JP2672613B2 - Surface treatment method for reactor internal structures and equipment - Google Patents

Surface treatment method for reactor internal structures and equipment

Info

Publication number
JP2672613B2
JP2672613B2 JP63315116A JP31511688A JP2672613B2 JP 2672613 B2 JP2672613 B2 JP 2672613B2 JP 63315116 A JP63315116 A JP 63315116A JP 31511688 A JP31511688 A JP 31511688A JP 2672613 B2 JP2672613 B2 JP 2672613B2
Authority
JP
Japan
Prior art keywords
reactor
surface treatment
laser
equipment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63315116A
Other languages
Japanese (ja)
Other versions
JPH02161397A (en
Inventor
憲行 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63315116A priority Critical patent/JP2672613B2/en
Publication of JPH02161397A publication Critical patent/JPH02161397A/en
Application granted granted Critical
Publication of JP2672613B2 publication Critical patent/JP2672613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子炉圧力容器内の炉水中に設置された原
子炉内構造物及び機器の表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a surface treatment method for a reactor internal structure and equipment installed in reactor water in a reactor pressure vessel.

(従来の技術) 従来の沸騰水型原子炉の構成を第6図の模式図を用い
て説明する。原子炉圧力容器1の中心部には、数百体の
燃料集合体2が配置されている。そして4体の燃料集合
体2につき1本の割合で制御棒3が百数十本配置されて
いる。これらの燃料集合体2と制御棒3などで炉心部4
を形成している。また、燃料集合体2は上部を上部格子
板5で、下部を炉心支持板6で所定位置に支持されてい
る。この上部格子板5と炉心支持板6は、炉心部4を囲
む円筒状のシュラウド7に固定されている。このシュラ
ウド7の上部には、皿状のシュラウドヘッド8が設置さ
れている。このシュラウドヘッド8の上部には数百台の
気水分離器9が植設されており、さらに上方には蒸気乾
燥器10が配置されている。一方、シュラウド7下部に
は、シュラウドサポート11が設置されている。また、シ
ュラウド7と原子炉圧力容器1との隙間には、数十台の
ジェットポンプ12が配置され、炉心内に冷却水を強制循
環させて原子炉出力を調整している。また、原子炉圧力
容器1の底部には、制御棒駆動機構(図示せず)のガイ
ド管13が配設されている。この他、原子炉圧力容器内に
は、給水スパージャ,炉心スプレイライン及びスプレイ
スパージャ等の機器が設置されている。
(Prior Art) The configuration of a conventional boiling water reactor will be described with reference to the schematic diagram of FIG. At the center of the reactor pressure vessel 1, hundreds of fuel assemblies 2 are arranged. Further, hundreds and ten control rods 3 are arranged at a rate of one for every four fuel assemblies 2. These fuel assemblies 2 and control rods 3 etc.
Is formed. The upper part of the fuel assembly 2 is supported by the upper lattice plate 5, and the lower part thereof is supported by the core support plate 6 at predetermined positions. The upper lattice plate 5 and the core support plate 6 are fixed to a cylindrical shroud 7 that surrounds the core portion 4. Above the shroud 7, a dish-shaped shroud head 8 is installed. Hundreds of steam separators 9 are planted on the upper part of the shroud head 8, and a steam dryer 10 is arranged further above. On the other hand, below the shroud 7, a shroud support 11 is installed. In addition, dozens of jet pumps 12 are arranged in the gap between the shroud 7 and the reactor pressure vessel 1, and cooling water is forcedly circulated in the core to adjust the reactor output. A guide tube 13 of a control rod drive mechanism (not shown) is arranged at the bottom of the reactor pressure vessel 1. In addition, equipment such as a feed water sparger, a core spray line, and a spray sparger are installed in the reactor pressure vessel.

以上説明したように、原子炉圧力容器1内には種々の
原子炉内構造物及び機器があり、オーステナイト系ステ
ンレス鋼を使用している。
As described above, there are various nuclear reactor internal structures and equipment in the reactor pressure vessel 1, and austenitic stainless steel is used.

(発明が解決しようとする課題) 高温純水中でオーステナイト系ステンレス鋼は、粒界
応力腐食割れ(IGSCC)を起こす恐れがある。
(Problems to be Solved by the Invention) Austenitic stainless steel may cause intergranular stress corrosion cracking (IGSCC) in high temperature pure water.

IGSCCの主たる材料側の因子は、溶接などの熱サイク
ルを受けたことによる溶接熱影響部での粒界炭化物の形
成とそれに伴なう粒界近傍に於けるCr欠乏層の形成、つ
まり溶接鋭敏化である。
The major material-side factor of IGSCC is the formation of grain boundary carbides in the heat-affected zone of the weld due to the heat cycle such as welding and the accompanying formation of a Cr-deficient layer near the grain boundaries, that is, the welding sensitivity. It is becoming.

さらに、放射線照射場に設置された機器,構造物は、
照射によってひき起こされる照射誘起偏析により不純物
が粒界に偏析し、粒界の耐食性が低下する場合がある。
Furthermore, the equipment and structures installed in the radiation irradiation field
Irradiation-induced segregation caused by irradiation may cause impurities to segregate at the grain boundaries, resulting in reduced corrosion resistance at the grain boundaries.

本発明の目的は、原子炉圧力容器内のオーステナイト
系ステンレス鋼の炉水に接する表面(以下接液部とい
う)の耐粒界腐食割れ性の低い領域のクロム欠乏層或い
は粒界偏析部を消失させ耐粒界腐食割れ性の優れた表面
組織に変更できる原子炉内構造物及び機器の表面処理方
法を得ることにある。
An object of the present invention is to eliminate a chromium deficient layer or a grain boundary segregation portion in a region having low intergranular corrosion cracking resistance on a surface of an austenitic stainless steel in contact with reactor water (hereinafter referred to as a liquid contact portion) in a reactor pressure vessel. Another object of the present invention is to provide a surface treatment method for reactor internals and equipment that can change the surface texture to have excellent intergranular corrosion cracking resistance.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては、原子
炉圧力容器内の炉水中に設置されたオーステナイトステ
ンレス鋼の原子炉内構造物及び機器の溶接部の表面を炉
水中でレーザにより溶融する溶融工程と、この溶融され
た溶接部の表面を前記炉水により急冷する急冷工程とを
有することを特徴とする原子炉内構造物及び機器の表面
処理方法を提供する。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, the surface of a welded portion of an austenitic stainless steel reactor internal structure and equipment installed in reactor water in a reactor pressure vessel And a surface treatment method for a reactor internal structure and equipment, which comprises a melting step of melting a molten steel with a laser in reactor water, and a quenching step of rapidly cooling the surface of the melted welded portion with the reactor water. To do.

(作 用) 原子炉圧力容器内の炉水中に設置された原子炉内構造
物の内、耐食性の劣る溶接熱影響部及び照射等により生
じた粒界偏析部を、レーザにより表面を溶融する。この
溶融表面は、まわりの炉水により急冷され、フェライト
が生成され二相化する。これにより耐食性を向上させる
ことが可能となる。
(Operation) The surface of the internal structure of the reactor installed in the reactor water in the reactor pressure vessel, which has poor corrosion resistance, is affected by welding heat-affected zone and the grain boundary segregation zone caused by irradiation etc. is melted by laser. This molten surface is rapidly cooled by the surrounding reactor water, ferrite is generated, and two phases are formed. This makes it possible to improve the corrosion resistance.

(実施例) 以下、本発明に係る原子炉内構造物及び機器の表面処
理方法の一実施例を第1図から第5図を参照して説明す
る。
(Embodiment) An embodiment of the surface treatment method for reactor internals and equipment according to the present invention will be described below with reference to FIGS. 1 to 5.

第1図は、原子炉及び原子炉周辺の断面図である。こ
の第1図は定期点検中を示し、原子炉1には炉水29が満
たされている。表面処理装置は、レーザ発振器20,駆動
装置21,レーザ発射部22から成る。レーザ発振器20は運
転床面23に設置され、駆動装置21を操作する遠隔操作パ
ネル24を備えている。駆動装置21は原子炉1のフランジ
面25に設置され、レーザ発射部22を原子炉1内の任意の
場所へ移動できるように構成されている。駆動装置21と
レーザ発振器20は制御線26で接続されており、レーザ発
振器20から駆動装置21へ電源を供給するとともに駆動信
号を送信している。また、制御線26は駆動装置21からレ
ーザ発振器20へ、レーザ発射部22の近傍に設置される図
示しない画像入力部の画像信号を送信している。レーザ
発振器20とレーザ発射部22は、レーザ誘導管27で接続さ
れており、レーザ発振器20で発生したレーザ光は、レー
ザ誘導管27内のミラーで反射しながら溶融対象部である
溶接熱影響部28にあたる。
FIG. 1 is a cross-sectional view of a nuclear reactor and the periphery of the nuclear reactor. This FIG. 1 shows a periodic inspection, and the reactor water 1 is filled with reactor water 29. The surface treatment device includes a laser oscillator 20, a driving device 21, and a laser emitting section 22. The laser oscillator 20 is installed on the operation floor surface 23 and has a remote control panel 24 for operating the drive unit 21. The drive unit 21 is installed on the flange surface 25 of the nuclear reactor 1, and is configured so that the laser emitting unit 22 can be moved to any place in the nuclear reactor 1. The drive device 21 and the laser oscillator 20 are connected by a control line 26, and the laser oscillator 20 supplies power to the drive device 21 and transmits a drive signal. In addition, the control line 26 transmits an image signal from an image input unit (not shown) installed in the vicinity of the laser emission unit 22 from the drive device 21 to the laser oscillator 20. The laser oscillator 20 and the laser emission unit 22 are connected by a laser guide tube 27, and the laser light generated by the laser oscillator 20 is reflected by a mirror in the laser guide tube 27 while being welded to a heat-affected zone which is a melting target section. Equivalent to 28.

第2図は第1図のA部を拡大して示す断面図、第3図
は第2図のB方向から見たシュラウド7の表面の正面図
である。
FIG. 2 is an enlarged sectional view showing a portion A of FIG. 1, and FIG. 3 is a front view of the surface of the shroud 7 as seen from the direction B of FIG.

第2図に示すようにオーステナイト系ステンレス鋼
(シュラウド7)の溶接熱影響部28の炉水29の接液部に
レーザ光30を当てる。耐食性の問題となる接液部の表面
を溶融する。この溶融する深さは、表面だけ耐食性をも
たせればよいので接液部の表面から20〜100μmの深さ
を溶融する。この溶融表面は、まわりの雰囲気の炉水29
に急冷され表面処理は完了する。表面処理が完了した部
分は二相化部31となっている。尚、第2図及び第3図の
図中符号32で示す部分は、溶着金属部である。
As shown in FIG. 2, a laser beam 30 is applied to the portion of the welding heat affected zone 28 of the austenitic stainless steel (shroud 7) in contact with the reactor water 29. It melts the surface of the wetted part, which is a problem of corrosion resistance. As for the melting depth, only the surface needs to have corrosion resistance, and therefore, a depth of 20 to 100 μm is melted from the surface of the liquid contact portion. This molten surface is the same as the surrounding reactor water 29.
And then the surface treatment is completed. The part where the surface treatment is completed is the two-phase conversion part 31. The portion indicated by reference numeral 32 in FIGS. 2 and 3 is a welded metal portion.

第4図に溶接部を表面処理し、断面方向に切り取っ
て、10%しゅう酸エッチした場合の組織を示す。ステン
レス鋼母材40の溶接熱影響部28にはCr炭化物41が析出
し、その周囲はCr欠乏層が生成している。一方、レーザ
により溶融後、急冷された部分は深さ約80μmまでフェ
ライト42が生成しており二相化している。すなわち、粒
界偏析した部材については、接液部をレーザにより溶融
後急冷することで、偏析していた不純物は拡散し、偏析
部が消失し、その部分はフェライトを含む二相ステンレ
ス化する。
Fig. 4 shows the structure when the welded portion was surface-treated, cut in the cross-sectional direction and etched with 10% oxalic acid. Cr carbide 41 is precipitated in the weld heat affected zone 28 of the stainless steel base material 40, and a Cr deficient layer is formed around it. On the other hand, after being melted by the laser, the portion rapidly cooled has ferrite 42 formed up to a depth of about 80 μm, and has a two-phase structure. That is, in the member with segregated grain boundaries, the liquid contact portion is melted by a laser and then rapidly cooled, so that the segregated impurities diffuse and the segregated portion disappears, and that portion becomes a two-phase stainless steel containing ferrite.

第1表に、SUS304鋼の溶接熱影響部を含む継手より採
照した試験片と、フェライトを約6%含む二相ステンレ
ス鋼より採取した試験片により実施したSCC試験結果を
示す。
Table 1 shows the results of the SCC test performed on the test piece taken from the joint including the weld heat affected zone of SUS304 steel and the test piece taken from the duplex stainless steel containing about 6% of ferrite.

試験条件は、溶存酸素8ppm,288℃の高温純水中であ
る。試験方法は、第5図に示す試験治具50に試験片51を
取り付け500hr浸漬する。尚、第5図の図中符号53はボ
ルトであり、符号52はグラファイト製ウールである。第
1表に示すように、溶接熱影響部を含む継手の溶接熱影
響部で粒界割れが生じたが、フェライトを含む二相ステ
ンレス鋼では割れは生じなかった。
The test conditions were 8 ppm of dissolved oxygen and high temperature pure water of 288 ° C. As a test method, a test piece 51 is attached to a test jig 50 shown in FIG. 5 and immersed for 500 hours. Reference numeral 53 in FIG. 5 is a bolt, and reference numeral 52 is graphite wool. As shown in Table 1, intergranular cracking occurred in the weld heat affected zone of the joint including the weld heat affected zone, but no crack occurred in the duplex stainless steel containing ferrite.

尚、レーザ法のかわりにプラズマ法等の技術を用いて
もよい。
A technique such as a plasma method may be used instead of the laser method.

