JP2670182B2 - High-temperature damage evaluation method for heat-resistant steel - Google Patents

High-temperature damage evaluation method for heat-resistant steel

Info

Publication number
JP2670182B2
JP2670182B2 JP2218547A JP21854790A JP2670182B2 JP 2670182 B2 JP2670182 B2 JP 2670182B2 JP 2218547 A JP2218547 A JP 2218547A JP 21854790 A JP21854790 A JP 21854790A JP 2670182 B2 JP2670182 B2 JP 2670182B2
Authority
JP
Japan
Prior art keywords
maximum
creep
creep void
length
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2218547A
Other languages
Japanese (ja)
Other versions
JPH0499945A (en
Inventor
宣彦 西村
不二光 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2218547A priority Critical patent/JP2670182B2/en
Publication of JPH0499945A publication Critical patent/JPH0499945A/en
Application granted granted Critical
Publication of JP2670182B2 publication Critical patent/JP2670182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温機器として長時間使用されている高温機
器部材の保守管理に適用される非破壊検査法に関する。
TECHNICAL FIELD The present invention relates to a nondestructive inspection method applied to maintenance and management of high temperature equipment members used as high temperature equipment for a long time.

〔従来の技術〕[Conventional technology]

従来、高温機器に使用されている耐熱鋼の非破壊検査
法としては、該耐熱鋼にクリープ過程で生成するクリー
プボイドの生成数密度あるいはクリープボイドの生成し
た粒界と生成していない粒界の比によるAパラメータ法
がある。
Conventionally, as a nondestructive inspection method for heat-resistant steel used in high-temperature equipment, the generation number density of creep voids generated in the creep process in the heat-resistant steel or the grain boundaries where creep voids are formed There is an A-parameter method by ratio.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上述した方法では測定されるクリープボイド
の定量値すなわちクリープボイド面密度あるいはAパラ
メータは損傷の平均的情報しか得られない。しかし、実
機での破壊は最大損傷位置で生じることから、寿命後半
では、該調査対象部位の一部から評価した寿命消費率平
均値は、該調査対象部位の破壊を予想するには危険側の
結果を示す可能性があった。
However, with the above-mentioned method, the quantitative value of the measured creep void, that is, the creep void surface density or the A parameter can obtain only average information of damage. However, since the destruction in the actual machine occurs at the maximum damage position, in the latter half of the service life, the average value of the life consumption rate evaluated from a part of the investigation target part is a dangerous side to predict the destruction of the investigation target part. The results could be shown.

上記事情に鑑み、本発明はクリープ損傷の最大値によ
って機器の寿命を評価する手段を提供しようとするもの
である。
In view of the above circumstances, the present invention seeks to provide a means for evaluating the life of a device based on the maximum value of creep damage.

〔問題点を解決するための手段〕[Means for solving the problem]

そこで、本発明者らはレプリカ等を用いて機械部品と
して用いられている耐熱鋼のクリープボイド定量値を多
数個測定したところ、クリープボイド定量値の頻度分布
曲線は正規分布を示しており、その最大値分布はガンベ
ル(Gumbel)分布に適合することを見出した。
Therefore, when the present inventors measured a large number of creep void quantitative values of heat-resistant steel used as mechanical parts by using a replica or the like, the frequency distribution curve of the creep void quantitative values shows a normal distribution, It was found that the maximum value distribution fits the Gumbel distribution.

すなわち、調査部位から採取されたレプリカまたは実
体サンプルを同一面積の多数個の領域に分け、各領域中
の最大クリープボイド長さ、または各領域中の最大クリ
ープボイド密度からなるクリープボイド定量値の最大値
の測定結果をもとに、2重指数(ガンベル Gumbel)確
率分布によって該調査部位全体のクリープボイド定量値
の最大値を求め、同最大値をもとに当該部位全体の余寿
命を求めることを特徴とする。
That is, a replica or real sample taken from the investigation site is divided into a number of regions of the same area, and the maximum creep void length in each region or the maximum creep void quantitative value consisting of the maximum creep void density in each region Based on the measurement result of the value, obtain the maximum value of the creep void quantitative value of the entire surveyed site by the double exponential (Gumbel) probability distribution, and obtain the remaining life of the entire relevant site based on the maximum value. It is characterized by.

ここで「クリープボイド長さ」とは個々のクリープボ
イドの粒界方向の長さであり、採取されたレプリカを数
カ所(例えば走査型電子顕微鏡の各視野)に区切り、各
個所の中でクリープボイド長さを求めることができる。
Here, the "creep void length" is the length in the grain boundary direction of each creep void, and the sampled replica is divided into several places (for example, each field of view of the scanning electron microscope), and the creep void Length can be determined.

