JP2671400B2 - Lithium-based thermal battery - Google Patents

Lithium-based thermal battery

Info

Publication number
JP2671400B2
JP2671400B2 JP63172089A JP17208988A JP2671400B2 JP 2671400 B2 JP2671400 B2 JP 2671400B2 JP 63172089 A JP63172089 A JP 63172089A JP 17208988 A JP17208988 A JP 17208988A JP 2671400 B2 JP2671400 B2 JP 2671400B2
Authority
JP
Japan
Prior art keywords
lithium
thermal battery
active material
kcl
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63172089A
Other languages
Japanese (ja)
Other versions
JPH0221568A (en
Inventor
寿 塚本
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP63172089A priority Critical patent/JP2671400B2/en
Publication of JPH0221568A publication Critical patent/JPH0221568A/en
Application granted granted Critical
Publication of JP2671400B2 publication Critical patent/JP2671400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム系熱電池に関するものである。Description: TECHNICAL FIELD The present invention relates to a lithium-based thermal battery.

従来の技術 リチウム系熱電池は、正極活物質として二硫化鉄また
は硫化鉄を用い、負極活物質として金属リチウムやリチ
ウム合金を用いた溶融塩型の高温一次電池である。前記
のリチウム合金にはリチウムアルミニウム合金,リチウ
ムシリコン合金,リチウムボロン合金がある。また電解
液(以下、電解液とは電解質を意味する)は従来塩化リ
チウムと塩化カリウムの共晶塩(LiCl−KCl 共晶塩)が
用いられてきた。
2. Description of the Related Art A lithium-based thermal battery is a molten salt type high temperature primary battery that uses iron disulfide or iron sulfide as a positive electrode active material and metallic lithium or a lithium alloy as a negative electrode active material. The lithium alloy includes lithium aluminum alloy, lithium silicon alloy, and lithium boron alloy. Further, as an electrolytic solution (hereinafter, the electrolytic solution means an electrolyte), a eutectic salt of lithium chloride and potassium chloride (LiCl-KCl eutectic salt) has been conventionally used.

リチウム系熱電池の特徴は数百mAもの高率放電を行な
っても利用率の低下が極めて少ないという優れた高率放
電性能にある。
A feature of lithium-based thermal batteries is their excellent high-rate discharge performance, in which the utilization factor is extremely low even after high-rate discharge of several hundred mA.

しかし従来のリチウム系熱電池は1mA/cm2以上の超高
率放電を行なうと放電電圧が著しく低下し、利用率が急
激に低下するという問題があった。この原因の一つは、
以下のように考えられる。放電によって生成したリチウ
ムイオンは、活物質近傍から電解液バルクに輸送され
る。このとき従来のLiCl−KCl電解液にはリチウムイオ
ンとカリウムイオンがカチオンとして含まれているた
め、泳動によって生成した全てのリチウムイオンを輸送
することはできない。すなわちリチウムイオンは、拡散
によっても輸送される。泳動速度は電解液温度に関わり
なく通電電流に比例して増加するが、拡散速度は電解液
温度とともに低下する。このため低温で放電を行うとリ
チウムイオンの生成速度よりも輸送速度が遅くなる場合
がある。この結果、負極活物質近傍にリチウムイオンが
蓄積する。そしてリチウムイオンの蓄積が進行すると負
極活物質の表面に塩化リチウム(LiCl)が凝固析出し、 活物質の作用面積を減少させる。
However, the conventional lithium-based thermal battery has a problem that the discharge voltage is remarkably reduced when the ultra high rate discharge of 1 mA / cm 2 or more is performed, and the utilization rate is drastically reduced. One of the causes is
It is considered as follows. The lithium ions generated by the discharge are transported from the vicinity of the active material to the bulk of the electrolytic solution. At this time, since the conventional LiCl-KCl electrolytic solution contains lithium ions and potassium ions as cations, it is not possible to transport all the lithium ions generated by electrophoresis. That is, lithium ions are also transported by diffusion. The migration rate increases in proportion to the applied current regardless of the electrolytic solution temperature, but the diffusion rate decreases with the electrolytic solution temperature. Therefore, when discharging at a low temperature, the transport speed may be slower than the lithium ion generation speed. As a result, lithium ions accumulate near the negative electrode active material. Then, as the accumulation of lithium ions progresses, lithium chloride (LiCl) solidifies and deposits on the surface of the negative electrode active material, reducing the active area of the active material.

電解質の浸透を阻害する。Inhibits the penetration of electrolytes.

活物質間の電子伝導性を低下させる。Reduces electronic conductivity between active materials.

等の現象を引き起こし、放電反応を阻害する。Etc., and the discharge reaction is hindered.

このため従来の電池は、負極活物質中に塩化カリウム
(KCl)を添加し、初期の電解液組成をカリウムイオン
過剰にし、LiClの凝固析出を遅らせて超高率放電時の利
用率を向上させていた。
For this reason, in conventional batteries, potassium chloride (KCl) was added to the negative electrode active material to make the initial electrolyte composition excess of potassium ions, delay the solidification and precipitation of LiCl, and improve the utilization rate during ultra-high rate discharge. Was there.

発明が解決しようとする課題 しかしKClは絶縁物であるからその添加は、一方で活
物質問の電子電導性の低下を招く。また当然KClの添加
量に応じて極板の理論容量が低下する。このようにKCl
の添加は利用率の向上に大きな効果を有するものの理論
容量の低下を招くという問題点を有していた。
However, since KCl is an insulator, its addition causes a decrease in the electron conductivity of the active material query. Naturally, the theoretical capacity of the electrode plate also decreases depending on the amount of KCl added. Thus KCl
Although it has a great effect on the improvement of the utilization rate, it has a problem that the theoretical capacity is lowered.

よって、超高率放電時においてもエネルギー密度およ
び放電容量すなわち活物質利用率が高いリチウム系熱電
池が求められていた。
Therefore, there has been a demand for a lithium-based thermal battery having a high energy density and a high discharge capacity, that is, an active material utilization rate even at the time of ultra-high rate discharge.

課題を解決するための手段 本発明は、リチウム系熱電池において、二硫化鉄又は
硫化鉄である正極活物質と、フッ化リチウムと塩化リチ
ウムと臭化リチウムとの混合物である電解質と、負極活
物質とを備え、前記負極活物質は塩化カリウムが添加さ
れたリチウム金属又はリチウム合金であることを特徴と
する。
Means for Solving the Problems The present invention is, in a lithium-based thermal battery, a positive electrode active material that is iron disulfide or iron sulfide, an electrolyte that is a mixture of lithium fluoride, lithium chloride, and lithium bromide, and a negative electrode active material. The negative electrode active material is a lithium metal or a lithium alloy to which potassium chloride is added.

作用 この新しい電解液は、カチオンがすべてリチウムイオ
ンであるから負極から生成したリチウムイオンがすべて
泳動によって電解液バルクに輸送される。このため活物
質近傍の電解液組成の変化が少なく、従来の電解液で問
題になっていたようなLiClの固層析出が原理的に起こら
ない。その意味から負極へのKClの添加はまったく不要
と思われる。
Action In this new electrolytic solution, since all the cations are lithium ions, all lithium ions generated from the negative electrode are transported to the electrolytic solution bulk by migration. Therefore, there is little change in the composition of the electrolytic solution in the vicinity of the active material, and solid-phase deposition of LiCl, which has been a problem with conventional electrolytic solutions, does not occur in principle. From that meaning, it seems that the addition of KCl to the negative electrode is completely unnecessary.

しかし実際には、このLiF−LiCl−LiBr電解液を用い
た熱電池の負極活物質にKClを添加すると、理論容量が
低下するにもかかわらず450℃等の低温で放電容量が無
添加のものに比べ著しく増加し、熱電池のエネルギー密
度はかえって向上した。
However, in reality, when KCl is added to the negative electrode active material of a thermal battery using this LiF-LiCl-LiBr electrolyte, the discharge capacity is not added at a low temperature such as 450 ° C despite the decrease in theoretical capacity. Markedly increased, and the energy density of the thermal battery improved.

この原因は次のように考えられる。LiF−LiCl−LiBr
電解液は、溶融温度が445℃と従来のLiCl−KCl電解液の
溶融温度352℃に比べて高い。このため約460℃以上では
活物質利用率が極めて高いが、それ以下の低温になると
電解液の凝固温度に近づくため放電電圧が急減に低下す
る。
The cause is considered as follows. LiF-LiCl-LiBr
The melting temperature of the electrolytic solution is 445 ° C, which is higher than the melting temperature of 352 ° C of the conventional LiCl-KCl electrolytic solution. Therefore, the utilization rate of the active material is extremely high at about 460 ° C or higher, but when the temperature is lower than that, the discharge voltage drops sharply because it approaches the solidification temperature of the electrolyte.

ここで負極活物質中にKClを添加すると放電にともな
って生成するリチウムイオンと反応してLiCl−KCl電解
液を生じ、この比較的低融点の電解液を生じることによ
って低温の放電特性が改善されるものと思われる。
Here, when KCl is added to the negative electrode active material, it reacts with lithium ions generated during discharge to generate a LiCl-KCl electrolytic solution, and this relatively low melting point electrolytic solution improves low-temperature discharge characteristics. It seems to be one.