〔発明の効果〕〔The invention's effect〕

本発明によれば、耐食性の劣る溶接熱影響部あるいは
偏析部の溶接部をレーザ等による表面処理技術により溶
融後、急冷することにより二相化するので、耐食性を向
上させることができる。
According to the present invention, since the welded heat-affected zone having poor corrosion resistance or the welded portion in the segregation zone is melted by a surface treatment technique such as laser and then rapidly cooled to be two-phased, the corrosion resistance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る表面処理方法を示す原子炉周辺の
断面図、第2図は第1図のA部を拡大して示す断面図、
第3図は第2図のB方向から見たシュラウド7の表面の
正面図、第4図は本発明にかかる組織図、第5図は本発
明にかかる試験治具の正面図、第6図は本発明にかかる
沸騰水型原子炉の模式図である。 1……原子炉、7……シュラウド 28……溶接熱影響部、29……炉水 30……レーザ光
FIG. 1 is a cross-sectional view around a nuclear reactor showing a surface treatment method according to the present invention, FIG. 2 is a cross-sectional view showing an enlarged part A of FIG. 1,
3 is a front view of the surface of the shroud 7 as seen from the direction B in FIG. 2, FIG. 4 is a structural diagram according to the present invention, FIG. 5 is a front view of a test jig according to the present invention, and FIG. FIG. 1 is a schematic diagram of a boiling water reactor according to the present invention. 1 …… Reactor, 7 …… Shroud 28 …… Welding heat affected zone, 29 …… Reactor water 30 …… Laser light

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉圧力容器内の炉水中に設置されたオ
ーステナイトステンレス鋼の原子炉内構造物及び機器の
溶接部の表面を炉水中でレーザにより溶融する溶融工程
と、この溶融された溶接部の表面を前記炉水により急冷
する急冷工程とを有することを特徴とする原子炉内構造
物及び機器の表面処理方法。
1. A melting step of melting a surface of a welded portion of an austenitic stainless steel reactor internal structure and equipment installed in reactor water in a reactor pressure vessel by laser in reactor water, and the melted welding. And a surface cooling method for rapidly cooling the surface of a part with the reactor water.
JP63315116A 1988-12-15 1988-12-15 Surface treatment method for reactor internal structures and equipment Expired - Lifetime JP2672613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315116A JP2672613B2 (en) 1988-12-15 1988-12-15 Surface treatment method for reactor internal structures and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315116A JP2672613B2 (en) 1988-12-15 1988-12-15 Surface treatment method for reactor internal structures and equipment

Publications (2)

Publication Number Publication Date
JPH02161397A JPH02161397A (en) 1990-06-21
JP2672613B2 true JP2672613B2 (en) 1997-11-05

Family

ID=18061603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315116A Expired - Lifetime JP2672613B2 (en) 1988-12-15 1988-12-15 Surface treatment method for reactor internal structures and equipment

Country Status (1)

Country Link
JP (1) JP2672613B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152315A (en) * 1984-08-17 1986-03-15 Mitsubishi Electric Corp Method for desensitizing austenitic stainless steel

Also Published As

Publication number Publication date
JPH02161397A (en) 1990-06-21

Similar Documents

Publication Publication Date Title
JP3373638B2 (en) Laser peening method
JP2006247673A (en) Method of welding procedure for pipe
US5654992A (en) Method of repairing structural materials of nuclear reactor internals and apparatus therefor
US5022936A (en) Method for improving property of weld of austenitic stainless steel
US5674419A (en) Method for weld repairing of structures in nuclear reactors
JP2005326417A (en) Method for repairing leaking slender hollow member in boiling water reactor
JPH0775893A (en) Method for repairing structure and preventive maintenance method
JP2672613B2 (en) Surface treatment method for reactor internal structures and equipment
JP3428175B2 (en) Structure having surface treatment layer and method for forming surface treatment layer
JPH0580187A (en) Intra-reactor structure maintaining method
JP2004037465A (en) Method for repairing elongated hollow member leaking in boiling water reactor
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
JPH10153682A (en) Method for exchanging reactor core shroud
JPH04214822A (en) Method for treating surface of structure in nuclear reactor
JP2865749B2 (en) Piping reforming method
JPH04289154A (en) Turbine blade made of ti alloy and surface modifying method therefor
Mitra et al. Design and development of thick plate concept for rotatable plugs and technology development for future Indian FBR
JP2006349413A (en) Reinforcing unit of jet pump for nuclear reactor, reinforcement member attaching method and pressure vessel of nuclear rector
White et al. Underwater cladding with laser beam and plasma arc welding
JP2654235B2 (en) Method of preventing stress corrosion cracking of long housing
JP3525534B2 (en) Method and apparatus for repairing a structure in a reducing liquid
JP2005230838A (en) Laser beam welding method and equipment for nickel-based alloy welded structure
JPH05281386A (en) Method for transforming reactor incore component material
JP2000230996A (en) Repair method for nuclear reactor structure
JP2014065061A (en) Surface modification method and structure of nickel base alloy weld metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12