「各領域中の最大クリープボイド長さ」とは各領域
(視野)の中で最も長いクリープボイド長さである。
The "maximum creep void length in each area" is the longest creep void length in each area (field of view).

「各領域中の最大クリープボイド密度」とは各領域
(視野)の中での単位面積あたりのクリープボイド数を
母数として求めた値である。
The "maximum creep void density in each region" is a value obtained by taking the number of creep voids per unit area in each region (field of view) as a parameter.

「各領域中のクリープボイドの定量値の最大値」とは
「各領域中の最大クリープボイド長さ」、または「各領
域中の最大クリープボイド密度」の総称である。
"Maximum quantitative value of creep voids in each region" is a general term for "maximum creep void length in each region" or "maximum creep void density in each region".

〔作用〕[Action]

上述した本発明方法によると、機械部品の一部分のク
リープボイドの測定結果をもとに、該機械部品の寿命を
決定する最大損傷部のクリープボイド長さ等を検出でき
ることから、該機械部品の寿命評価精度を高めることが
でき、該機械の信頼性を高めることができる。
According to the above-mentioned method of the present invention, the creep void length of the maximum damaged portion that determines the life of the mechanical component can be detected based on the measurement result of the creep void of a part of the mechanical component. The evaluation accuracy can be increased and the reliability of the machine can be increased.

〔実施例〕〔Example〕

以下本発明に係る一実施例を図面等を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

火力発電用高温蒸気配管として10万hr以上使用された
2 1/4Cr−1Mo鋼溶接鋼管1mを抜管した。該高温蒸気配管
は長時間使用されたことによってその長手溶接部の溶接
熱影響部にクリープボイドが発生していたが、その全長
は88mであることから該高温蒸気配管の寿命を決定する
最大損傷部の損傷の程度を把握するためには、その全長
の調査を行う必要があり、費用、工期の面から実用上不
可能であった。そこで、抜管された1mの蒸気配管の長手
溶接部の100mm毎の計11ケ所から第1図にその概観図を
示すようなレプリカ1を採取し、まず、各々のレプリカ
中の両端部及び中央部の3ケ所計33ケ所の溶接熱影響部
2のクリープボイドの平均長さ及びクリープボイド面密
度を測定した。クリープボイド平均長さ、クリープボイ
ド面密度ともに、溶接熱影響部を中心にして走査型電子
顕微鏡によって500倍の写真10視野から求めた。クリー
プボイド平均長さは各々の位置のクリープボイドの粒界
方向の長さの平均値として求め、クリープボイド面密度
は各々の位置の10視野中のクリープボイド生成数を観察
面積で除した値とした。全33ケ所におけるクリープボイ
ド平均長さの度数分布及びクリープボイド面密度の度数
分布をそれぞれ第2図及び第3図に示す。いずれの分布
も、対数正規分布型の分布を示しており、その最大値分
布は2重指数分布(ガンベル Gumbel分布)を示すこと
が予想された。そこで、クリープボイド長さについて前
述した11ケ所から採取したレプリカを各々左端、中央、
右端の3ケ所に分割し、各位置の最大クリープボイド長
さを求め、平均ランク法を用いて累積確率を求めてガン
ベル(Gumbel)確率統計紙上にプロットした結果を第4
図に示すが、データは良い直線関係を示し、最大クリー
プボイド長さがガンベル(Gumbel)分布の適合すること
がわかった。
Used for high temperature steam piping for thermal power generation for over 100,000 hours
1 1m of 2 1 / 4Cr-1Mo steel welded steel pipe was removed. Since the high temperature steam pipe was used for a long time, a creep void was generated in the weld heat affected zone of its longitudinal weld, but since the total length is 88 m, the maximum damage that determines the life of the high temperature steam pipe. In order to understand the degree of damage to the part, it was necessary to investigate the full length, which was impractical in terms of cost and construction period. Therefore, replicas 1 as shown in Fig. 1 were sampled from a total of 11 locations in 100 mm intervals of the longitudinal welded part of the extruded 1 m steam pipe. First, both ends and the central part of each replica were collected. The average length of creep voids and the surface density of creep voids in the weld heat affected zone 2 at 33 places were measured. Both the creep void average length and the creep void surface density were obtained from 10 fields of the photograph taken 500 times by a scanning electron microscope centering on the heat affected zone. The average creep void length is obtained as the average value of the length of the creep voids at each position in the grain boundary direction, and the creep void areal density is the value obtained by dividing the number of creep voids generated in 10 fields of view at each position by the observation area. did. The frequency distribution of the average creep void length and the frequency distribution of the creep void areal density at all 33 locations are shown in FIGS. 2 and 3, respectively. All the distributions showed a log-normal distribution, and the maximum value distribution was expected to show a double exponential distribution (Gumbel Gumbel distribution). Therefore, the replicas collected from the 11 locations described above for the creep void length are left end, center, and
The result is plotted on the Gumbel probability statistical paper by dividing into three places on the right end, obtaining the maximum creep void length at each position, obtaining the cumulative probability using the average rank method, and plotting the result on the Gumbel probability statistical paper.
As shown in the figure, the data show a good linear relationship and it was found that the maximum creep void length fits the Gumbel distribution.

