JP2666508B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP2666508B2
JP2666508B2 JP2038271A JP3827190A JP2666508B2 JP 2666508 B2 JP2666508 B2 JP 2666508B2 JP 2038271 A JP2038271 A JP 2038271A JP 3827190 A JP3827190 A JP 3827190A JP 2666508 B2 JP2666508 B2 JP 2666508B2
Authority
JP
Japan
Prior art keywords
fuel
operating state
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2038271A
Other languages
Japanese (ja)
Other versions
JPH03242415A (en
Inventor
芳樹 中條
悳太 井上
清 中西
宗一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2038271A priority Critical patent/JP2666508B2/en
Publication of JPH03242415A publication Critical patent/JPH03242415A/en
Application granted granted Critical
Publication of JP2666508B2 publication Critical patent/JP2666508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排気系にいわゆるリーンNOx触媒を備えた
内燃機関の排気浄化装置に関する。
Description: TECHNICAL FIELD The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine having a so-called lean NOx catalyst in an exhaust system.

〔従来の技術〕[Conventional technology]

最近、燃費向上のために、希薄域の空燃比で燃焼させ
るリーンバーン(希薄燃焼)内燃機関の開発が進めら
れ、一部は実用化されている。希薄空燃比領域において
は従来の触媒ではNOxを浄化できないので、NOx低域がリ
ーンバーン内燃機関の課題になっており、希薄空燃比で
もNOxを還元できる触媒が注目されている。
Recently, in order to improve fuel efficiency, the development of a lean burn (lean burn) internal combustion engine that burns at an air-fuel ratio in a lean region has been promoted, and a part thereof has been put into practical use. Since NOx cannot be purified by a conventional catalyst in a lean air-fuel ratio region, a low NOx region has become an issue for a lean burn internal combustion engine, and a catalyst capable of reducing NOx even at a lean air-fuel ratio has been attracting attention.

希薄空燃比でもNOxを還元する触媒として、特開平1
−130735号公報、特願昭63−95026号は、遷移金属を担
持せしめたゼオライトからなり、酸化雰囲気中、HC存在
下でNOxを還元する触媒(リーンNOx触媒に含まれる)を
教示している。
As a catalyst for reducing NOx even at a lean air-fuel ratio,
-130735 and Japanese Patent Application No. 63-95026 teach a catalyst (contained in a lean NOx catalyst) consisting of a zeolite carrying a transition metal and reducing NOx in the presence of HC in an oxidizing atmosphere. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、内燃機関の排気系にリーンNOx触媒を装着し
ても、機関の運転状態によっては、たとえばアイドルか
らの加速時や登板時等の軽、中負荷領域では、リーンNO
x触媒のNOx浄化率が低下して、大気へのNOx排出量を規
制値以内に抑えることが困難になるという問題がある。
However, even when a lean NOx catalyst is installed in the exhaust system of an internal combustion engine, depending on the operating state of the engine, for example, in a light or medium load region such as when accelerating from idling or when climbing a slope, lean NOx
There is a problem that the NOx purification rate of the x catalyst decreases, and it becomes difficult to suppress the amount of NOx emission to the atmosphere within the regulation value.

本発明は、内燃機関の運転状態によって生じるリーン
NOx触媒のNOx浄化率の低下を、燃料タンクからの蒸発燃
料を利用して、抑制し、リーンNOx触媒のNOx浄化率を常
に高く維持することを目的とする。
The present invention relates to a lean engine that is operated by an internal combustion engine.
It is an object of the present invention to suppress a decrease in the NOx purification rate of a NOx catalyst by using fuel vapor from a fuel tank and always maintain a high NOx purification rate of a lean NOx catalyst.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成する、本発明に係る内燃機関の排気浄
化装置は、第1図に示す如く、 内燃機関2の排気系4に設けられた、遷移金属或いは
貴金属を担持せしめたゼオライトからなり酸化雰囲気中
HC存在下でNOxを還元するリーンNOx触媒6と、 燃料タンク8からの蒸発燃料を蒸発燃料吸着用キャニ
スタ10およびリーンNOx触媒上流排気管4aに導く蒸発燃
料管12、14と、 内燃機関2の運転状態を検出する運転状態検出手段18
と、 運転状態検出手段18によって検出された運転状態が、
該運転状態においてリーンNOx触媒6に流入する排気ガ
ス中のHCがリーンNOx触媒6によるNOx還元に必要とされ
るHC量に対して不足する運転状態か否かを判断するHC不
足判定手段20と、 HC不足判定手段20がHC不足運転状態と判断したときに
蒸発燃料をリーンNOx触媒上流排気管4aに導入し、HC不
足判定手段20がHC不足運転状態でないと判断したときに
蒸発燃料をキャニスタ10に導入するように切替わる、蒸
発燃料管12、14に対して設けられた切替弁16と、 から成る。
As shown in FIG. 1, the exhaust gas purifying apparatus for an internal combustion engine according to the present invention, which achieves the above object, comprises a zeolite supporting a transition metal or a noble metal and provided in an exhaust system 4 of an internal combustion engine 2 in an oxidizing atmosphere. During ~
A lean NOx catalyst 6 for reducing NOx in the presence of HC; evaporative fuel pipes 12 and 14 for guiding evaporative fuel from a fuel tank 8 to an evaporative fuel adsorption canister 10 and a lean NOx catalyst upstream exhaust pipe 4a; Operating state detecting means 18 for detecting the operating state
And the operating state detected by the operating state detecting means 18,
HC deficiency determining means 20 for determining whether or not HC in the exhaust gas flowing into the lean NOx catalyst 6 is insufficient for the amount of HC required for NOx reduction by the lean NOx catalyst 6 in the operating state. When the HC insufficiency determining means 20 determines that the engine is in the HC insufficiency operation state, the evaporative fuel is introduced into the lean NOx catalyst upstream exhaust pipe 4a. And a switching valve 16 provided for the evaporated fuel pipes 12 and 14, which is switched to be introduced into the fuel cell 10.