なおKClを添加することは電解液中にカリウムイオン
を生じさせるため、先のLiCl−KCl電解液を用いた熱電
池の場合と同様に、リチウムイオンの泳動量を減少させ
るという悪影響をおよぼすことが予想されるが、結果的
には添加により特性がかえって向上した。これはこのLi
F−LiCl−LiBr電解液中ではカリウムイオンいの輸率が
極めて小さく、リチウムイオンの泳動量がほとんど減少
しないためであると思われる。
Note that addition of KCl causes potassium ions in the electrolytic solution, and therefore, as in the case of the thermal battery using the LiCl-KCl electrolytic solution described above, it may have an adverse effect of reducing the migration amount of lithium ions. As expected, as a result, the properties were rather improved by the addition. This is this Li
This is probably because the transport number of potassium ions was extremely small in the F-LiCl-LiBr electrolyte and the migration of lithium ions was hardly reduced.

実施例 本発明を好適な実施例を用いて説明する。EXAMPLES The present invention will be described using preferred examples.

負極活物質にリチウムアルミニウム合金を用い、正極
活物質に二硫化鉄を用いたリチウム系熱電池において、
負極板にKClを10wt%添加し、電解液にLiF−LiCl−LiBr
を用いた本発明による熱電池(A)を製作した。次に負
極板にKClを添加していない以外は熱電池(A)と同様
な比較のための熱電池(B)および負極板にKClを10wt
%添加し電解液にLiCl−KClを用いた以外は熱電池
(A)と同様な比較のための熱電池(C)を製作した。
In a lithium-based thermal battery using a lithium aluminum alloy as the negative electrode active material and iron disulfide as the positive electrode active material,
Add 10 wt% KCl to the negative electrode plate and add LiF-LiCl-LiBr to the electrolyte.
A thermal battery (A) according to the present invention using is manufactured. Next, a thermal battery (B) for comparison similar to the thermal battery (A) except that KCl was not added to the negative electrode plate and 10 wt% of KCl to the negative electrode plate.
%, And a thermal battery (C) for comparison similar to the thermal battery (A) was prepared except that LiCl-KCl was used as the electrolytic solution.

これらの熱電池を熱電池の実用温度である450℃から5
50℃の範囲で1A/cm2の高率放電を行なった。その結果を
第1図に示す。
These thermal batteries are tested at temperatures from 450 ° C, which is the operating temperature of thermal batteries, to 5
A high rate discharge of 1 A / cm 2 was performed in the range of 50 ° C. The result is shown in FIG.

同図より本発明の熱電池(A)は高温から低温まで安
定した容量を有していることがわかる。
From the figure, it can be seen that the thermal battery (A) of the present invention has a stable capacity from high temperature to low temperature.

熱電池(B)は、KClを添加していないために理論容
量が熱電池(A)よりも大きい。このため高温では放電
容量が最も大きいが、低温ではKClを添加した熱電池
(A)よりも容量が少なくなっている。また熱電池
(B)は、電池容量が微少な温度変化によっても非常に
大きく変化するという欠点がある。
The theoretical capacity of the thermal battery (B) is larger than that of the thermal battery (A) because KCl is not added. Therefore, the discharge capacity is the highest at high temperatures, but at low temperatures the capacity is smaller than that of the thermal battery (A) to which KCl is added. Further, the thermal battery (B) has a drawback that the battery capacity changes significantly even with a slight temperature change.

熱電池(C)は、KClを添加しているため放電容量の
温度依存性は小さいが、電解液にKClを用いているため
放電容量は最も少ない。
The thermal battery (C) has little discharge capacity temperature dependence because KCl is added, but has the smallest discharge capacity because KCl is used as the electrolytic solution.

熱電池のエネルギー密度は、最も容量が低下する低温
時の放電容量から計算する。したがって450℃の低温で
最も容量の多い本発明の熱電池(A)が最もエネルギー
密度が高いといえる。
The energy density of the thermal battery is calculated from the discharge capacity at the low temperature when the capacity is the lowest. Therefore, it can be said that the thermal battery (A) of the present invention having the highest capacity at a low temperature of 450 ° C. has the highest energy density.

以上の結果から電解液にLiF−LiCl−LiBrを用いて負
極活物質にKClを添加した本発明の熱電池(A)は、従
来の熱電池(B),(C)に比べエネルギー密度が高
く、しかも放電温度による容量のばらつきが少ない優れ
た熱電池であるといえる。
From the above results, the thermal battery (A) of the present invention in which LiF-LiCl-LiBr is used as the electrolytic solution and KCl is added to the negative electrode active material has a higher energy density than the conventional thermal batteries (B) and (C). Moreover, it can be said that it is an excellent thermal battery with less variation in capacity due to discharge temperature.

発明の効果 以上述べたように、本発明により超高率放電時におい
てもエネルギー密度および放電容量すなわち活物質利用
率が高く、しかも温度安定性にも優れたリチウム系熱電
池を得ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain a lithium-based thermal battery which has a high energy density and a high discharge capacity, that is, an active material utilization rate even at the time of ultra-high rate discharge, and is excellent in temperature stability.

【図面の簡単な説明】 第1図は本発明の熱電池および従来の熱電池の放電特性
を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing discharge characteristics of a thermal battery of the present invention and a conventional thermal battery.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二硫化鉄又は硫化鉄である正極活物質と、
フッ化リチウムと塩化リチウムと臭化リチウムとの混合
物である電解液と、負極活物質とを備え、 前記負極活物質は、リチウム金属又はリチウム合金に塩
化カリウムが添加されてなることを特徴とするリチウム
系熱電池。
1. A positive electrode active material which is iron disulfide or iron sulfide,
An electrolytic solution, which is a mixture of lithium fluoride, lithium chloride, and lithium bromide, and a negative electrode active material, wherein the negative electrode active material is characterized in that potassium metal is added to lithium metal or a lithium alloy. Lithium-based thermal battery.
JP63172089A 1988-07-11 1988-07-11 Lithium-based thermal battery Expired - Lifetime JP2671400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172089A JP2671400B2 (en) 1988-07-11 1988-07-11 Lithium-based thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172089A JP2671400B2 (en) 1988-07-11 1988-07-11 Lithium-based thermal battery

Publications (2)

Publication Number Publication Date
JPH0221568A JPH0221568A (en) 1990-01-24
JP2671400B2 true JP2671400B2 (en) 1997-10-29

Family

ID=15935340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172089A Expired - Lifetime JP2671400B2 (en) 1988-07-11 1988-07-11 Lithium-based thermal battery

Country Status (1)

Country Link
JP (1) JP2671400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546465B2 (en) * 1992-01-28 1996-10-23 鹿島建設株式会社 Vibration control device for structures
CN110534697B (en) * 2019-09-11 2022-03-01 中国工程物理研究院电子工程研究所 Thermal battery single battery and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8329701D0 (en) * 1983-11-07 1983-12-07 Secr Defence Electrochemical cell structures

Also Published As

Publication number Publication date
JPH0221568A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
US4002492A (en) Rechargeable lithium-aluminum anode
Koch Status of the secondary lithium electrode
US6699619B2 (en) Negative electrode of a lithium secondary battery with a two-layered inorganic solid electrolytic material
JP3407733B2 (en) Method of forming inorganic solid electrolyte thin film
WO2013069597A1 (en) Anode active material for sodium battery, anode, and sodium battery
US3751298A (en) Thermal, rechargeable electrochemical cell having lithium monoaluminide electrode and lithium tetrachloroaluminate electrolyte
JP2004103560A (en) Electrolytic solution for lithium-sulfur battery and lithium-sulfur battery containing electrolytic solution
CN108448066B (en) Preparation method of near-room-temperature gallium-based liquid metal-silicon composite negative electrode without adhesive and conductive additive
Yang et al. Tin‐Containing Anode Materials in Combination with Li2. 6Co0. 4 N for Irreversibility Compensation
US3531324A (en) Secondary power-producing cell
US4888258A (en) Lithium-lithium nitride anode
EP0281352B1 (en) Lithium-lithium nitride anode
US3506492A (en) Solid electrolyte battery having lithium or lithium alloy anode
CA1045680A (en) Lithium-silicon electrode for rechargeable cell
JP2643344B2 (en) Lithium-based thermal battery
JP2671400B2 (en) Lithium-based thermal battery
Cheng et al. Improving Li plating behaviors through Cu–Sn alloy-coated current collector for dendrite-free lithium metal anodes
CN113793920B (en) Construction method and application of in-situ lithium aluminum alloy layer on surface of metal lithium
JPH11126633A (en) Electrolyte for lithium ion battery and lithium ion battery using it
JPH087923A (en) Electrolyte for lithium secondary cell
EP0239976A2 (en) Molten salt secondary battery
KR20040090150A (en) Current collector for positive electrode of lithium-sulfur battery, positive electrode for lithium-sulfur battery comprising same and lithium-sulfur battery comprising same
US3963516A (en) High energy density fused salt battery and cathode for use therein
CN114824512B (en) Sodium-based liquid metal battery based on displacement reaction and preparation method thereof
JPH0568070B2 (en)