そこで、該供試鋼管(1m)の溶接部に存在する最大ク
リープボイド長さを本発明方法によって推定した。ま
ず、第4図に示した最大クリープボイド長さ分布は供試
鋼管の0.16mm(レプリカ1枚に含まれる溶接部の長さ)
×10視野=1.6mmであることから、供試鋼管(1m)の最
大クリープボイド長さは第4図に示した最大クリープボ
イド長さ分布から下式に示す再帰期間における最大クリ
ープボイド長さを求めることによって求めることができ
る。
Therefore, the maximum creep void length existing in the welded portion of the test steel pipe (1 m) was estimated by the method of the present invention. First, the maximum creep void length distribution shown in Fig. 4 is 0.16 mm of the test steel pipe (the length of the welded part included in one replica).
Since × 10 field of view = 1.6 mm, the maximum creep void length of the test steel pipe (1 m) is calculated from the maximum creep void length distribution shown in Fig. 4 by the maximum creep void length in the recursion period shown in the following formula. It can be obtained by asking.

T=(推定したい区間の長さ=1000mm)/(測定区間1.6mm)=625 第4図中にこのようにして、供試鋼管1mの最大クリー
プボイド長さを推定した結果を示すが、最大クリープボ
イド長さは140μmと推定された。
T = (length of section to be estimated = 1000 mm) / (measurement section 1.6 mm) = 625 Fig. 4 shows the result of estimating the maximum creep void length of the test steel pipe 1 m in this way. The creep void length was estimated to be 140 μm.

そこで該供試材を研磨し、実体顕微鏡によってクリー
プボイドの直接観察を行い、最大のクリープボイド長さ
を求めたところ125μmであり、本発明方法によって推
定した最大クリープボイド長さ140μmとほぼ一致して
いた。
Therefore, the sample material was polished, and the creep voids were directly observed with a stereoscopic microscope, and the maximum creep void length was calculated to be 125 μm, which was almost the same as the maximum creep void length 140 μm estimated by the method of the present invention. I was

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明方法によれば、高温応力下
で使用されている耐熱鋼からなる機械部品の最大損傷
を、一部分の測定結果から精度良く評価する手法を提供
できることから、該機械部品の損傷評価を全域調査より
も極めて短時間で行うことができ、また、ぬき取り検査
で実施していた損傷評価の精度を高め、該機械部品の信
頼性を高めることができる。
As described in detail above, according to the method of the present invention, it is possible to provide a method of accurately evaluating the maximum damage of a mechanical component made of heat-resistant steel used under high temperature stress from a partial measurement result. The damage evaluation can be performed in an extremely short time as compared with the whole area inspection, and the accuracy of the damage evaluation performed in the stripping inspection can be improved and the reliability of the mechanical component can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例として長期使用火力発電プ
ラント高温蒸気配管溶接部から採取したレプリカの模式
図、第2図は本発明の一実施例として測定した該蒸気配
管溶接部のクリープボイド長さの度数分布図、第3図は
本発明の一実施例として測定した該蒸気配管溶接部のク
リープボイド面密度の度数分布図、第4図は最大クリー
プボイド長さ分布図(Gumbel確率プロット図)である。 1……レプリカ、2……溶接熱影響部、3……溶接金
属、4……母材、5……レプリカ貼付用プラスチック台
板。
FIG. 1 is a schematic diagram of a replica taken from a high temperature steam pipe weld of a long-term use thermal power plant as one embodiment of the present invention, and FIG. 2 is a creep of the steam pipe weld measured as one embodiment of the present invention. Frequency distribution chart of void length, FIG. 3 is a frequency distribution chart of creep void areal density of the steam pipe weld measured as one embodiment of the present invention, and FIG. 4 is a maximum creep void length distribution chart (Gumbel probability). FIG. 1 ... Replica, 2 ... Welding heat affected zone, 3 ... Weld metal, 4 ... Base metal, 5 ... Replica base plate for sticking replica.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】調査部位から採取されたレプリカまたは実
体サンプルを同一面積の多数個の領域に分け、各領域中
の最大クリープボイド長さ、または各領域中の最大クリ
ープボイド密度からなる各領域中のクリープボイド定量
値の最大値の測定結果をもとに、2重指数確率分布によ
って該調査部位全体のクリープボイド定量値の最大値を
求め、同最大値をもとに当該部位全体の余寿命を求める
ことを特徴とする耐熱鋼の高温損傷評価方法。
1. A replica or a real sample taken from a survey site is divided into a large number of regions having the same area, and the maximum creep void length in each region or the maximum creep void density in each region is defined in each region. Based on the measurement result of the maximum value of the creep void quantitative value, the maximum value of the creep void quantitative value of the entire surveyed site is obtained by the double exponential probability distribution, and the remaining life of the entire relevant site is calculated based on the maximum value. A method for evaluating high-temperature damage to heat-resistant steel, characterized in that
JP2218547A 1990-08-20 1990-08-20 High-temperature damage evaluation method for heat-resistant steel Expired - Fee Related JP2670182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218547A JP2670182B2 (en) 1990-08-20 1990-08-20 High-temperature damage evaluation method for heat-resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218547A JP2670182B2 (en) 1990-08-20 1990-08-20 High-temperature damage evaluation method for heat-resistant steel

Publications (2)

Publication Number Publication Date
JPH0499945A JPH0499945A (en) 1992-03-31
JP2670182B2 true JP2670182B2 (en) 1997-10-29

Family

ID=16721648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218547A Expired - Fee Related JP2670182B2 (en) 1990-08-20 1990-08-20 High-temperature damage evaluation method for heat-resistant steel

Country Status (1)

Country Link
JP (1) JP2670182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2383848B (en) * 2000-08-16 2004-07-28 Chugoku Electric Power Creep life evaluation method
JP4979730B2 (en) * 2009-03-24 2012-07-18 中国電力株式会社 Creep damage evaluation method
CN103439473B (en) * 2013-07-15 2016-01-20 河北省电力建设调整试验所 A kind of 12Cr1MoV steel heating surface state evaluating method

Also Published As

Publication number Publication date
JPH0499945A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
US4924708A (en) Method for calculating crack lengths of conductive sensors
US4393711A (en) Apparatus and method for ultrasonic detection of flaws in power plant piping systems
US6810748B1 (en) Method for evaluating creep lifetime
CA1244151A (en) Method for evaluating residual fatigue life of mechanical parts
Gandossi et al. The potential drop method for monitoring crack growth in real components subjected to combined fatigue and creep conditions: application of FE techniques for deriving calibration curves
US20080310476A1 (en) Thermographic Method and Device for Determining the Damaged State of a Part
JP2670182B2 (en) High-temperature damage evaluation method for heat-resistant steel
JP3252933B2 (en) Creep life prediction method
JPH04240552A (en) Method for evaluating residual life of metal welding member under high temperature stress
JP2006060134A (en) Apparatus and method for assessing the remaining life of transformer for power supply
JP3825378B2 (en) Life evaluation method of heat-resistant steel
JP4011160B2 (en) Cr-Mo steel furnace tube remaining life judgment method
JP4331042B2 (en) Non-destructive evaluation method for embrittlement of metal materials
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
JP3886935B2 (en) Metal material damage assessment method
Chou et al. Characterization of low-cycle fatigue damage in Inconel 718 by laser light scanning
JP2627925B2 (en) Remaining life evaluation method for metallic materials
JP2540630B2 (en) Method of evaluating remaining life of ferritic heat resistant steel
JP3803314B2 (en) Creep void non-destructive detection method
JP2802114B2 (en) Method for diagnosing remaining life of member, diagnostic device therefor, method for displaying remaining life and display device therefor
JPH0713637B2 (en) Method for evaluating remaining life of heat-resistant steel
Dover Crack shape evolution studies in threaded connections using ACFM
JP2706354B2 (en) Evaluation method for creep damage of heat resistant ferritic steel
Coffin Notch fatigue crack initiation studies in a high strength nickel base superalloy
JP2004205303A (en) Evaluation method and evaluation system for damage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees