JP2668479B2 - Killed steel ingot method - Google Patents

Killed steel ingot method

Info

Publication number
JP2668479B2
JP2668479B2 JP9537892A JP9537892A JP2668479B2 JP 2668479 B2 JP2668479 B2 JP 2668479B2 JP 9537892 A JP9537892 A JP 9537892A JP 9537892 A JP9537892 A JP 9537892A JP 2668479 B2 JP2668479 B2 JP 2668479B2
Authority
JP
Japan
Prior art keywords
feeder
mold
ingot
steel
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9537892A
Other languages
Japanese (ja)
Other versions
JPH05285591A (en
Inventor
年通 長尾
繁範 猪狩
克巳 近藤
信浩 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9537892A priority Critical patent/JP2668479B2/en
Publication of JPH05285591A publication Critical patent/JPH05285591A/en
Application granted granted Critical
Publication of JP2668479B2 publication Critical patent/JP2668479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はキルド鋼の造塊方法に関
し、詳しくは鋼塊本体側に濃厚偏析部を生じない造塊方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for ingoting killed steel, and more particularly to a method for ingoting a concentrated segregation portion on the steel ingot main body side.

【0002】[0002]

【従来の技術】アルミシリコンキルド鋼等のキルド鋼を
普通造塊法にて製造する場合一般に鋳型上部に押湯枠を
設けて鋳型上部を保温している。即ち、鋳型内に注入さ
れた溶鋼は時間経過と共に冷却されて徐々に凝固するわ
けであるが、凝固時に生ずる凝固収縮や、マクロ偏析な
どは避けられない現象であり、鋼塊内に発生した収縮孔
やマクロ偏析は製品の品質を著しく低下させ、その程度
によっては製品として使用できないこととなる。従って
これらの対策として鋳型上部に押湯枠を設けて、凝固を
遅らせることにより凝固収縮部への溶鋼の補給を容易に
し、又、濃厚偏析部を最終凝固する押湯内部に集中させ
る等の鋼塊本体の健全性を確保する方法が講ぜられてい
るわけである。しかし濃厚偏析が押湯内にとどまらず鋼
塊本体側に及ぶことがあり、製品の品質要求に応じて濃
厚偏析部の切捨てを実施しているのであるが、鉄鋼材料
への品質要求が厳格化、多様化してきている昨今ではこ
の濃厚偏析部の切捨量の増大による歩留低下を余儀なく
されている。
2. Description of the Related Art When a killed steel such as an aluminum silicon killed steel is manufactured by a normal ingot making method, a feeder frame is generally provided on the upper part of the mold to keep the upper part of the mold warm. That is, the molten steel injected into the mold is cooled and gradually solidifies over time, but solidification shrinkage and macrosegregation that occur during solidification are phenomena that cannot be avoided, and the shrinkage that has occurred in the steel ingot. The pores and macro-segregation significantly reduce the quality of the product, and depending on the degree, the product cannot be used. Therefore, as a countermeasure against these problems, a feeder frame is provided on the upper part of the mold to delay the solidification to facilitate the replenishment of molten steel to the solidification contraction part, and to concentrate the concentrated segregation part inside the final solidification feeder. A method is being taken to ensure the soundness of the mass itself. However, the thick segregation may reach the steel ingot main body side instead of staying in the feeder.Thus, the thick segregation part is cut off according to the quality requirement of the product, but the quality requirement for steel materials becomes stricter. Nowadays, with the increasing diversification, it is inevitable that the yield is reduced due to the increase of the cut amount of the dense segregation portion.

【0003】一般に前述のような問題を解決するために
は、押湯枠の材質を低熱伝導率のものに変更したり、厚
手化することで押湯枠の断熱性を高める方法が講ぜられ
ている。ところが押湯枠の断熱性を高めても押湯量があ
る量以上に確保されていなければ押湯部の熱容量不足に
より押湯部が鋼塊本体より先に凝固してしまい、その結
果濃厚偏析部は鋼塊本体まで存在することになる。つま
り鋳型寸法、押湯枠の総括熱伝導率及び厚み、押湯量
(押湯部溶鋼体積)の適正な組合わせが存在するのであ
るが、従来はこれらの条件と濃厚偏析部の大きさに関す
る定量化された指標がなく、実鋼塊試験による試行錯誤
により適正な操業条件を求めていた。一方、提案された
ものとして特開昭55−19451号公報が知られてい
る。
[0003] In general, in order to solve the above-mentioned problems, a method of improving the heat insulating property of the feeder frame by changing the material of the feeder frame to one having a low thermal conductivity or making the feeder frame thicker has been taken. There is. However, even if the heat insulation of the feeder frame is increased, if the amount of feeder is not secured above a certain amount, the feeder will solidify before the steel ingot due to insufficient heat capacity of the feeder, and as a result, the dense segregation Exists up to the ingot body. In other words, there is an appropriate combination of mold size, overall thermal conductivity and thickness of feeder frame, and amount of feeder (molten steel volume of the feeder). There was no standardized index, and appropriate operating conditions were determined by trial and error based on actual steel ingot tests. On the other hand, Japanese Patent Application Laid-Open No. 55-19451 is known as a proposal.

【0004】[0004]

【発明が解決しようとする課題】特開昭55−1945
1号公報のものは厚さもしくは相当径400mm以上の
大型鋼塊の造塊にあたり鋳型押湯部の外周を押湯最下端
から上下に鋳型の肉厚以上の高さ範囲に亘って加熱又は
保温させることにより鋼塊頭部の偏析を減少させ頭部の
切捨量を減少させるものであるが、通常の押湯以外に鋳
型外面の保温又は加熱を必要とし人手を多く要する他、
加熱の場合には大型の加熱装置を当該部位にセットする
必要がある等作業上に難点を伴う。このため、通常の押
湯枠のみで濃厚偏析部を押湯部のみに限定しかつ切捨量
の少ない造塊方法の出現が望まれている。
Problems to be Solved by the Invention JP-A-55-1945
No. 1 gazette heats or heats the outer circumference of the mold riser part from the lowermost end of the riser to the height above the wall thickness of the mold when making a large steel ingot having a thickness or equivalent diameter of 400 mm or more. By reducing the segregation of the steel ingot head by reducing the amount of cut off of the head, in addition to the normal riser heat retention or heating of the mold outer surface is required and many manpower is required,
In the case of heating, there is a difficulty in work, such as a large heating device needs to be set at the site. Therefore, it is desired to develop an ingot-making method in which the concentrated segregation portion is limited to the feeder portion only with a normal feeder frame and the cut amount is small.

【0005】[0005]

【課題を解決するための手段】本発明は以上の如き課題
を解決するためになしたものでありその要旨とするとこ
ろは、鋳型上部に押湯部を設けるキルド鋼の造塊に際
し、該押湯部下端における鋳型短辺長さ (m)が押
湯部下端から鋳型底面までの高さ (m)より小さい
場合 <4.86×V/A×l/λ+0.273 ・・・・(1) の条件を満たして造塊することを特徴とするキルド鋼の
造塊方法。 但し V:押湯部溶鋼体積(m) A:溶鋼と接触する押湯枠表面積(m) l:押湯枠の総括厚み(m) λ:押湯枠の総括熱伝導率(kcal/m・hr・℃) に関するものである。なお、上記のように、鋳型短辺長
さH が押湯部下端から鋳型底面までの高さH より小
さくした理由は、鋳型を特定することが狙いであり、そ
の条件を前提にして本発明がなされるものである。 すな
わち、鋳型短辺長さH が押湯部下端から鋳型底面まで
の高さH より小さい場合は、鋳型の上部抜熱面積が小
さく、そのため上部抜熱量を無視することができる。そ
こで本発明はこの上部抜熱量を無視した上で上記(1)
式が有効となるように定めたものである。従って、仮に
がH より大きい場合には鋳型の上部抜熱面積が大
きくなり、そのために上部抜熱量を無視することができ
ず保温剤の能力限界となり、上記(1)式は成立しな
い。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its gist is to provide a method for forming an ingot of killed steel in which a feeder is provided on the upper part of a mold. When the length H 2 (m) of the short side of the mold at the lower end of the molten metal is smaller than the height H 1 (m) from the lower end of the feeder to the bottom of the mold H 2 2 <4.86 × V / A × l / λ + 0. 273 ··· (1) A method for ingot making of killed steel, wherein ingot making is performed while satisfying the condition (1). Where V: volume of molten steel in the feeder section (m 3 ) A: surface area of the feeder frame in contact with the molten steel (m 2 ) l: overall thickness of the feeder frame (m) λ: overall thermal conductivity of the feeder frame (kcal / m · hr · ° C). Note that, as described above,
Less than the height H 1 from the feeder head portion the lower end to the mold bottom is H 2 is
The reason for this is to identify the mold,
The present invention is made on the assumption of the following conditions. sand
KazuSatoshi, mold short side length H 2 until the mold bottom from riser portion lower end
If the height is less than H 1 , the upper heat removal area of the mold is small.
Therefore, the amount of heat removed from the upper part can be ignored. So
Therefore, in the present invention, the above heat removal amount is ignored and the above (1)
It has been determined that the expression is valid. Therefore, if
When H 2 is larger than H 1, the upper heat removal area of the mold is large.
So that the upper heat removal can be neglected
However, the capacity of the heat retaining agent is limited, and the above equation (1) is not established.
No.

【0006】[0006]

【作用】本発明者等は濃厚偏析部(チェック分析C/レ
ードル分析C≧1.2)が鋼塊本体側にも存在するの
は、押湯不足により押湯部が鋼塊本体より先に凝固して
しまうことに原因があり、対策として押湯部が鋼塊本体
の凝固完了まで一部溶融状態を保つ条件を設定すれば濃
厚偏析部を押湯部内に集中できると考えた。しかして上
記条件を確実に成立させるため実鋼塊の造塊条件にもと
ずく熱収支計算と鋼塊頭部偏析調査を実施した。図3に
おいて1は鋳型、2は押湯枠、(A)は押湯部、(B)
は鋼塊本体を示し、H1 は押湯枠下端から鋳型底面まで
の高さ(m)、H2 は押湯枠下端における鋳型短辺長さ
(m)、Vは押湯部溶鋼体積(m3)である。ここで鋼塊
本体(B)が凝固完了するまでの時間をt1 とすればt
1 は次式で求まる。 t1 =(H2 /2k)2 ・・・・・・・・・・・・
The present inventors have found that the dense segregated portion (check analysis C / ladle analysis C ≧ 1.2) also exists on the ingot main body side because the feeder portion is located ahead of the ingot main body due to lack of feeder. The reason is that solidification occurs, and as a countermeasure, it was thought that the concentrated segregation part could be concentrated in the riser part by setting the condition that the riser part partially melted until the solidification of the steel ingot body was completed. Therefore, in order to ensure that the above conditions were met, heat balance calculation and ingot segregation investigation were carried out based on the ingot forming conditions of the actual steel ingot. In FIG. 3, 1 is a mold, 2 is a feeder frame, (A) is a feeder section, (B)
Indicates the steel ingot main body, H 1 is the height from the bottom of the feeder frame to the bottom of the mold (m), H 2 is the length of the short side of the mold at the bottom of the feeder frame (m), V is the molten steel volume of the feeder ( m 3 ). Here, assuming that the time until the ingot body (B) is completely solidified is t 1 , t
1 is obtained by the following equation. t 1 = (H 2 / 2k) 2 ···

【0007】一方、押湯部(A)が凝固完了するまでの
時間をt2 とすれば t2 =Cp・ρ・V(TLL−TSL)÷{A× (λ/l) ×(TLL−T)} ・・・・・ で求まり、t1 <t2 であれば濃厚偏析が全て押湯内部
に収まる。ここに k:凝固係数、 Cp:溶鋼比熱(kca
l/kg・℃) ρ:溶鋼比重(kg/m3)、 TLL:液相線温
度(℃) TSL:固相線温度(℃)、 T:鋳型温
度 (℃) λ:押湯枠総括熱伝導率(kcal/m・hr・℃)、 l:押湯枠総括厚さ(m)、 A:溶鋼と接
触する押湯枠 表面積(m2)、 である。
On the other hand, if the time until the solidification of the feeder (A) is completed is t 2 , then t 2 = CpρV (T LL -T SL ) ÷ {A × (λ / l) × ( T LL −T)}, and if t 1 <t 2 , all the dense segregation is contained inside the riser. Where k: solidification coefficient, Cp: specific heat of molten steel (kca
l / kg ・ ° C) ρ: Specific gravity of molten steel (kg / m 3 ), T LL : Liquidus temperature (° C) T SL : Solidus temperature (° C), T: Mold temperature (° C) λ: Filler frame Overall thermal conductivity (kcal / m · hr · ° C), l: Overall thickness of feeder frame (m), A: Surface of feeder frame in contact with molten steel (m 2 ).

【0008】,からt1 <t2 となる条件は H2 2<{(4k2 ・Cp・ρ・(TLL−TSL))} ×V/A×l/λ+a ・・・・・ a:定数 実鋼塊試験から H2 2 <4.86×V/A×l /λ+0.273 ・・・・・・ であれば濃厚偏析が全て押湯内部に集中できる。次に本
発明実施例を比較例とともに挙げる。
The condition that t 1 <t 2 is H 2 2 <{(4k 2 · Cp · ρ · (T LL −T SL ))} × V / A × l / λ + a. : From the actual steel ingot test, H 2 2 <4.86 × V / A × l / λ + 0.273 ... Next, examples of the present invention will be described together with comparative examples.

【0009】[0009]

【実施例】表1に示す組成及び熱伝導率を有する押湯枠
を用い表2に示す造塊条件で下注ぎにて造塊した。溶鋼
成分を表3に示す。
[Example] Using a feeder frame having the composition and thermal conductivity shown in Table 1, the ingot was cast under the casting conditions shown in Table 2 to make an ingot. Table 3 shows the molten steel components.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】尚、使用した鋳型の寸法は鋳型高さ230
0mm、短辺長さ(上部900mm、下部670mm、
平均785mm)で鋼塊単重は24.3t、長辺長さ
(上部2079mm、下部2021mm、平均2050
mm)である。この鋼塊を分塊圧延し厚み220mm×
幅2100mm、長さ6740mmのスラブとした。該
スラブの鋼塊軸芯相当部からドリルにてキリモミサンプ
ル(ドリル径=スラブ厚の5%)を採取し化学分析によ
り炭素(C)含有量を調査した。このキリモミサンプル
から得られた分析値(C)と取鍋精錬完了後に採取した
サンプルから得られた分析値(Co)の比(C/Co)
が1.2以上の部分を濃厚偏析部と判定し、この部分が
押湯内部にあるかどうかを調査した。その結果を図1、
図2に示すが、本発明例は濃厚偏析部が押湯内部に集中
しているのに対し、比較例については押湯外にも濃厚偏
析部が存在している。
The size of the mold used is the mold height 230.
0 mm, short side length (upper 900 mm, lower 670 mm,
Steel ingot unit weight is 24.3t, average long side length (upper 2079mm, lower 2021mm, average 2050)
mm). This ingot is slab-rolled and the thickness is 220 mm ×
The slab was 2100 mm wide and 6740 mm long. A drill fir sample (drill diameter = 5% of slab thickness) was collected from a portion corresponding to the steel ingot axis of the slab by a drill, and the carbon (C) content was examined by chemical analysis. The ratio (C / Co) between the analytical value (C) obtained from the Kirimi fir sample and the analytical value (Co) obtained from the sample collected after the ladle refining is completed.
Was determined as a thick segregated portion, and it was investigated whether or not this portion was inside the feeder. The result is shown in FIG.
As shown in FIG. 2, the thick segregated portion is concentrated inside the feeder in the example of the present invention, whereas the thick segregated portion exists outside the feeder in the comparative example.

【0014】しかしてC/Co≧1.2の濃厚偏析部を
除去するためガスカットした。ガスカット後の最終採片
長さと歩留りを併せて表2に示すが、本発明のものは押
湯相当分のみのガスカットであるのに対し、比較例の場
合は何れも鋼塊本体側にも濃厚偏析部があるためガスカ
ット量が大きく歩留りが低位となった。
Thus, gas was cut to remove the thick segregated portion where C / Co ≧ 1.2. Table 2 also shows the final cutting length and yield after gas cutting. In the case of the present invention, the gas cutting was only for the amount of the riser, but in the case of the comparative example, both were also on the steel ingot main body side. Due to the presence of the dense segregation, the gas cut amount was large and the yield was low.

【0015】[0015]

【発明の効果】以上詳細に説明した如く本発明によれ
ば、キルド鋼の造塊に当り濃厚偏析部を確実に押湯内に
止めることができるので、スラブでの切捨量の低減が可
能である。又作業性も良好である。
As described in detail above, according to the present invention, since the concentrated segregation portion can be reliably stopped in the feeder when the killed steel is ingot, it is possible to reduce the cut amount in the slab. Is. Also, workability is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例における濃厚偏析部が押湯内にとどま
るか否かを示す図。
FIG. 1 is a view showing whether or not a thick segregation portion in the present embodiment remains in a feeder.

【図2】本実施例における鋼塊トップからの距離と濃厚
偏析部との関係を示す図。
FIG. 2 is a view showing a relationship between a distance from a steel ingot top and a thick segregated portion in the present embodiment.

【図3】押湯部及び鋼塊本体の凝固完了までの時間を求
める数式に用いる記号を示す説明図である。
FIG. 3 is an explanatory diagram showing symbols used in a mathematical formula for obtaining a time until completion of solidification of a feeder and a steel ingot main body.

【符号の説明】[Explanation of symbols]

1 鋳型 2 押湯枠 (A) 押湯部 (B) 鋼塊本体 H1 押湯枠下端から鋳型底面までの高さ H2 押湯枠下端における鋳型短辺長さ V 押湯部溶鋼体積1 mold 2 feeder frame (A) feeder part (B) steel ingot main body H 1 height from bottom of feeder frame to bottom of mold H 2 short side length of feeder at bottom of feeder frame V molten metal volume of feeder part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 信浩 愛知県東海市東海町5−3 新日本製鐵 株式会社 名古屋製鐵所内 (56)参考文献 特開 昭56−117866(JP,A) 特開 昭57−68246(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuhiro Takagi 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Corporation Nagoya Steel Works (56) Reference JP-A-56-117866 (JP, A) Kai 57-68246 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳型上部に押湯部を設けるキルド鋼の造
塊に際し、該押湯部下端における鋳型短辺長さ
(m)が押湯部下端から鋳型底面までの高さ
(m)より小さい場合 <4.86×V/A×l/λ+0.273 ・・・・ (1) の条件を満たして造塊することを特徴とするキルド鋼の
造塊方法。 但し V:押湯部溶鋼体積(m) A:溶鋼と接触する押湯枠表面積(m) l:押湯枠の総括厚み(m) λ:押湯枠の総括熱伝導率(kcal/m・hr・℃)
1. A structure of killed steel in which a feeder is provided on the upper part of a mold.
When lumping, the length of the short side of the mold at the lower end of the feederH
2 (M) is the height from the bottom of the riser to the bottom of the moldH
1 (M) less thanH 2 2 <4.86 × V / A × 1 / λ + 0.273 (1)
Ingot making method. Where V: volume of molten steel in the feeder section (m3) A: Surface area of feeder frame in contact with molten steel (m2L: Overall thickness of the feeder frame (m) λ: Overall thermal conductivity of the feeder frame (kcal / m · hr · ° C)
JP9537892A 1992-04-15 1992-04-15 Killed steel ingot method Expired - Lifetime JP2668479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9537892A JP2668479B2 (en) 1992-04-15 1992-04-15 Killed steel ingot method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9537892A JP2668479B2 (en) 1992-04-15 1992-04-15 Killed steel ingot method

Publications (2)

Publication Number Publication Date
JPH05285591A JPH05285591A (en) 1993-11-02
JP2668479B2 true JP2668479B2 (en) 1997-10-27

Family

ID=14135987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9537892A Expired - Lifetime JP2668479B2 (en) 1992-04-15 1992-04-15 Killed steel ingot method

Country Status (1)

Country Link
JP (1) JP2668479B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020215318A1 (en) * 2019-04-26 2020-10-29 江苏华艺服饰有限公司 Finished garment three-dimensional memory and spray-painting imprinting integrated process

Also Published As

Publication number Publication date
JPH05285591A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
CA2379809C (en) Semi-solid concentration processing of metallic alloys
EP2188079B1 (en) Sequential casting of metals having the same or similar co-efficients of contraction
US5143564A (en) Low porosity, fine grain sized strontium-treated magnesium alloy castings
US3353934A (en) Composite-ingot
JP2668479B2 (en) Killed steel ingot method
EP0512118B1 (en) Process for continuous casting of ultralow-carbon aluminum-killed steel
JP2848231B2 (en) Mold powder for continuous casting
Radhakrishna et al. Dendrite arm spacing and mechanical properties of aluminium alloy castings
Isobe Development Technology for Prevention of Macro-segregation in Casting of Steel Ingot by Insert Casting in Vacuum Atmosphere
US4785872A (en) Casting powder for use in bottom pour ingot steel production and method for employing same
EP0321478B1 (en) Casting powder for use in bottom pour ingot steel production and method for employing same
US3993474A (en) Fluid mold casting slag
JPH07204812A (en) Continuous casting method
JP3546137B2 (en) Steel continuous casting method
JPH11267814A (en) Steel billet continuous casting method
JPS5911381B2 (en) Continuous casting method for Al and Al alloys
JPH1036933A (en) Cast cable parts
JP2593384B2 (en) Continuous casting method
Hoffman et al. Argon casting for improving steel quality
SU1101320A1 (en) Method of obtaining rimming steel ingots
JP3925233B2 (en) Metal ingot making method
Ghanti et al. The Effect of Solidification under Pressure on the Porosity and Mechanical Properties of A206-T6 Cast Aluminum Alloy
YAMADA et al. Estimation of forming condition of center porosity in forging ingot
KR0122299B1 (en) Method of manufacturing continuous casting strip
Fritzlen Metallurgy and Production of Suitable Aluminum-Alloy Ingots for Large Forgings and Extrusions

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603