〔作用〕[Action]

リーンNOx触媒6によるNOx還元メカニズムは、第9図
に示す如く、排気ガス中のHCの一部、部分酸化により生
成される活性種とNOxとの反応であると推定される。第
8図に示す如く、HC量が多い程活性種量も多くなり、NO
x浄化率が向上する。
As shown in FIG. 9, the NOx reduction mechanism by the lean NOx catalyst 6 is presumed to be a reaction between NOx and a part of HC in the exhaust gas, an active species generated by partial oxidation. As shown in FIG. 8, as the amount of HC increases, the amount of active species also increases,
x Purification rate is improved.

排気ガス中のHC量および活性種量は、機関運転状態に
よって左右される。すなわち、空燃比に関しては、第6
図に示す如く、理論空燃比より希薄(リーン)側の空燃
比領域において、トルク変動が急激に大きくなり始める
空燃比迄は、HC量が徐々に低下し、NOx浄化率も低下す
る。また、排気ガス温度に関しては、第7図に示す如
く、触媒温度(排気ガス温度と相関)がある温度以上に
なれば、HCの直接酸化が進むため、NOx浄化率が低下す
る。
The amount of HC and the amount of active species in the exhaust gas depend on the operating state of the engine. That is, regarding the air-fuel ratio, the sixth
As shown in the figure, in the air-fuel ratio region on the leaner side than the stoichiometric air-fuel ratio, the HC amount gradually decreases and the NOx purification rate decreases until the air-fuel ratio at which the torque fluctuation starts to increase sharply. As for the exhaust gas temperature, as shown in FIG. 7, when the catalyst temperature (correlation with the exhaust gas temperature) becomes higher than a certain temperature, direct oxidation of HC proceeds, so that the NOx purification rate decreases.

定常走行時または緩加速時のような軽負荷時では、空
燃比は20〜24の超リーンに設定されていて、排気ガス温
度も比較的低温である。この領域では、第6図に示す如
く、HC量が多い。しかも、比較的低温のため、HCの直接
酸化が進まないので、活性種の生成量が多く、NOx浄化
率上問題はない。したがって、HC不足判定手段20はHC不
足運転状態でないと判断し、切替弁16はキャニスタ10側
に切替わり、従来通りの運転が行われる。
At the time of light load such as at the time of steady running or moderate acceleration, the air-fuel ratio is set to be super lean of 20 to 24, and the exhaust gas temperature is relatively low. In this region, the amount of HC is large as shown in FIG. Moreover, since the direct oxidation of HC does not proceed due to the relatively low temperature, the amount of active species generated is large, and there is no problem in the NOx purification rate. Therefore, the HC deficiency determination means 20 determines that the vehicle is not in the HC deficient operation state, and the switching valve 16 is switched to the canister 10 side, so that the conventional operation is performed.

一方、アイドルからの急加速時、登板時のような軽、
中負荷時では、空燃比は16〜19に設定されていて、排気
ガス温度も比較的高温または高温である。この領域で
は、第6図に示す如くHC量は少ない。しかも、排気ガス
が高温の場合はHCの直接酸化が進んで、活性種の生成量
が少なくなる。この領域では、HC不足判定手段20はHC不
足運転状態と判断し、切替弁16はリーンNOx上流排気管4
a側に切替わる。この結果、燃料タンク8からの蒸発燃
料がリーンNOx上流排気管4aに導入され、HC不足が解消
される。
On the other hand, at the time of sudden acceleration from idol, light like at the time of pitching,
At the time of medium load, the air-fuel ratio is set to 16 to 19, and the exhaust gas temperature is relatively high or high. In this region, the HC amount is small as shown in FIG. In addition, when the exhaust gas is at a high temperature, the direct oxidation of HC proceeds, and the amount of active species generated decreases. In this region, the HC deficiency determination means 20 determines that the operation is in the HC deficient operation state, and the switching valve 16 sets the lean NOx upstream exhaust pipe 4.
Switch to a side. As a result, the fuel vapor from the fuel tank 8 is introduced into the lean NOx upstream exhaust pipe 4a, and the shortage of HC is eliminated.

このようにして、排気ガスのHC濃度は、常に高く保た
れる。
In this way, the HC concentration of the exhaust gas is always kept high.

〔実施例〕〔Example〕

以下に、本発明に係る実施例を説明する。 Hereinafter, embodiments according to the present invention will be described.

第2図に示すように、内燃機関2の排気系4にはリー
ンNOx触媒6が設けられ、その下流に三元触媒22が設け
られる。8は図示略の燃料噴射弁への燃料を入れる燃料
タンクであり、蒸発燃料は、蒸発燃料管12を通して蒸発
燃料吸着用キャニスタ10に導かれ、大気への洩出しを防
止されている。
As shown in FIG. 2, a lean NOx catalyst 6 is provided in the exhaust system 4 of the internal combustion engine 2, and a three-way catalyst 22 is provided downstream thereof. Reference numeral 8 denotes a fuel tank for storing fuel into a fuel injection valve (not shown). Evaporated fuel is guided to an evaporative fuel adsorption canister 10 through an evaporative fuel pipe 12, and is prevented from leaking to the atmosphere.

燃料タンク8とキャニスタ10とを連絡する蒸発燃料管
12の途中から、もうひとつの蒸発燃料管14がリーンNOx
触媒上流排気管4aに延びていて、蒸発燃料をリーンNOx
触媒上流排気管4a内に導入することができるようになっ
ている。蒸発燃料管14の蒸発燃料管12からの分岐部に
は、切替弁16が設けられ、燃料タンク8からの蒸発燃料
のキャニスタ10への導入と、リーンNOx触媒上流排気管4
aへの導入とを、切替えることができるようになってい
る。実施例では、切替弁16がONのときに蒸発燃料がリー
ンNOx触媒上流排気管4aに導入され、OFFのときにキャニ
スタ10に導入されるようになっている。
Evaporative fuel pipe connecting the fuel tank 8 and the canister 10
From the middle of 12, another evaporative fuel pipe 14 becomes lean NOx
It extends to the exhaust pipe 4a upstream of the catalyst and removes evaporated fuel
It can be introduced into the catalyst upstream exhaust pipe 4a. A switching valve 16 is provided at a branch of the fuel vapor pipe 14 from the fuel vapor pipe 12 to introduce the fuel vapor from the fuel tank 8 into the canister 10 and to provide a lean NOx catalyst upstream exhaust pipe 4.
It is possible to switch between introduction to a. In this embodiment, the evaporated fuel is introduced into the lean NOx catalyst upstream exhaust pipe 4a when the switching valve 16 is ON, and is introduced into the canister 10 when the switching valve 16 is OFF.

切替弁16の切替は、機関運転応対に対応して行われ
る。機関運転状態を検出するために、後述する第1実施
例では、リーンNOx触媒6上流でかつ蒸発燃料管14のリ
ーンNOx上流排気管4aへの開口部の上流に、空燃比を検
出する空燃比センサ24と、排気ガス温度を検出する排気
温センサ26とが設けられる。また、後述する第2実施例
では、望ましくはリーンNOx触媒6の下流に、HC濃度を
検出するHCセンサ32が設けられる。なお、28は、ディス
トリビュータ34に内装されたクランク角度センサであ
り、後述する第4図、第5図の演算の割込みのためのク
ランク角度を検出して出力する。上記において、空燃比
センサ24、排気温センサ26は、第1実施例において、第
1図で述べた運転状態検出手段18を構成し、HCセンサ32
は第2実施例における運転状態検出手段18を構成する。
Switching of the switching valve 16 is performed in response to an engine operation response. In order to detect the engine operation state, in a first embodiment described later, the air-fuel ratio for detecting the air-fuel ratio is provided upstream of the lean NOx catalyst 6 and upstream of the opening of the evaporative fuel pipe 14 to the lean NOx upstream exhaust pipe 4a. A sensor 24 and an exhaust gas temperature sensor 26 for detecting an exhaust gas temperature are provided. In a second embodiment described later, an HC sensor 32 for detecting the HC concentration is desirably provided downstream of the lean NOx catalyst 6. Reference numeral 28 denotes a crank angle sensor built in the distributor 34, which detects and outputs a crank angle for interrupting the calculation in FIGS. 4 and 5 described later. In the above, the air-fuel ratio sensor 24 and the exhaust gas temperature sensor 26 constitute the operating state detecting means 18 described in FIG.
Constitutes the operating state detecting means 18 in the second embodiment.

第2図において、30はエンジンコントロールコンピュ
ータ(ECU)であり、機関の運転を制御するとともに、
切替弁16のON、OFFも制御する。第2図の制御系統は切
替弁16のON、OFFに必要なものだけを示してある。ECU30
は、第3図に示す如く、演算を実行するセントラルプロ
セッサユニット(CPU)30a、読出し専用メモリとしての
リードオンリメモリ(ROM)30b、データ一時記憶用のラ
ンダムアクセスメモリ(RAM)30c、ディジタル信号入力
用の入力インターフェース30d、アナログ信号をディジ
タル信号に変換するA/Dコンバータ30e、出力信号を出力
する出力インターフェース30fを有する。クランク角度
センサ28の出力は入力インターフェース30dに入力さ
れ、空燃比センサ24、排気温センサ26、HCセンサ32の出
力はA/Dコンバータ30eに出力される。また、ECU30から
切替弁16への指令は出力インターフェース30fから出力
される。
In FIG. 2, an engine control computer (ECU) 30 controls the operation of the engine,
It also controls ON / OFF of the switching valve 16. The control system shown in FIG. 2 shows only those necessary for turning the switching valve 16 on and off. ECU30
As shown in FIG. 3, a central processor unit (CPU) 30a for executing an operation, a read-only memory (ROM) 30b as a read-only memory, a random access memory (RAM) 30c for temporarily storing data, a digital signal input Input interface 30d, an A / D converter 30e for converting an analog signal to a digital signal, and an output interface 30f for outputting an output signal. The output of the crank angle sensor 28 is input to the input interface 30d, and the outputs of the air-fuel ratio sensor 24, the exhaust gas temperature sensor 26, and the HC sensor 32 are output to the A / D converter 30e. Further, a command from the ECU 30 to the switching valve 16 is output from the output interface 30f.

第4図、第5図はROM30bに記憶され、CPU30aに読出さ
れて、切替弁16のON、OFFを実行する演算ルーチンを示
している。このうち第4図は、機関運転状態から間接的
にHC不足か否かを判断するルーチンを含み、第1実施例
として説明する。また第5図は、排気ガス中のHC濃度か
ら直接的にHC不足か否かを判断するルーチンを含み、第
2実施例として説明する。
FIG. 4 and FIG. 5 show an arithmetic routine that is stored in the ROM 30b and read out by the CPU 30a to execute ON / OFF of the switching valve 16. FIG. 4 includes a routine for indirectly determining whether or not HC is insufficient from the engine operating state, and will be described as a first embodiment. FIG. 5 includes a routine for directly determining whether or not HC is insufficient based on the concentration of HC in the exhaust gas, and will be described as a second embodiment.

第1実施例では、第4図に示すように、ステップ101
で、空燃比ABFを読込む。続いて、ステップ102で、排気
ガス温度TEXを読込む。続いて、ステップ103と104で、
空燃比ABFが低側空燃比ABF1(たとえば、空燃比=16)
と高側空燃比ABF2(たとえば、空燃比=19)との間にあ
るか否かを判断し、ABF1とABF2との間の領域にあればス
テップ105に進んで切替弁16をONとする。ABF1〜ABF2の
空燃比領域は、第6図に示す如くHCが少なくかつNOxが
多い領域であるから、HCが不足する領域であり、この時
には、切替弁16をONとして、蒸発燃料をリーンNOx触媒
上流排気管4aに導入する。
In the first embodiment, as shown in FIG.
Then, the air-fuel ratio ABF is read. Subsequently, in step 102, the exhaust gas temperature TEX is read. Subsequently, in steps 103 and 104,
The air-fuel ratio ABF is the low-side air-fuel ratio ABF1 (for example, air-fuel ratio = 16)
It is determined whether or not the air-fuel ratio is between ABF2 and the high-side air-fuel ratio ABF2 (for example, air-fuel ratio = 19). Since the air-fuel ratio region of ABF1 to ABF2 is a region where HC is small and NOx is large as shown in FIG. 6, the air-fuel ratio region is a region where HC is insufficient. It is introduced into the catalyst upstream exhaust pipe 4a.

ステップ103、104で、空燃比ABFがABF1〜ABF2の領域
にないと判断されたときは、第6図に示す如く、HC量が
多い領域であるが、この場合でも、排気ガス温度があま
り高温すぎると、第9図においてHCの直接酸化および活
性種のCO、CO2への酸化が進んで、NOxと有効に反応する
活性種が少なくなるから、そのような活性種不足が生じ
るか否かを判断するために、ステップ106に進む。ステ
ップ106で、排気温度TEXが所定の温度TEX1より高いな
ら、第7図に示す如く、NOx浄化率が低下するから、ス
テップ105に進んで、切替弁16をONとし、蒸発燃料をリ
ーンNOx触媒上流排気管4aに導入する。
When it is determined in steps 103 and 104 that the air-fuel ratio ABF is not in the range of ABF1 to ABF2, as shown in FIG. 6, the region is a region where the HC amount is large, but even in this case, the exhaust gas temperature is too high. If too much, the direct oxidation of HC and the oxidation of active species to CO and CO 2 proceed in FIG. 9 and the number of active species that effectively react with NOx decreases, so whether such a shortage of active species occurs. Proceed to step 106 in order to determine In step 106, if the exhaust gas temperature TEX is higher than the predetermined temperature TEX1, the NOx purification rate decreases as shown in FIG. 7, so the routine proceeds to step 105, in which the switching valve 16 is turned on, and the evaporated fuel is turned into a lean NOx catalyst. It is introduced into the upstream exhaust pipe 4a.

また、ステップ106で排気温度TEXが所定温度TEX1以下
なら、HCの直接酸化も進まないから、ステップ107に進
み、切替弁16をOFFにして、蒸発燃料をキャニスタ10に
導入する。
If the exhaust temperature TEX is equal to or lower than the predetermined temperature TEX1 in step 106, the direct oxidation of HC does not proceed, so the process proceeds to step 107, where the switching valve 16 is turned off, and the evaporated fuel is introduced into the canister 10.

上記において、ステップ103、104、106は、第1実施
例における、HCが不足する運転状態か否かを間接的に判
断するための、第1図で述べたHC不足判定手段20を構成
する。
In the above, steps 103, 104, and 106 constitute the HC deficiency determining means 20 described in FIG. 1 for indirectly determining whether or not the operating state is insufficient for HC in the first embodiment.

また、上記第1実施例では、ステップ101で空燃比ABF
を空燃比センサ24の出力で読込んでいるが、一般にリー
ンバーン内燃機関においては、運転状態(エンジン回転
速度NE、吸気管圧力PM)に基づいて目標空燃比を定めて
燃料噴射制御を行っているので、そのような場合には、
空燃比センサ24で検出した実際の空燃比の代りに、運転
状態から定めた目標空燃比をステップ101で読込んでも
よい。
In the first embodiment, the air-fuel ratio ABF
Is read from the output of the air-fuel ratio sensor 24. In general, in a lean burn internal combustion engine, a target air-fuel ratio is determined based on an operating state (engine speed NE, intake pipe pressure PM) to perform fuel injection control. So in such a case,
Instead of the actual air-fuel ratio detected by the air-fuel ratio sensor 24, a target air-fuel ratio determined from the operating state may be read in step 101.

つぎに、第2実施例を、第5図を参照して説明する。
第5図において、ステップ201で、HCセンサ32(第2実
施例の運転状態検出手段18)の出力であるHC濃度VHCを
読込む。続いて、ステップ202で、現在のHC濃度VHCが、
所定のHC濃度V0より小か否かを判断する。ステップ202
は、第2実施例における、第1図で述べたHC不足判定手
段20を構成する。ステップ202でVHC<V0ならHC不足であ
るからステップ203に進んで、切替弁16をONとし、蒸発
燃料をリーンNOx触媒上流排気管4aに導入し、VHCがV0よ
り小でなければステップ204に進んで、切替弁16をOFFに
し、蒸発燃料をキャニスタ10に導入する。
Next, a second embodiment will be described with reference to FIG.
In FIG. 5, in step 201, the HC concentration VHC, which is the output of the HC sensor 32 (the operating state detecting means 18 of the second embodiment), is read. Subsequently, in step 202, the current HC concentration VHC is
It is determined whether the concentration is lower than a predetermined HC concentration V0. Step 202
Constitutes the HC shortage judging means 20 described in FIG. 1 in the second embodiment. If VHC <V0 in step 202, it means that HC is insufficient, so the process proceeds to step 203, the switching valve 16 is turned on, the evaporated fuel is introduced into the lean NOx catalyst upstream exhaust pipe 4a, and if VHC is not smaller than V0, the process proceeds to step 204. Then, the switching valve 16 is turned off, and the fuel vapor is introduced into the canister 10.

つぎに、作用を説明する。 Next, the operation will be described.

アイドルからの加速時および登板時等の軽、中負荷状
態の時、切替弁16はONになり、燃料タンク8からの蒸発
燃料は、リーンNOx上流排気管4aに導入される。このよ
うな場合にはトルクが必要なため、空燃比が16〜19で運
転されるが、その時に内燃機関2に供給される燃料量に
対し、蒸発燃料は5〜20%の量が排気系4に導入される
ことになる。したがって、第8図のリーンNOx触媒6のN
Ox浄化率特性において、排気ガス中のHC量が増大し、NO
x浄化率が向上する。
When the vehicle is in a light or medium load state such as when accelerating from idling and when climbing a slope, the switching valve 16 is turned on, and the fuel vapor from the fuel tank 8 is introduced into the lean NOx upstream exhaust pipe 4a. In such a case, since the torque is required, the engine is operated at an air-fuel ratio of 16 to 19, and the amount of the evaporated fuel is 5 to 20% of the amount of fuel supplied to the internal combustion engine 2 at that time. 4 will be introduced. Therefore, the N of the lean NOx catalyst 6 in FIG.
In the Ox purification rate characteristics, the amount of HC in the exhaust gas increases,
x Purification rate is improved.

定常走行時や緩加速時のような軽負荷状態では、切替
弁16はOFFになり、蒸発燃料は排気系4に導入されず、
キャニスタ10に導入される。
In a light load state such as during steady running or moderate acceleration, the switching valve 16 is turned off, and the evaporated fuel is not introduced into the exhaust system 4,
Introduced into canister 10.

高負荷状態では、空燃比を理論空燃比に適合して運転
され、切替弁16はOFFである。この時は、三元触媒22が
有効に働く領域だから、エミッションは三元触媒22で浄
化される。
In a high load state, the operation is performed with the air-fuel ratio adapted to the stoichiometric air-fuel ratio, and the switching valve 16 is OFF. At this time, since the three-way catalyst 22 works effectively, the emission is purified by the three-way catalyst 22.

〔発明の効果〕〔The invention's effect〕

本発明によれば、次の効果を得る。 According to the present invention, the following effects are obtained.

燃料タンク8からの蒸発燃料をリーンNOx触媒上流排
気管4aにも導く蒸発燃料管14、蒸発燃料をキャニスタ10
とリーンNOx触媒上流排気管4aとの間で切替える切替弁1
6、HCが不足する運転状態か否かを判断するHC不足判定
手段20を設けたので、HC不足手段20がHC不足の運転状態
と判断したときに切替弁16がリーンNOx触媒上流排気管4
a側に切替わり、蒸発燃料を排気系4に導入して、HC不
足を解消でき、リーンNOx触媒6のNOx浄化率を常に高く
維持することができる。これによって、NOxの大気への
排出を充分低く抑えることができる。また、希薄空燃比
領域を必要に応じて自由に使用することができるため、
ドライバビリティに優れた適合ができる。
An evaporative fuel pipe 14 for guiding the evaporative fuel from the fuel tank 8 to the lean NOx catalyst upstream exhaust pipe 4a, and an evaporative fuel for the canister 10
Switching valve 1 for switching between and lean NOx catalyst upstream exhaust pipe 4a
6, since the HC insufficiency determining means 20 for determining whether or not the operating state is insufficient for HC is provided, the switching valve 16 sets the lean NOx catalyst upstream exhaust pipe 4 when the HC insufficiency means 20 determines that the operating state is insufficient for HC.
By switching to the a side, the evaporated fuel is introduced into the exhaust system 4, the shortage of HC can be eliminated, and the NOx purification rate of the lean NOx catalyst 6 can always be kept high. As a result, the emission of NOx into the atmosphere can be kept sufficiently low. Also, since the lean air-fuel ratio region can be used freely as needed,
Excellent fit for drivability.

また、蒸発燃料をキャニスタ10に常に貯める必要がな
くなり、キャニスタ10の破過を防ぐことができる。
Further, it is not necessary to always store the fuel vapor in the canister 10, so that breakthrough of the canister 10 can be prevented.

さらに、蒸発燃料をリーンNOx触媒6の上流の排気管
に導入することにより、蒸発燃料も浄化でき、NOxの排
出抑制と同時に蒸発燃料の排出も充分に低く抑えること
ができる。
Further, by introducing the evaporated fuel into the exhaust pipe upstream of the lean NOx catalyst 6, the evaporated fuel can be purified, and the emission of the evaporated fuel can be sufficiently suppressed at the same time as the emission of NOx is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る内燃機関の排気浄化装置の基本制
御系統図、 第2図は本発明の一実施例に係る内燃機関の排気浄化装
置の制御および機器系統図、 第3図は第2図の排気浄化装置のうちECUの構成を示す
ブロック図、 第4図は本発明の第1実施例に係る制御フロー図、 第5図は本発明の第2実施例に係る制御フロー図、 第6図は空燃比−NOx、HC、トルク変動特性図、 第7図はリーンNOx触媒の触媒温度−NOx浄化率特性図、 第8図はリーンNOx触媒のHC濃度−NOx浄化率特性図、 第9図はリーンNOx触媒のNOx還元メカニズムを示すブロ
ック図、 である。 2……内燃機関 4……排気系 4a……リーンNOx触媒上流排気管 6……リーンNOx触媒 8……燃料タンク 10……キャニスタ 12、14……蒸発燃料管 16……切替弁 18……運転状態検出手段 20……HC不足判定手段 22……三元触媒 24……空燃比センサ 26……排気温センサ 28……クランク角度センサ 30……ECU 32……HCセンサ
FIG. 1 is a basic control system diagram of an exhaust gas purification device for an internal combustion engine according to the present invention, FIG. 2 is a control and device system diagram of an exhaust gas purification device for an internal combustion engine according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of an ECU in the exhaust gas purification device of FIG. 2, FIG. 4 is a control flow diagram according to the first embodiment of the present invention, FIG. 5 is a control flow diagram according to a second embodiment of the present invention, 6 is an air-fuel ratio-NOx, HC, torque fluctuation characteristic diagram, FIG. 7 is a catalyst temperature-NOx purification rate characteristic diagram of a lean NOx catalyst, FIG. 8 is an HC concentration-NOx purification rate characteristic diagram of a lean NOx catalyst, FIG. 9 is a block diagram showing a NOx reduction mechanism of a lean NOx catalyst. 2 ... internal combustion engine 4 ... exhaust system 4a ... lean NOx catalyst upstream exhaust pipe 6 ... lean NOx catalyst 8 ... fuel tank 10 ... canister 12, 14 ... evaporative fuel pipe 16 ... switching valve 18 ... Operating state detection means 20 HC shortage determination means 22 Three-way catalyst 24 Air-fuel ratio sensor 26 Exhaust gas temperature sensor 28 Crank angle sensor 30 ECU 32 HC sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/36 F01N 7/00 A 7/00 F02D 45/00 301G F02D 45/00 301 312H 312 368G 368 F02M 25/08 B F02M 25/08 D P B01D 53/36 101B (72)発明者 松下 宗一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭61−242622(JP,A) 特開 昭63−283727(JP,A) 特開 平2−125941(JP,A) 特開 昭62−251415(JP,A) 特公 昭51−29249(JP,B2) 特公 昭51−29250(JP,B2)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location F01N 3/36 F01N 7/00 A 7/00 F02D 45/00 301G F02D 45/00 301 312H 312 368G 368 F02M 25/08 B F02M 25/08 DP B01D 53/36 101B (72) Inventor Soichi Matsushita 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A 61-242622 (JP, A) JP-A-63-283727 (JP, A) JP-A-2-1295941 (JP, A) JP-A-62-251415 (JP, A) JP-B-51-29249 (JP, B2) JP 51-29250 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の排気系に設けられた、遷移金属
或いは貴金属を担持せしめたゼオライトからなり酸化雰
囲気中HC存在下でNOxを還元するリーンNOx触媒と、 燃料タンクからの蒸発燃料を蒸発燃料吸着用キャニスタ
およびリーンNOx触媒上流排気管に導く蒸発燃料管と、 内燃機関の運転状態を検出する運転状態検出手段と、 運転状態検出手段によって検出された運転状態が、該運
転状態においてリーンNOx触媒に流入する排気ガス中のH
CがリーンNOx触媒によるNOx還元に必要とされるHC量に
対して不足する運転状態か否かを判断するHC不足判定手
段と、 HC不足判定手段がHC不足運転状態と判断したときに蒸発
燃料をリーンNOx触媒上流排気管に導入し、HC不足判定
手段がHC不足運転状態でないと判断したときに蒸発燃料
をキャニスタに導入するように切替わる、蒸発燃料管に
対して設けられた切替弁と、 から成ることを特徴とする内燃機関の排気浄化装置。
1. A lean NOx catalyst provided in an exhaust system of an internal combustion engine and made of zeolite carrying a transition metal or a noble metal and reducing NOx in the presence of HC in an oxidizing atmosphere, and evaporating fuel vapor from a fuel tank. An evaporative fuel pipe leading to a fuel adsorption canister and a lean NOx catalyst upstream exhaust pipe; an operating state detecting means for detecting an operating state of the internal combustion engine; and an operating state detected by the operating state detecting means. H in exhaust gas flowing into the catalyst
HC insufficiency determining means for determining whether the operating state is insufficient for the amount of HC required for NOx reduction by the lean NOx catalyst, and evaporative fuel when the HC insufficiency determining means determines that the operating state is insufficient. And a switching valve provided for the evaporative fuel pipe, which switches to introduce evaporative fuel to the canister when the HC insufficiency determining means determines that the operation is not in the HC insufficiency operation state. An exhaust gas purification device for an internal combustion engine, comprising:
JP2038271A 1990-02-21 1990-02-21 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP2666508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038271A JP2666508B2 (en) 1990-02-21 1990-02-21 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038271A JP2666508B2 (en) 1990-02-21 1990-02-21 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03242415A JPH03242415A (en) 1991-10-29
JP2666508B2 true JP2666508B2 (en) 1997-10-22

Family

ID=12520654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038271A Expired - Lifetime JP2666508B2 (en) 1990-02-21 1990-02-21 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2666508B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798219B2 (en) * 1990-03-01 1998-09-17 三菱重工業株式会社 Denitration equipment for internal combustion engines
JPH04129828U (en) * 1991-05-21 1992-11-27 三菱自動車工業株式会社 vehicle catalytic converter
US5365734A (en) * 1992-03-25 1994-11-22 Toyota Jidosha Kabushiki Kaisha NOx purification apparatus for an internal combustion engine
DE4497012T1 (en) * 1993-09-21 1996-10-31 Orbital Eng Australia Improvements in the catalytic treatment of engine exhaust
JP2951831B2 (en) * 1993-11-05 1999-09-20 三菱電機株式会社 Exhaust gas purification device for internal combustion engine
US6080377A (en) * 1995-04-27 2000-06-27 Engelhard Corporation Method of abating NOx and a catalytic material therefor
US6471924B1 (en) * 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
DE19707849A1 (en) * 1997-02-27 1998-09-03 Opel Adam Ag Device for the aftertreatment of exhaust gases from a spark ignition internal combustion engine
DE19927185A1 (en) * 1999-06-15 2000-12-21 Daimler Chrysler Ag Exhaust gas cleaning system with nitrogen oxide adsorber and hydrocarbon metering
DE10202171A1 (en) 2002-01-22 2003-07-31 Bayerische Motoren Werke Ag Motor vehicle with a cryogenic tank
EP1691046B1 (en) 2003-09-19 2013-04-24 Nissan Diesel Motor Co., Ltd. Exhaust emission purification apparatus for an internal combustion engine
EP2426329B1 (en) 2003-09-19 2013-05-01 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
WO2005073527A1 (en) 2004-02-02 2005-08-11 Nissan Diesel Motor Co., Ltd. Device for purifying exhaust gas of internal combustion engine
WO2005073529A1 (en) 2004-02-02 2005-08-11 Nissan Diesel Motor Co., Ltd. Device for purifying exhaust gas of engine
JP2008031926A (en) * 2006-07-28 2008-02-14 Mazda Motor Corp Exhaust emission control device

Also Published As

Publication number Publication date
JPH03242415A (en) 1991-10-29

Similar Documents

Publication Publication Date Title
JP2666508B2 (en) Exhaust gas purification device for internal combustion engine
US5402641A (en) Exhaust gas purification apparatus for an internal combustion engine
US6378298B2 (en) Exhaust purifying apparatus and method for internal combustion engine
US6250074B1 (en) Air-fuel ratio control apparatus and method of internal combustion engine
JP2985638B2 (en) Exhaust gas purification device for internal combustion engine
JP3218747B2 (en) Catalyst deterioration degree detection device
JP3446815B2 (en) Exhaust gas purification device for internal combustion engine
JP3376651B2 (en) Exhaust gas purification device for internal combustion engine
JP2722951B2 (en) Exhaust gas purification device for internal combustion engine
JP2007046515A (en) Exhaust emission control device of internal combustion engine
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
JPH11117726A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP3509404B2 (en) Intake control device for internal combustion engine
JP3334635B2 (en) Exhaust gas purification device for internal combustion engine
JP2000130212A (en) Exhaust emission control device for internal combustion engine
JP2687654B2 (en) Exhaust gas purification device for internal combustion engine
JP3454177B2 (en) Exhaust gas purification device for internal combustion engine
JP2005163590A (en) Exhaust emission control device for engine
JPH0658185A (en) Exhaust emission control device for internal combustion engine
JP2669093B2 (en) Exhaust gas purification device for internal combustion engine
JP4661626B2 (en) Exhaust gas purification device for internal combustion engine
WO2024075264A1 (en) Exhaust purification method and device for internal combustion engine
JP3144183B2 (en) Exhaust gas purification device for internal combustion engine
JP2639157B2 (en) Exhaust gas purification device for internal combustion engine