current value, frequency, waveform, etc.) applied to each magnetic field generation coil C1 to CN has been described, but the present invention is not limited to this, and other magnetic field measurement related It may be additional information.

【0020】[0020]

【発明の効果】以上説明したように、上記構成を有する
本願の第1の発明に係るSQUID磁束計のキャリブレ
ーション装置によれば、SQUID磁束計校正用の磁場
発生発生手段および電流供給手段は磁気シールドルーム
等により磁気遮蔽されるので、従来のように、磁気シー
ルドルーム外の電流供給源から磁気シールドルーム内の
キャリブレーション装置本体までケーブル等を配線する
必要がなく、外部からの磁気雑音の混入が防止される。
また、上記構成を有する本願の第2の発明に係るSQU
ID磁束計のキャリブレーション装置によれば、各磁場
発生手段に印加した磁場発生電流値等の制御情報等の情
報は、磁場発生手段に印加される電流の印加方法に関す
る情報に変換され、SQUID磁束計により検出されて
演算手段に送られるので、従来のように、演算用の電流
値等を送信するためのケーブル等を磁気シールドルーム
内から磁気シールドルーム外へ配線する必要がなく、こ
の点においても外部からの磁気雑音を拾うおそれがな
い。また、上記構成を有する本願の第3の発明に係るS
QUID磁束計のキャリブレーション装置によれば、各
磁場発生手段に印加した磁場発生電流値等の制御情報等
の情報は、磁気通信手段により磁気信号に変換されて送
信され、SQUID磁束計により検出されて演算手段に
送られるので、従来のように、演算用の電流値等を送信
するためのケーブル等を磁気シールドルーム内から磁気
シールドルーム外へ配線する必要がなく、この点におい
ても外部からの磁気雑音を拾うおそれがない、という利
点がある。したがって、キャリブレーション装置の小型
化、低雑音化、操作性の向上等が可能となる、という利
点も有している。
As described above, according to the calibration device of the SQUID magnetometer having the above-described structure according to the first invention of the present application, the magnetic field generating means and the current supplying means for calibrating the SQUID magnetometer are magnetic. Since it is magnetically shielded by the shield room etc., there is no need to connect cables etc. from the current supply source outside the magnetic shield room to the calibration device main body inside the magnetic shield room as in the past, and magnetic noise from the outside is mixed. Is prevented.
The SQU according to the second invention of the present application having the above configuration
According to the calibration device of the ID magnetometer, the information such as the control information such as the magnetic field generation current value applied to each magnetic field generation unit is converted into the information about the application method of the current applied to the magnetic field generation unit, and the SQUID magnetic flux. Since it is detected by the meter and sent to the calculation means, there is no need to wire a cable for transmitting the current value for calculation etc. from inside the magnetic shield room to outside the magnetic shield room as in the conventional case. There is no danger of picking up magnetic noise from the outside. Further, the S according to the third invention of the present application having the above configuration
According to the calibration device of the QUID magnetometer, information such as control information such as the magnetic field generation current value applied to each magnetic field generator is converted into a magnetic signal by the magnetic communication unit and transmitted, and detected by the SQUID magnetometer. It is not necessary to wire a cable or the like for transmitting a current value for calculation from inside the magnetic shield room to outside the magnetic shield room as in the conventional case, since it is sent to the calculating means. There is an advantage that magnetic noise is not picked up. Therefore, there is an advantage that the calibration device can be downsized, noise can be reduced, and operability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るSQUID磁束計のキャリブレー
ション装置の第1実施例の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a first embodiment of a calibration apparatus for an SQUID magnetometer according to the present invention.

【図2】本発明に係るSQUID磁束計のキャリブレー
ション装置の第2実施例における磁気通信方法を説明す
る図である。
FIG. 2 is a diagram illustrating a magnetic communication method in a second embodiment of the calibration device for the SQUID magnetometer according to the present invention.

【符号の説明】[Explanation of symbols]

1 SQUID磁束計 2 デュワー 3 SQUID出力回路 4 コンピュータ 5 キャリブレーション装置 6 電流供給源 7 発生磁場制御部 8 通信信号制御部 9 通信用コイル 10 校正制御装置 C1 〜CN 磁場発生コイル 1 SQUID magnetometer 2 Dewar 3 SQUID output circuit 4 Computer 5 Calibration device 6 Current supply source 7 Generated magnetic field control unit 8 Communication signal control unit 9 Communication coil 10 Calibration control device C1 to CN Magnetic field generation coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小室 貴紀 千葉県印旛郡印西町武西学園台2−1200 株式会社超伝導センサ研究所内 (72)発明者 賀戸 久 茨城県つくば市梅園1丁目1番4 工業 技術院電子技術総合研究所内 審査官 中塚 直樹 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takanori Komuro 2-1200 Takenishi Gakuendai, Inzai-cho, Inba-gun, Chiba Inside Superconducting Sensor Laboratory Co., Ltd. (72) Hisashi Kado 1-chome, Umezono, Tsukuba, Ibaraki No. 4 Naoki Nakatsuka, Examiner, Electronic Technology Research Institute, AIST

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 校正すべきSQUID磁束計の近傍に設
置位置が既知の磁場発生手段を設置し、当該磁場発生手
段に電流値が既知の既知電流を電流供給手段により印加
した場合に前記SQUID磁束計の出力電圧を測定し、
前記既知電流が印加された磁場発生手段による前記SQ
UID磁束計の位置で作る磁場の理論値が前記SQUI
D磁束計の出力電圧の測定値と等しくなるように演算手
段により校正するSQUID磁束計のキャリブレーショ
ン装置であって、 前記SQUID磁束計と前記磁場発生手段と前記電流供
給手段は磁気遮蔽室内に設置されることを特徴とするS
QUID磁束計のキャリブレーション装置。
1. The SQUID magnetic flux when a magnetic field generating means whose installation position is known is installed in the vicinity of the SQUID magnetometer to be calibrated and a known current whose current value is known is applied to the magnetic field generating means by the current supplying means. Measure the output voltage of the meter,
The SQ by the magnetic field generating means to which the known current is applied
The theoretical value of the magnetic field created at the position of the UID magnetometer is the SQUI
A calibration device for a SQUID magnetometer, which is calibrated by an arithmetic means so as to be equal to a measured value of an output voltage of a D magnetometer, wherein the SQUID magnetometer, the magnetic field generating means, and the current supplying means are installed in a magnetically shielded room. S that is characterized by
Calibration device for QUID magnetometer.
【請求項2】 前記電流供給手段は、電流供給源と、当
該電流供給源から前記磁場発生手段へ印加する電流値を
制御する電流制御手段と、を備えることを特徴とする請
求項1に記載したSQUID磁束計のキャリブレーショ
ン装置。
2. The current supply means comprises a current supply source and a current control means for controlling a current value applied from the current supply source to the magnetic field generation means. SQUID magnetometer calibration device.
【請求項3】 校正すべきSQUID磁束計の近傍に設
置位置が既知の磁場発生手段を設置し、当該磁場発生手
段に電流を電流供給手段により印加した場合に前記SQ
UID磁束計の出力電圧を測定し、前記電流供給手段に
よる既知電流が印加された磁場発生手段による前記SQ
UID磁束計の位置で作る磁場の理論値が前記SQUI
D磁束計の出力電圧の測定値と等しくなるように演算手
段により校正するSQUID磁束計のキャリブレーショ
ン装置であって、 前記磁場発生手段に印加される電流値を含む情報は、前
記磁場発生手段に印加される電流の印加方法に関する情
報に変換され、前記SQUID磁束計により検出されて
前記演算手段に送られることを特徴とするSQUID磁
束計のキャリブレーション装置。
3. A magnetic field generating means having a known installation position is installed near the SQUID magnetometer to be calibrated, and the SQ is applied when a current is applied to the magnetic field generating means by a current supplying means.
Measure the output voltage of the UID magnetometer and use it for the current supply means.
The SQ by the magnetic field generating means known current is applied by
The theoretical value of the magnetic field created at the position of the UID magnetometer is the SQUI
A calibration device for a SQUID magnetometer, which calibrates by an arithmetic means so as to be equal to a measured value of an output voltage of a D magnetometer, wherein information including a current value applied to the magnetic field generator is stored in the magnetic field generator. A calibration device for an SQUID magnetometer, which is converted into information on an application method of an applied current, detected by the SQUID magnetometer, and sent to the arithmetic means.
【請求項4】 校正すべきSQUID磁束計の近傍に設
置位置が既知の磁場発生手段を設置し、当該磁場発生手
段に電流を電流供給手段により印加した場合に前記SQ
UID磁束計の出力電圧を測定し、前記電流供給手段に
よる既知電流が印加された磁場発生手段による前記SQ
UID磁束計の位置で作る磁場の理論値が前記SQUI
D磁束計の出力電圧の測定値と等しくなるように演算手
段により校正するSQUID磁束計のキャリブレーショ
ン装置であって、 前記磁場発生手段に印加される電流値を含む情報は、磁
気通信手段により磁気信号に変換されて送信され、前記
SQUID磁束計により検出されて前記演算手段に送ら
れることを特徴とするSQUID磁束計のキャリブレー
ション装置。
4. A magnetic field generating means having a known installation position is installed near the SQUID magnetometer to be calibrated, and the SQ is applied when a current is applied to the magnetic field generating means by a current supply means.
The output voltage of the UID magnetometer is measured, and the SQ is generated by the magnetic field generation means to which the known current is applied by the current supply means.
The theoretical value of the magnetic field created at the position of the UID magnetometer is the SQUI
A calibration device for a SQUID magnetometer, which calibrates by an operating means so as to be equal to a measured value of an output voltage of a D magnetometer, wherein information including a current value applied to the magnetic field generating means is magnetic by a magnetic communication means. A calibration device for an SQUID magnetometer, which is converted into a signal, transmitted, detected by the SQUID magnetometer, and transmitted to the computing means.
【請求項5】 前記磁気通信手段は、情報を電気信号に
変換する通信制御手段と、当該通信制御手段からの電気
信号を磁気信号に変換して送出する磁気信号送出手段
と、を備えることを特徴とする請求項4に記載したSQ
UID磁束計のキャリブレーション装置。
5. The magnetic communication means includes communication control means for converting information into an electric signal, and magnetic signal sending means for converting an electric signal from the communication control means into a magnetic signal and sending the magnetic signal. The SQ according to claim 4, characterized in that
Calibration device for UID magnetometer.
JP6134886A 1994-05-26 1994-05-26 SQUID magnetometer calibration device Expired - Lifetime JP2673284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6134886A JP2673284B2 (en) 1994-05-26 1994-05-26 SQUID magnetometer calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6134886A JP2673284B2 (en) 1994-05-26 1994-05-26 SQUID magnetometer calibration device

Publications (2)

Publication Number Publication Date
JPH07318624A JPH07318624A (en) 1995-12-08
JP2673284B2 true JP2673284B2 (en) 1997-11-05

Family

ID=15138816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6134886A Expired - Lifetime JP2673284B2 (en) 1994-05-26 1994-05-26 SQUID magnetometer calibration device

Country Status (1)

Country Link
JP (1) JP2673284B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569884B (en) * 2013-10-18 2017-10-27 中国科学院上海微系统与信息技术研究所 The caliberating device and method of a kind of SPUID three axis magnetometer
CN103675744B (en) * 2013-12-17 2016-04-13 中国科学院上海微系统与信息技术研究所 The calibration facility of superconductive quantum interference sensor and scaling method

Also Published As

Publication number Publication date
JPH07318624A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
US5442290A (en) MRI gradient drive current control using all digital controller
Knuutila et al. Large‐area low‐noise seven‐channel dc SQUID magnetometer for brain research
EP0682776B1 (en) Squid control apparatus
US4613817A (en) Superconducting gradiometer coil system for an apparatus for the multi-channel measurement of weak nonstationary magnetic fields
JPS60205375A (en) Metering device for measuring parameter of high-voltage alternating current electric energy flowing through conductor
US20080125988A1 (en) Current measuring device and method
EP0966689A1 (en) Magnetic gradiometer
EP0205120B1 (en) Superconducting current detecting circuit employing DC flux parametron circuit
JP2569542B2 (en) Magnetic flux transmission circuit
Kong et al. Multi-channel magnetocardiogardiography system based on low-Tc SQUIDs in an unshielded environment
JP2673284B2 (en) SQUID magnetometer calibration device
JP2761067B2 (en) Superconducting device
JPH0829507A (en) Flux measuring apparatus
JP3651540B2 (en) Biomagnetic field measurement device
JP2579280B2 (en) Calibration method for SQUID magnetometer
JPH05232202A (en) Software gradiometer
JP2653916B2 (en) Multi-channel SQUID magnetometer
JP2929172B2 (en) Multi-channel SQUID magnetometer
US20220299580A1 (en) Magnetic-field measuring apparatus
EP0461742A2 (en) Digital magnetic flux measuring apparatus using superconducting quantum interference device
JPH04160380A (en) Digital squid flux meter
JPH0274882A (en) Multichannel squid type fluxmeter
JP3156396B2 (en) Differential SQUID magnetometer and biomagnetic field measurement device using the same
JP2869775B2 (en) SQUID magnetometer
Burmistrov et al. Modulation SQUID electronics working with high-T c SQUIDs in open space

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term