JP2667542B2 - Method for purifying tetrafluoroethylene - Google Patents

Method for purifying tetrafluoroethylene

Info

Publication number
JP2667542B2
JP2667542B2 JP1491190A JP1491190A JP2667542B2 JP 2667542 B2 JP2667542 B2 JP 2667542B2 JP 1491190 A JP1491190 A JP 1491190A JP 1491190 A JP1491190 A JP 1491190A JP 2667542 B2 JP2667542 B2 JP 2667542B2
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene
adsorption
zeolite
cfc
polymerization inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1491190A
Other languages
Japanese (ja)
Other versions
JPH03223219A (en
Inventor
昭彦 中原
祐二 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP1491190A priority Critical patent/JP2667542B2/en
Publication of JPH03223219A publication Critical patent/JPH03223219A/en
Application granted granted Critical
Publication of JP2667542B2 publication Critical patent/JP2667542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、含フッ素ポリマー、詳しくは耐熱性、耐薬
品性等の優れたフッ素樹脂、含フッ素エラストマー製造
用のモノマーとして有用なテトラフルオロエチレンの精
製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fluorine-containing polymer, specifically, a tetrafluoroethylene useful as a monomer for producing a fluorine-containing resin and a fluorine-containing elastomer having excellent heat resistance and chemical resistance. And a method for purifying the same.

(従来技術) テトラフルオロエチレンは極めて有用な単量体であ
り、単独重合、共重合により耐熱性,耐薬品性等が格段
に優れたポリマーを与え、これ等ポリマーはその特性を
生かし、産業上、種々の用途に利用されている。テトラ
フルオロエチレンの製造は工業的には600℃以上の温度
下でクロロジフルオロメタンを熱分解する方法が一般的
である。熱分解により生成した熱分解物中には原料のク
ロロジフルオロメタン,テトラフルオロエチレンの他に
多種類のフッ化炭化水素を含み、蒸留により目的とする
高純度のテトラフルオロエチレンを精製している。
(Prior art) Tetrafluoroethylene is a very useful monomer, and gives a polymer with remarkably excellent heat resistance, chemical resistance, etc. by homopolymerization or copolymerization. Are used for various purposes. For the production of tetrafluoroethylene, industrially, a method of thermally decomposing chlorodifluoromethane at a temperature of 600 ° C. or higher is generally used. The thermal decomposition product generated by thermal decomposition contains various kinds of fluorohydrocarbons in addition to the raw materials chlorodifluoromethane and tetrafluoroethylene, and the target high-purity tetrafluoroethylene is purified by distillation.

しかしながら、高純度のテトラフルオロエチレンは極
めて重合し易く、微量の酸素を含んでいる場合は特に重
合し易く、時には爆発的に重合することが知られてい
る。このためテトラフルオロエチレンを精製、保存する
際はピネン,リモネン,カンフェン,シメン,テルピネ
ン等のテルピノイドに代表される重合禁止剤を100〜100
00ppm程度添加することが従来行なわれている(米国特
許第2737533号明細書)。
However, it is known that high-purity tetrafluoroethylene is very easily polymerized, particularly when it contains a trace amount of oxygen, and sometimes explosively. Therefore, when purifying and storing tetrafluoroethylene, a polymerization inhibitor typified by terpinoids such as pinene, limonene, camphene, cymene and terpinene is used in an amount of 100 to 100.
It has been conventionally performed to add about 00 ppm (US Pat. No. 2,737,533).

このような重合禁止剤により安定化されたテトラフル
オロエチレンを重合に用いる場合、重合に供する前に濃
硫酸により重合禁止剤を吸収させる方法が採用されてい
るが、吸収能率の低下した廃硫酸の処理の問題、気液系
の吸収であるので吸収効率の向上の問題、また、含有ミ
ストの除去等の装置面で問題を有していた。又、一般に
気体中の有機物の除去にはゼオライト等の吸着剤に接触
させる方法が採用されているが、テトラフルオロエチレ
ンの場合、ゼオライトの充填層と接触させた場合、テト
ラフルオロエチレンの吸着熱のためテトラフルオロエチ
レンが重合し、重合熱により吸着を継続させることが困
難となったり、又ゼオライトが黒化し、吸着能率が低下
する等の問題点があった。これを防止するために吸着層
内に冷却のため冷却水の配管を多数配列するような装置
面での工夫も考えられるが、装置面だけで問題点を解決
することは困難であった。
When tetrafluoroethylene stabilized by such a polymerization inhibitor is used for polymerization, a method of absorbing the polymerization inhibitor with concentrated sulfuric acid before being used for polymerization is adopted, but waste sulfuric acid having a reduced absorption efficiency is used. It has a problem of treatment, a problem of improvement of absorption efficiency due to gas-liquid absorption, and a problem of equipment such as removal of contained mist. In addition, in general, a method of contacting with an adsorbent such as zeolite is used for removing organic substances in a gas, but in the case of tetrafluoroethylene, when contacting with a packed layer of zeolite, the heat of adsorption of tetrafluoroethylene is reduced. Therefore, there have been problems that tetrafluoroethylene is polymerized and it is difficult to continue the adsorption due to heat of polymerization, and that zeolite is blackened and the adsorption efficiency is lowered. In order to prevent this, a device for arranging a large number of cooling water pipes for cooling in the adsorption layer can be considered, but it has been difficult to solve the problem only on the device side.

(発明が解決しようとする課題) 本発明の目的は前記した従来技術の問題点を解決し、
又工業的に実施可能なテトラフルオロエチレン中の重合
禁止剤の除去方法を提供することにある。
(Problems to be solved by the invention) An object of the present invention is to solve the above-mentioned problems of the prior art,
Another object of the present invention is to provide a method of removing a polymerization inhibitor in tetrafluoroethylene that can be industrially carried out.

(課題を解決するための手段) 本発明は、前述した問題点を解決すべくなされたもの
であり、クロルフルオロ炭化水素に接触させたゼオライ
トと、重合禁止剤を含むテトラフルオロエチレンとを接
触させ、重合禁止剤を除去することを特徴とするテトラ
フルオロエチレンの精製方法を提供するものである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and zeolite brought into contact with chlorofluorohydrocarbon is brought into contact with tetrafluoroethylene containing a polymerization inhibitor. The present invention provides a method for purifying tetrafluoroethylene, which comprises removing a polymerization inhibitor.

本発明で用いるクロルフルオロ炭化水素としては、フ
ロン−11(CCl3),フロン−12(CCl3F2),フロン−13
(CClF3),フロン−22(CF2HCl),フロン−23(CH
F3),フロン−113(CCl2FCClF2),フロン−114(CClF
2CClF2),フロン−115(CClF2・CF3),フロン−116
(CF3・CF3),フロン−142b(CH3CClF2),フロン−15
2a(CH3・CHF2)等である。これ等のクロルフルオロ炭
化水素のうち特に好ましいのは、ゼオライトの処理に用
いてクロルフルオロ炭化水素がテトラフルオロエチレン
中に極少量混入する場合が有り、このような場合にも精
製後もテトラフルオロエチレンから得られる重合体に悪
い影響を及ぼさないものである。このような観点からテ
トラフルオロエチレンの場合,共重合の溶媒として広く
用いられているフロン−13,フロン−114及びフロン−11
が本発明におけるクロルフルオロ炭化水素として好適に
用いられる。
The chloro-fluoro hydrocarbons used in the present invention, freon -11 (CCl 3), freon -12 (CCl 3 F 2), Freon -13
(CClF 3 ), Freon-22 (CF 2 HCl), Freon-23 (CH
F 3 ), CFC-113 (CCl 2 FCClF 2 ), CFC-114 (CClF
2 CClF 2 ), CFC-115 (CClF 2 · CF 3 ), CFC-116
(CF 3 · CF 3), freon -142b (CH 3 CClF 2), Freon -15
2a (CH 3 · CHF 2 ) etc. Of these chlorofluorohydrocarbons, particularly preferred is that chlorofluorohydrocarbons used in the treatment of zeolite may be mixed in a very small amount into tetrafluoroethylene. It does not adversely affect the polymer obtained from. From this viewpoint, in the case of tetrafluoroethylene, CFC-13, CFC-114 and CFC-11, which are widely used as solvents for copolymerization, are used.
Is preferably used as the chlorofluorohydrocarbon in the present invention.

又、本発明で用いるゼオライトは、公知のものが何ら
制限なく採用される。例えば、ホウフッ石、リョウフッ
石、ソーダフッ石、モルデンフッ石、タバフッ石、ブク
フッ石等を挙げることができ、特に、モノキュラーシー
ブという商品名で市販されているゼオライトが好適であ
る。モレキュラーシーブにはその細孔の大きさにより、
4A,5A,13X等があるが、細孔の大きな13Xは、テトラフル
オロエチレンを余り吸着せず、重合禁止剤をよく吸着す
るために本発明において好適に用いられる。
As the zeolite used in the present invention, known zeolite can be adopted without any limitation. Examples thereof include fluorite, ryohite, soda-fluorite, mordenite, tobuffite, and buccuite, and zeolite commercially available under the trade name of Monocular Sieve is particularly suitable. Due to the size of the pores of the molecular sieve,
There are 4A, 5A, 13X and the like, but 13X having a large pore is preferably used in the present invention because it does not adsorb tetrafluoroethylene very much and adsorbs the polymerization inhibitor well.

クロロフルオロ炭化水素によるゼオライトの処理方法
としては、ガス状のクロロフルオロ炭化水素をそのまま
又は窒素等の不活性ガスで希釈してゼオライトの充填層
を室温下に通す方法、又液状のクロロフルオロ炭化水素
であればクロロフルオロ炭化水素の中にゼオライトを室
温下に浸漬し、クロロフルオロ炭化水素を充分吸着させ
た後、ゼオライトをろ取し、乾燥により過剰のクロロフ
ルオロ炭化水素を除く方法等が採用される。特に処理を
短時間で行うためには液状のクロロフルオロ炭化水素に
浸漬する方法が好適である。
As a method for treating zeolite with chlorofluorohydrocarbon, a method of passing gaseous chlorofluorohydrocarbon as it is or by diluting it with an inert gas such as nitrogen and passing the packed bed of zeolite at room temperature, or liquid chlorofluorohydrocarbon If so, a method in which the zeolite is immersed in chlorofluorohydrocarbon at room temperature and the chlorofluorohydrocarbon is sufficiently adsorbed, then the zeolite is filtered off and dried to remove excess chlorofluorohydrocarbon is adopted. You. In particular, in order to perform the treatment in a short time, a method of immersion in a liquid chlorofluorohydrocarbon is preferable.

この処理によりクロロフルオロ炭化水素は一部ゼオラ
イトに吸着され、本発明の効果が発現するものと考えら
れるが、その吸着量はゼオライトに対して0.01〜10重量
%、好ましくは0.1〜5重量%であれば充分である。
It is considered that the chlorofluorohydrocarbon is partially adsorbed on the zeolite by this treatment and the effect of the present invention is exhibited, but the adsorption amount is 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on the zeolite. It is enough.

このようにして得られたゼオライトは、次に重合禁止
剤を含むテトラフルオロエチレンと接触させられる。
The zeolite thus obtained is then contacted with tetrafluoroethylene containing a polymerization inhibitor.

重合禁止剤は、テトラフルオロエチレンの重合を防止
するために使用される化合物であれば何ら制限されな
い。一般にはリモネン,ピネン,カンフェン,シメン,
テルピネン等のテンペン炭化水素;シトロネロール,テ
ルピネオール,ボルネオール等のテルペンアルコール;
テルペンアルデヒド;テルペンケトン等のモノテルペノ
イド:セスキテルペノイド:ジテルペノイド等のテルペ
ノイドが用いられる。
The polymerization inhibitor is not particularly limited as long as it is a compound used to prevent polymerization of tetrafluoroethylene. Generally, limonene, pinene, camphene, cymene,
Tempene hydrocarbons such as terpinene; terpene alcohols such as citronellol, terpineol and borneol;
Monoterpenoids such as terpene aldehyde; terpene ketone: sesquiterpenoids: terpenoids such as diterpenoids are used.

ゼオライトと重合禁止剤を含むテトラフルオロエチレ
ンの接触方法は何ら制限されないが、工業的に採用され
る充填塔方式が好適に採用される。クロルフルオロ炭化
水素と接触させたゼオライトの充填量,充填塔内での接
触時間はテトラフルオロエチレン中に含まれる重合禁止
剤の濃度によって決定されるが、500ppm程度の濃度であ
れば、空間速度が1〜20min-1で接触させると、充填層
容積の5万〜10万倍の容積のテトラフルオロエチレン中
の重合禁止剤の濃度を0.1ppm以下まで吸着除去できる。
接触時の温度は冷却下の方が吸着量が増えるため好まし
いが、装置面で複雑となる。常温下でも本発明の効果は
充分発揮される。又、接触時の圧力は常圧〜20kg/cm2
通気すればよい。
The method of contacting the zeolite with the tetrafluoroethylene containing the polymerization inhibitor is not limited at all, but a packed tower system that is industrially employed is suitably employed. The packing amount of the zeolite in contact with chlorofluorohydrocarbon and the contact time in the packed column are determined by the concentration of the polymerization inhibitor contained in tetrafluoroethylene, but if the concentration is about 500 ppm, the space velocity will be When the contact is performed at 1 to 20 min- 1 , the concentration of the polymerization inhibitor in tetrafluoroethylene having a volume of 50,000 to 100,000 times the volume of the packed bed can be removed by adsorption to 0.1 ppm or less.
It is preferable that the temperature at the time of contact is under cooling because the amount of adsorption increases, but it becomes complicated in terms of the apparatus. The effects of the present invention are sufficiently exhibited even at room temperature. The pressure at the time of contact may be atmospheric pressure to 20 kg / cm 2 for ventilation.

飽和吸着後のゼオライトは加熱により再生しても良い
が、処理能力が大きいため、再生せずに排棄してもよ
い。
The zeolite after the saturated adsorption may be regenerated by heating, but may be discarded without being regenerated because of its high processing capacity.

(効果) 本発明の方法でテトラフルオロエチレン中の重合禁止
剤を従来の方法に較べ簡単な方法で除去できる。また、
精製されたテトラフルオロエチレンから得られる重合体
は重合禁止剤を全く含まないテトラフルオロエチレンか
ら得られる重合体と耐熱性,機械的物性は全く変わるこ
とはない。
(Effect) The polymerization inhibitor in tetrafluoroethylene can be removed by the method of the present invention by a simpler method than the conventional method. Also,
The polymer obtained from the purified tetrafluoroethylene has no difference in heat resistance and mechanical properties from the polymer obtained from tetrafluoroethylene containing no polymerization inhibitor.

実施例−1 モノキュラーシーブ13Xのペレット(キシダ化学
(株)製1/16ペレット)5を容器に入れ、さらにその
中にフロン−113(CF2Cl・CFCl2)をモノキュラーシー
ブが浸るまで加えた。容器を密閉し、室温下で3時間浸
漬した。その後、フロン−113を除き、室温下に放置し
て乾燥させた。乾燥後のモノキュラーシーブ1を内径
5cm、長さ60cmのステンレス製の円筒状の容器に充填
し、吸着塔とした。その後、吸着塔を室温下に5時間真
空ポンプで減圧し過剰のフロン−113を除去した。モノ
キュラーシーブの重量変化からフロン−113の吸着量を
求めたところ、5重量%であった。
Example -1 put mono sieve 13X pellets (Kishida Chemical Co., Ltd. 1/16 pellets) 5 to the vessel was further added Freon therein -113 a (CF 2 Cl · CFCl 2) until immersed mono sieve . The container was sealed and immersed at room temperature for 3 hours. Then, CFC-113 was removed, and the mixture was left at room temperature to dry. Inner diameter of dried monocular sieve 1
A 5 cm, 60 cm long stainless steel cylindrical container was filled to form an adsorption tower. Thereafter, the pressure in the adsorption tower was reduced by a vacuum pump at room temperature for 5 hours to remove excess Freon-113. The amount of CFC-113 adsorbed was determined from the change in weight of the monocular sieve and found to be 5% by weight.

一方、テトラフルオロエチレン(純度99.99%以上)
のボンベよりテトラフルオロエチレンをリモネンが入っ
た容器の底部に導入し、容器上部よりテトラフルオロエ
チレンを排出させ、リモネンを含んだテトラフルオロエ
チレンをつくった。
On the other hand, tetrafluoroethylene (purity 99.99% or more)
Was introduced into the bottom of the container containing limonene from the bomb, and tetrafluoroethylene was discharged from the top of the container to produce tetrafluoroethylene containing limonene.

リモネン容器上部と減圧処理を行った吸着塔上部をパ
イプでつなぎ、吸着塔底部よりテトラフルオロエチレン
を排出できるようにして吸着テストを行った。
The upper part of the limonene container and the upper part of the adsorption tower subjected to the decompression treatment were connected by a pipe, and an adsorption test was performed so that tetrafluoroethylene could be discharged from the bottom of the adsorption tower.

300/hrのテトラフルオロエチレンをはじめは吸着塔
内の圧力を大気圧で流し、その後4kg/cm2圧力として流
したところ、吸着塔上部でのリモネン濃度は700ppmであ
り、吸着塔下部から排出されるテトラフルオロエチレン
中のリモネン濃度は0.1ppm以下であり、又フロン−113
の濃度は100ppmであった。又、処理能力を求めるため、
吸着テストを連続して行ったところ、用いたモノキュラ
ーシーブ容積の8万倍のところでテトラフルオロエチレ
ン中のリモネン濃度が急激に増加し3ppmとなった。又、
吸着塔内の温度変化はテトラフルオロエチレンを流し始
めた初期若干上昇したものの、その後は温度上昇もなく
吸着テストを継続できた。
300 / hr including tetrafluoroethylene of flowing pressure in the adsorption tower at atmospheric pressure, where then flowed as 4 kg / cm 2 pressure, limonene concentration in the adsorption tower top is 700 ppm, it is discharged from the lower adsorption tower The concentration of limonene in tetrafluoroethylene is 0.1 ppm or less.
Was 100 ppm. Also, in order to seek processing capacity,
When the adsorption test was continuously performed, the limonene concentration in tetrafluoroethylene rapidly increased to 3 ppm at 80,000 times the volume of the used monocular sieve. or,
Although the temperature change in the adsorption tower slightly increased at the beginning of the flow of tetrafluoroethylene, the adsorption test could be continued without a temperature increase.

実施例−2 モノキュラーシーブ13Xを実施例1と同様にフロン−1
1(CFCl3)に浸漬し、室温下に4時間浸漬した。実施例
1と同様の操作,装置を用いて吸着塔をつくった。フロ
ン−11のモレキュラーシーブ13Xへの吸着量は0.5重量%
であった。
Example-2 Monocular sieve 13X was treated with Freon-1 in the same manner as in Example 1.
It was immersed in 1 (CFCl 3 ) and then at room temperature for 4 hours. An adsorption tower was prepared by using the same operation and apparatus as in Example 1. Adsorption amount of CFC-11 to molecular sieve 13X is 0.5% by weight
Met.

実施例−1で用いたリモネンの代りにピネンを用い、
同様にして吸着テストを行なった。
Using pinene instead of limonene used in Example-1,
An adsorption test was conducted in the same manner.

400/hrの流速でテトラフルオロエチレンを流したと
ころ、テトラフルオロエチレン中のピネン濃度は550ppm
となった。実施例−1と同様に吸着塔に大気圧でテトラ
フルオロエチレンを100程流し、次に吸着塔内の圧力
を3kg/cm2で流したところ、吸着塔出口でのピネン濃度
は、0.1ppm以下、又、フロン−11の濃度は50ppmであ
り、連続して流したところモレキュラーシーブ容積の10
万倍のテトラフルオロエチレンを処理することができ
た。他方、吸着塔内の温度上昇も認められなかった。
When tetrafluoroethylene was flowed at a flow rate of 400 / hr, the pinene concentration in tetrafluoroethylene was 550 ppm
It became. Approximately 100 tetrafluoroethylene was flowed into the adsorption tower at atmospheric pressure in the same manner as in Example 1, and then the pressure in the adsorption tower was flowed at 3 kg / cm 2 , and the pinene concentration at the adsorption tower outlet was 0.1 ppm or less. The concentration of Freon-11 was 50 ppm.
It was possible to process 10,000 times more tetrafluoroethylene. On the other hand, no rise in temperature in the adsorption tower was observed.

実施例−3 モレキュラーシーブ13X1がガス状のフロンと接触さ
せるため実施例−1のステンレス製筒状容器につめ吸着
塔とした。次にフロンとの接触を行うためフロン−114
(CF2Cl・CF2Cl)を吸着塔上部より大気圧で0.5/hrの
流速で10時間導入し、下部より排出されるフロン−114
をドライアイス−メタノールで冷却した容器を通し捕集
した。ボンベの重量減少量及び回収したフロン−114の
重さから吸着量を求めたところ吸着量は1重量%であっ
た。
Example 3 In order to make molecular sieve 13X1 come into contact with gaseous chlorofluorocarbon, the stainless steel cylindrical container of Example 1 was used as an adsorption tower. Next, to make contact with CFCs, CFC-114
(CF 2 Cl / CF 2 Cl) is introduced from the upper part of the adsorption tower at atmospheric pressure at a flow rate of 0.5 / hr for 10 hours, and CFC-114 discharged from the lower part is introduced.
Was collected through a container cooled with dry ice-methanol. The amount of adsorption was determined from the weight loss of the cylinder and the weight of the collected Freon-114. The amount of adsorption was 1% by weight.

次に吸着テストを行うため実施例1で用いたリモネン
の代りにシメンを用い、シメンを含んだテトラフルオロ
エチレンをつくった。
Next, in order to conduct an adsorption test, tetrafluoroethylene containing cymene was prepared by using cymene instead of limonene used in Example 1.

得られたシメンを含むテトラフルオロエチレンを100
/hrの流速で大気圧で流したところ、シメン濃度は吸
着塔上部で約400ppm、吸着塔出口では0.2ppmであり、ま
た、フロン−114の濃度は150ppmであり、用いたモレキ
ュラーシーブ容積の5万倍のテトラフルオロエチレンを
処理することができる。
The obtained tetrafluoroethylene containing cymene was 100
When flow was carried out at atmospheric pressure at a flow rate of / hr, the concentration of cymene was about 400 ppm at the top of the adsorption tower, 0.2 ppm at the exit of the adsorption tower, and the concentration of Freon-114 was 150 ppm, and the volume of the molecular sieve used was 5 ppm. Ten times more tetrafluoroethylene can be processed.

実施例−4 フロン−114の代りフロン−22(CF2HCl)を用い実施
例3と同様にフロンとの接触及び吸着テストを行ったと
ころ、モレキュラーシーブ13Xへのフロン−22の吸着量
は0.1重量%であった。又、吸着テストでは吸着塔出口
のテトラフルオロエチレン中のシメン濃度は0.1ppmであ
り、用いたモノキュラーシーブ容積の8万倍のテトラフ
ルオロエチレンを処理できた。
Example 4 A contact and adsorption test with CFCs was performed in the same manner as in Example 3 using CFC-22 (CF 2 HCl) instead of CFC-114, and the amount of CFC-22 adsorbed on the molecular sieve 13X was 0.1. % By weight. In addition, in the adsorption test, the concentration of tetramethylene in the tetrafluoroethylene at the outlet of the adsorption tower was 0.1 ppm, and it was possible to treat tetrafluoroethylene having a volume of 80,000 times the used molecular sieve volume.

実施例−5 本発明の精製を行ったテトラフルオロエチレンと重合
禁止剤を含まないテトラフルオロエチレンを用いて重合
実験を行った。
Example-5 A polymerization experiment was performed using the purified tetrafluoroethylene of the present invention and tetrafluoroethylene containing no polymerization inhibitor.

250ccの撹拌器を備えたステンレス製の耐圧容器にフ
ロン−113 110cc,CF2=CFOCF2CF2CF35gを加えた。次に
耐圧容器内の脱酸素を行うため、内容物を冷却固化し、
その後脱気するという操作を3回繰返した。その後、重
合開始剤として を0.4g加え、さらにテトラフルオロエチレンを3kg/cm2
の圧力で圧入し、18℃で4時間重合を行った。この実験
を本発明の精製を行ったテトラフルオロエチレン(実施
例−1)及び重合禁止剤を含まないテトラフルオロエチ
レンについて行った。結果を下表に示した。
To a stainless steel pressure vessel equipped with a 250 cc stirrer, 110 g of CFC-113, 5 g of CF 2 = CFOCF 2 CF 2 CF 3 was added. Next, in order to deoxidize the pressure vessel, the contents are cooled and solidified,
Then, the operation of degassing was repeated three times. Then, as a polymerization initiator 0.4 g, and tetrafluoroethylene 3 kg / cm 2
Then, the mixture was pressure-injected and the polymerization was carried out at 18 ° C for 4 hours. This experiment was performed on the purified tetrafluoroethylene of the present invention (Example-1) and tetrafluoroethylene containing no polymerization inhibitor. The results are shown in the table below.

比較例−1 実施例−1においてモレキュラーシーブ13Xをフロン
−113との接触を行なわずに吸着テストを行った。リモ
ネンを含むテトラフルオロエチレンを大気圧、100/hr
の流速で加流したところ、すぐに吸着塔内の温度が急激
に上昇し吸着テストを停止した。吸着塔内を開け、モレ
キュラーシーブを取り出したところ、局部的にモレキュ
ラーシーブのペレットが黒色の塊となっていた。この塊
をフッ酸で溶解し、残った少量の残渣を分析したとこ
ろ、テトラフルオロエチレンの重合体であり、吸着熱に
よりテトラフルオロエチレンの重合が進み、蓄熱により
テトラフルオロエチレンの不均化反応が進んだものと推
定された。
Comparative Example 1 An adsorption test was performed on the molecular sieve 13X in Example 1 without making contact with Freon-113. Tetrafluoroethylene containing limonene at atmospheric pressure, 100 / hr
Immediately after the addition, the temperature in the adsorption tower rapidly increased, and the adsorption test was stopped. When the inside of the adsorption tower was opened and the molecular sieve was taken out, the molecular sieve pellets were locally formed as a black mass. This lump was dissolved with hydrofluoric acid, and a small amount of the remaining residue was analyzed.As a result, it was a polymer of tetrafluoroethylene. It was presumed to have advanced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】クロロフルオロ炭化水素に接触させたゼオ
ライトと、重合禁止剤を含むテトラフルオロエチレンと
を接触させ、重合禁止剤を除去することを特徴とするテ
トラフルオロエチレンの精製方法。
1. A process for purifying tetrafluoroethylene, comprising contacting zeolite in contact with chlorofluorohydrocarbon and tetrafluoroethylene containing a polymerization inhibitor to remove the polymerization inhibitor.
JP1491190A 1990-01-26 1990-01-26 Method for purifying tetrafluoroethylene Expired - Fee Related JP2667542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1491190A JP2667542B2 (en) 1990-01-26 1990-01-26 Method for purifying tetrafluoroethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1491190A JP2667542B2 (en) 1990-01-26 1990-01-26 Method for purifying tetrafluoroethylene

Publications (2)

Publication Number Publication Date
JPH03223219A JPH03223219A (en) 1991-10-02
JP2667542B2 true JP2667542B2 (en) 1997-10-27

Family

ID=11874159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1491190A Expired - Fee Related JP2667542B2 (en) 1990-01-26 1990-01-26 Method for purifying tetrafluoroethylene

Country Status (1)

Country Link
JP (1) JP2667542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130986A1 (en) 2008-04-25 2009-10-29 旭硝子株式会社 Method for purifying tetrafluoroethylene

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724927B1 (en) * 1994-09-26 1996-10-31 Atochem Elf Sa DIFLUOROMETHANE PURIFICATION PROCESS
WO2001027987A1 (en) * 1999-10-13 2001-04-19 Daikin Industries, Ltd. Dry etching gas
JP2002338631A (en) * 2001-03-14 2002-11-27 Asahi Glass Co Ltd Production method for tetrafluoroethylene polymer
JP5105672B2 (en) * 2001-07-06 2012-12-26 昭和電工株式会社 Method for purifying tetrachloroethylene and method for producing pentafluoroethane using the method
JP2016068014A (en) * 2014-09-30 2016-05-09 株式会社ネオス Adsorption treatment method of halogenated aromatic compound by means of continuous or successive compression method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130986A1 (en) 2008-04-25 2009-10-29 旭硝子株式会社 Method for purifying tetrafluoroethylene
US8247626B2 (en) 2008-04-25 2012-08-21 Asahi Glass Company, Limited Method for purifying tetrafluoroethylene

Also Published As

Publication number Publication date
JPH03223219A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
US5417742A (en) Removal of perfluorocarbons from gas streams
US3976447A (en) Removal of hydrogen fluoride from gaseous mixture by absorption on alkaline earth metal fluoride
EP0584458B1 (en) Removal of organic volatiles from polymer solutions and dispersions
US7094935B2 (en) Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
EP0606482A1 (en) Method of removing hydrogen fluoride
JP2667542B2 (en) Method for purifying tetrafluoroethylene
KR20180031780A (en) Method for removing acidic impurities from halogenated propene
JP3514041B2 (en) Method for purifying 1,1,1,3,3-pentafluoropropane
KR930003663B1 (en) Process for removing vinylidene chloride from 1,1-dichloro-1-fluoroethane
US3140244A (en) Removal of volatile organic materials from aqueous hydrochloric acid
JPH11246447A (en) Purification of tetrafluoroethylene
KR100488229B1 (en) Process for producing difluoromethane
RU96115265A (en) METHOD AND DEVICE FOR CLEANING VINYL CHLORIDE
JPH08309146A (en) Separation method for perfluorocarbon from gas current
JPH0418041A (en) Removal of dichloroacetylene from 1,1-dichloro-1-fluoroethane and/or vinylidene chloride
JPH04300842A (en) Purification of hydrochlorofluorocarbon and hydrofluorocarbon
EP0669302A1 (en) Process for the purification of pentafluoroethane
JPH0148250B2 (en)
EP0744210A1 (en) Purification of gas streams
CA1052292A (en) Removal of hydrogen fluoride from gaseous mixture by absorption on alkaline earth metal fluoride
JPH0499737A (en) Purification of 1,1-dichloro-1-fluoroethane
JP3605828B2 (en) Method for producing difluoromethane
RU2245317C2 (en) Method for purifying octafluoropropane
JP3650588B2 (en) Perfluoro compound recycling method
US2889378A (en) Removal of acetylene from fluorinecontaining mono-olefins

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees