JP2000130212A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2000130212A
JP2000130212A JP10309702A JP30970298A JP2000130212A JP 2000130212 A JP2000130212 A JP 2000130212A JP 10309702 A JP10309702 A JP 10309702A JP 30970298 A JP30970298 A JP 30970298A JP 2000130212 A JP2000130212 A JP 2000130212A
Authority
JP
Japan
Prior art keywords
injection
nox
catalyst
exhaust gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10309702A
Other languages
Japanese (ja)
Other versions
JP3675198B2 (en
Inventor
Takashi Fukuda
隆 福田
Hisashi Aoyama
尚志 青山
Keiji Okada
圭司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30970298A priority Critical patent/JP3675198B2/en
Publication of JP2000130212A publication Critical patent/JP2000130212A/en
Application granted granted Critical
Publication of JP3675198B2 publication Critical patent/JP3675198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To certainly release sulfur poisoning of an NOx catalyst in a short time by temperature rise of exhaust gas. SOLUTION: An NOx catalyst 13 and a ternary catalyst 14 are arranged in series in a exhaust passage 12 of an internal combustion engine 1. The internal combustion engine 1 is a cylinder injection type gasoline engine wherein a stratified lean combustion on a low load side and a homogeneous combustion on a high load side can be switched. When a reduction in NOx absorbing performance owing to sulfur poisoning of the NOx catalyst 13 is detected by a sensor 17 downstream from the NOx catalyst 13, additional injection is carried out under an expansion stroke in addition to main injection under compression stroke to raise the temperature of exhaust gas. By enriching air-fuel ratio in a state of sufficient temperature rising, a sulfur component is removed. The temperature of the exhaust gas is raised by the additional injection, and a smoke limit of the stratified lean combustion expands to the high load side, so that the additional injection is allowed to be executed in an area larger than the normal stratified lean combustion area in a direction of the high load side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、内燃機関の排気
浄化装置、特にNOx触媒を備えた筒内直噴型内燃機関
において硫黄被毒解除のためにNOx触媒を強制的に昇
温させるようにした排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, in particular, a cylinder direct injection type internal combustion engine equipped with a NOx catalyst. Exhaust purification device.

【0002】[0002]

【従来の技術】ガソリン機関に代表される火花点火式内
燃機関において、リーン空燃比での安定した燃焼を実現
するために、シリンダ内に直接燃料を噴射する筒内直噴
型としたものが、従来から知られている。この直噴型内
燃機関においては、一般に、主に圧縮行程中に燃料を噴
射することにより点火プラグ近傍のみに着火可能な比較
的濃い混合気を確保し、かつ全体の平均空燃比として非
常にリーンな成層リーン燃焼を実現している。また一
方、出力が必要な場合には、主に吸気行程に燃料を噴射
することにより理論空燃比近傍での均質燃焼を実現する
ことができるようになっている。そして、この成層リー
ン燃焼と均質燃焼とは、機関回転数と負荷とをパラメー
タとした機関運転条件に応じて切り換えられ、例えば図
2のように、低速低負荷側の所定の領域で成層リーン燃
焼となり、高速高負荷側の所定の領域で均質燃焼とな
る。なお、この成層リーン燃焼の限界は、一般に、スモ
ークの発生量から定まる。
2. Description of the Related Art In a spark ignition type internal combustion engine represented by a gasoline engine, in order to realize stable combustion at a lean air-fuel ratio, an in-cylinder direct injection type in which fuel is directly injected into a cylinder is known. Conventionally known. In the direct injection type internal combustion engine, generally, a relatively rich air-fuel mixture that can be ignited only in the vicinity of the ignition plug is mainly secured by injecting fuel mainly during the compression stroke, and the overall average air-fuel ratio is extremely lean. Stratified lean combustion. On the other hand, when an output is required, homogeneous combustion near the stoichiometric air-fuel ratio can be realized by injecting fuel mainly in the intake stroke. The stratified lean combustion and the homogeneous combustion are switched according to the engine operating conditions using the engine speed and the load as parameters. For example, as shown in FIG. And homogeneous combustion occurs in a predetermined region on the high speed and high load side. The limit of the stratified lean combustion is generally determined by the amount of smoke generated.

【0003】また、このようにリーン空燃比の下で運転
される内燃機関においては、リーン運転時に排出される
NOxを処理するために、いわゆるNOx触媒を用いる
ことが提案されている。このNOx触媒は、排気ガスの
空燃比が理論空燃比相当よりもリーンなときにNOxを
吸収し、かつ排気ガスの空燃比が理論空燃比相当よりも
リッチとなると、吸収していたNOxを還元し、浄化す
るようになっている。従って、内燃機関が成層リーン燃
焼を行っている間は、NOxを吸収し、かつその吸収量
が飽和する前に、高負荷運転等により排気ガスがリッチ
雰囲気となれば、NOxを放出還元して再び吸収可能な
状態に回復するので、繰り返しNOxを吸収することが
可能である。なお、リーン運転が長く継続する場合に、
一時的に強制的なリッチ化を行い、NOx触媒からNO
xを放出還元させる技術も知られている。
[0003] In an internal combustion engine operated under such a lean air-fuel ratio, it has been proposed to use a so-called NOx catalyst in order to treat NOx discharged during lean operation. This NOx catalyst absorbs NOx when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio, and reduces the absorbed NOx when the air-fuel ratio of the exhaust gas becomes richer than the stoichiometric air-fuel ratio. And purify it. Therefore, while the internal combustion engine is performing stratified lean combustion, NOx is absorbed, and before the amount of absorption is saturated, if the exhaust gas becomes rich due to high load operation or the like, NOx is released and reduced. Since it is restored to a state where it can be absorbed again, it is possible to repeatedly absorb NOx. If the lean operation continues for a long time,
Temporarily forcibly enrich the fuel, and the NOx catalyst
Techniques for releasing and reducing x are also known.

【0004】ところで、燃料や潤滑油には、硫黄分が含
まれており、この硫黄分が排気ガス中に混入すると、N
Oxと同様にNOx触媒に吸収されるが、このNOx触
媒に吸収された硫黄分は、NOxの吸収を阻害し、しか
もNOxと比較して還元されにくい。つまり、硫黄分の
吸収量が徐々に増加するに従って、NOxの吸収可能な
量が減少してしまう。この現象は、一般に硫黄被毒と呼
ばれ、NOx触媒の実用化の上で大きな障害となってい
る。
[0004] Incidentally, fuel and lubricating oil contain sulfur, and when this sulfur is mixed into exhaust gas, N
Similar to Ox, it is absorbed by the NOx catalyst, but the sulfur absorbed by the NOx catalyst inhibits the absorption of NOx and is less likely to be reduced as compared to NOx. That is, as the amount of sulfur absorbed gradually increases, the amount of NOx that can be absorbed decreases. This phenomenon is generally called sulfur poisoning, and is a major obstacle in putting the NOx catalyst into practical use.

【0005】このように、硫黄被毒したNOx触媒は、
ある温度以上に高温にすることで、硫黄分が脱離し、N
Ox吸収能力が回復することが知られている。そして、
このNOx触媒を高温に加熱する手段として、特開平8
−296485号公報や特開平9−287436号公報
に記載されているように、筒内直噴型内燃機関におい
て、通常の燃料噴射つまり主噴射のほかに、追加噴射を
行う方法が公知である。この追加噴射により供給された
燃料は、シリンダ内もしくは排気系において余剰酸素と
反応し、さらにはNOx触媒において酸化するため、排
気ガス温度が上昇し、硫黄被毒を解除し得る温度までN
Ox触媒を昇温させることができる。
As described above, the sulfur-poisoned NOx catalyst is
By raising the temperature above a certain temperature, sulfur is desorbed and N
It is known that the Ox absorption capacity is restored. And
As means for heating this NOx catalyst to a high temperature, Japanese Patent Application Laid-Open
As described in JP-A-296485 and JP-A-9-287436, a method of performing additional injection in addition to normal fuel injection, that is, main injection, in a direct injection type internal combustion engine is known. The fuel supplied by this additional injection reacts with excess oxygen in the cylinder or in the exhaust system, and further oxidizes in the NOx catalyst, so that the temperature of the exhaust gas rises to a level at which sulfur poisoning can be released.
The temperature of the Ox catalyst can be raised.

【0006】[0006]

【発明が解決しようとする課題】上記のように、1回の
燃焼サイクルの中で、主噴射と追加噴射とを行う方法に
おいては、追加噴射により噴射した燃料を良好に燃焼さ
せるためには、主噴射と追加噴射とによる燃料総量から
定まるトータルの空燃比が、理論空燃比近傍もしくはこ
れよりもリーン側になければならない。従って、この追
加燃料によるNOx触媒の昇温は、主噴射のみによる空
燃比がリーンで運転可能な運転領域でしか実行すること
ができない。つまり、主噴射により成層リーン燃焼が可
能な運転領域においてのみ、トータルの空燃比が理論空
燃比を越えないように追加噴射を行うことで、強制的な
昇温を実行できる。
As described above, in the method of performing the main injection and the additional injection in one combustion cycle, in order to satisfactorily burn the fuel injected by the additional injection, The total air-fuel ratio determined from the total amount of fuel by the main injection and the additional injection must be near or leaner than the stoichiometric air-fuel ratio. Therefore, the temperature rise of the NOx catalyst by the additional fuel can be executed only in the operation region where the air-fuel ratio can be operated at a lean air-fuel ratio by only the main injection. That is, only in an operation region where stratified lean combustion can be performed by the main injection, forcible temperature increase can be performed by performing additional injection so that the total air-fuel ratio does not exceed the stoichiometric air-fuel ratio.

【0007】そのため、仮に運転中にNOx触媒の硫黄
被毒状態が検出されたとしても、例えば図2に示すよう
な成層リーン燃焼と均質燃焼との切換のマップに従っ
て、成層リーン燃焼の領域でのみ、追加噴射による昇温
が許容されることになり、均質燃焼領域では、追加噴射
による昇温が実行されないので、硫黄被毒の解除を行う
機会が十分に得られにくい、という問題がある。
[0007] Therefore, even if the sulfur poisoning state of the NOx catalyst is detected during operation, only in the region of stratified lean combustion, for example, according to a map for switching between stratified lean combustion and homogeneous combustion as shown in FIG. In addition, since the temperature increase by the additional injection is allowed, and the temperature increase by the additional injection is not performed in the homogeneous combustion region, there is a problem that it is difficult to sufficiently obtain the opportunity to release the sulfur poisoning.

【0008】[0008]

【課題を解決するための手段】本発明は、シリンダ内に
直接燃料を噴射する燃料噴射弁を備え、主に圧縮行程に
燃料を噴射することにより成層リーン燃焼を実現すると
ともに、主に吸気行程に燃料を噴射することにより理論
空燃比近傍での均質燃焼を実現する筒内直噴型内燃機関
であって、かつ排気通路に、流入する排気ガスの空燃比
に応じてNOxの吸収,放出を行う作用を有するNOx
触媒を備えてなる内燃機関の排気浄化装置において、上
記NOx触媒の強制的な昇温の要求を検出する昇温要求
検出手段と、この昇温要求時に、上記燃料噴射弁による
主噴射に加えて追加噴射を行う燃料噴射制御手段と、機
関の運転条件に基づいて上記追加噴射を禁止する禁止手
段と、を有し、上記禁止手段は、上記成層リーン燃焼を
行う運転領域よりも高速高負荷側へ拡大した領域まで追
加噴射を許容することを特徴としている。
SUMMARY OF THE INVENTION The present invention provides a fuel injection valve for directly injecting fuel into a cylinder, realizes stratified lean combustion by injecting fuel mainly in a compression stroke, and mainly realizes an intake stroke. Direct injection type internal combustion engine that achieves homogeneous combustion near the stoichiometric air-fuel ratio by injecting fuel into the exhaust passage, and absorbs and releases NOx in the exhaust passage according to the air-fuel ratio of the exhaust gas flowing into the exhaust passage. NOx with an action to perform
In an exhaust gas purifying apparatus for an internal combustion engine equipped with a catalyst, a temperature increase request detecting means for detecting a request for forced temperature increase of the NOx catalyst, and at the time of the temperature increase request, in addition to the main injection by the fuel injection valve. Fuel injection control means for performing additional injection, and prohibition means for prohibiting the additional injection based on operating conditions of the engine, wherein the prohibition means is at a higher speed and higher load than an operation region in which the stratified lean combustion is performed. It is characterized in that additional injection is allowed up to the region expanded to.

【0009】上記昇温要求検出手段は、例えば請求項2
のように、上記NOx触媒が硫黄被毒状態にあることを
検出するものである。そして、この硫黄被毒状態は、請
求項3のように、上記NOx触媒の下流に設けたNOx
センサが検出するNOx濃度に基づいて判定することが
できる。
The temperature rise request detecting means may be, for example,
As described above, the NOx catalyst is detected to be in a sulfur poisoning state. The sulfur poisoning state is determined by the NOx catalyst provided downstream of the NOx catalyst.
The determination can be made based on the NOx concentration detected by the sensor.

【0010】成層リーン燃焼においては、要求負荷の増
大に伴って燃料噴射量を増加していくと、スモークの発
生量が増加し、ある点で、スモークの許容量を越えてし
まう。そのため、その点で均質燃焼に切り換えることに
なる。つまり、図2に示したような成層リーン燃焼の限
界は、主にスモークによって定まる。
In stratified lean combustion, if the fuel injection amount is increased with an increase in the required load, the amount of smoke generated increases, and at some point exceeds the allowable amount of smoke. Therefore, at that point, the combustion is switched to the homogeneous combustion. That is, the limit of stratified lean combustion as shown in FIG. 2 is mainly determined by smoke.

【0011】しかしながら、主噴射に加えて追加噴射を
行うと、追加噴射によって排気ガス温度が上昇するの
で、一旦発生したスモークも、ある程度再燃焼する、と
いうことが本発明者の実験により判明した。
However, it has been found by experiments of the present inventor that if additional injection is performed in addition to the main injection, the temperature of exhaust gas rises due to the additional injection, so that once generated smoke also re-combustes to some extent.

【0012】すなわち、主噴射のみによる成層リーン燃
焼では、スモーク発生量が許容量を越えてしまうような
中負荷領域でも、追加噴射を行えばスモークの発生量が
許容量を越えない場合がある。
That is, in stratified lean combustion using only main injection, even in a medium load region where the amount of smoke generation exceeds the allowable amount, the amount of generated smoke may not exceed the allowable amount if additional injection is performed.

【0013】そこで、本発明では、追加噴射を許容する
運転領域を、主噴射のみにより成層リーン燃焼可能な通
常の成層リーン燃焼領域よりも拡大した。これにより、
硫黄被毒解除のために強制的な昇温を実行できる機会が
増加する。
Therefore, in the present invention, the operation range in which the additional injection is permitted is expanded more than the normal stratified lean combustion region in which the stratified lean combustion can be performed only by the main injection. This allows
The chances of forcibly raising the temperature to release sulfur poisoning are increased.

【0014】また請求項1〜3の発明をさらに具体化し
た請求項4の発明では、主噴射を圧縮行程において行
い、追加噴射を膨張行程において行うようにしている。
Further, in the invention of claim 4 which further embodies the inventions of claims 1 to 3, the main injection is performed in the compression stroke and the additional injection is performed in the expansion stroke.

【0015】そして、請求項5の発明では、主噴射と追
加噴射との総噴射量による排気ガスの空燃比が、理論空
燃比よりもリッチとならないように追加噴射の噴射量が
設定されている。
In the invention of claim 5, the injection amount of the additional injection is set so that the air-fuel ratio of the exhaust gas based on the total injection amount of the main injection and the additional injection does not become richer than the stoichiometric air-fuel ratio. .

【0016】[0016]

【発明の効果】この発明に係る内燃機関の排気浄化装置
によれば、硫黄被毒状態となったNOx触媒を強制的に
昇温させることで、そのNOx吸収能力を回復させるこ
とができ、特に、通常の成層リーン燃焼領域よりも広い
運転領域で追加噴射による昇温を実行することにより、
硫黄被毒の解除を、確実にかつ短時間に行うことが可能
となる。
According to the exhaust gas purifying apparatus for an internal combustion engine according to the present invention, the NOx absorption capacity can be restored by forcibly raising the temperature of the sulfur-poisoned NOx catalyst. By performing the temperature increase by the additional injection in the operation region wider than the normal stratified lean combustion region,
Release of sulfur poisoning can be performed reliably and in a short time.

【0017】[0017]

【発明の実施の形態】以下、この発明の好ましい実施の
形態を図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の実施の形態の一例を示し
ている。内燃機関1は、筒内直噴型のガソリン機関であ
って、燃焼室2に向かって直接燃料を噴射する燃料噴射
弁3を備えているとともに、この燃料噴射弁3によって
形成された混合気に点火する点火プラグ4をシリンダ中
心位置に備えている。なお、上記燃料噴射弁3に燃料タ
ンク5から供給される燃料の圧力は、プレッシャレギュ
レータを備えた高圧燃料ポンプ6によって所定圧力に調
圧される。
FIG. 1 shows an example of an embodiment of the present invention. The internal combustion engine 1 is an in-cylinder direct injection gasoline engine, and includes a fuel injection valve 3 for directly injecting fuel toward a combustion chamber 2 and a fuel-air mixture formed by the fuel injection valve 3. A spark plug 4 for igniting is provided at the center of the cylinder. The pressure of the fuel supplied from the fuel tank 5 to the fuel injection valve 3 is regulated to a predetermined pressure by a high-pressure fuel pump 6 having a pressure regulator.

【0019】上記内燃機関1の吸気通路7には、吸入空
気量を検出する例えば熱線式のエアフロメータ8が介装
されているとともに、電子制御型のスロットル弁9がそ
の下流側に配置されている。このスロットル弁9の開度
は、図示せぬアクセルペダルの開度(踏込量)を検出す
るアクセル開度センサ10の検出信号に基づき、エンジ
ンコントロールユニット11から出力される駆動信号に
よって制御される。また、内燃機関1の排気通路12に
は、NOx触媒13と三元触媒14とが直列に介装され
ている。上流側に位置するNOx触媒13は、排気ガス
の空燃比が理論空燃比相当よりもリーンなときにNOx
を吸収し、かつ排気ガスの空燃比が理論空燃比相当より
もリッチとなると、吸収していたNOxを放出し、還
元,浄化する機能を有している。また下流側の三元触媒
14は、良く知られているように、排気ガスの空燃比が
理論空燃比付近のときに、HCおよびCOの酸化とNO
xの還元とを同時に行う機能を有している。
The intake passage 7 of the internal combustion engine 1 is provided with, for example, a hot-wire type air flow meter 8 for detecting an intake air amount, and an electronically-controlled throttle valve 9 disposed downstream thereof. I have. The opening of the throttle valve 9 is controlled by a drive signal output from an engine control unit 11 based on a detection signal of an accelerator opening sensor 10 for detecting the opening (depression amount) of an accelerator pedal (not shown). In the exhaust passage 12 of the internal combustion engine 1, a NOx catalyst 13 and a three-way catalyst 14 are interposed in series. When the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio, the NOx catalyst 13 located on the upstream side
When the air-fuel ratio of the exhaust gas becomes richer than the stoichiometric air-fuel ratio, it has a function of releasing the absorbed NOx and reducing and purifying it. As is well known, the three-way catalyst 14 on the downstream side oxidizes HC and CO and generates NO when the air-fuel ratio of the exhaust gas is near the stoichiometric air-fuel ratio.
It has the function of simultaneously reducing x.

【0020】上記NOx触媒13は、その温度を検出す
る触媒温度センサ15を備えている。また、排気通路1
2のNOx触媒13上流側には、排気組成から空燃比を
検出するいわゆる広域型の空燃比センサ16が設けられ
ており、かつNOx触媒13下流側(NOx触媒13と
三元触媒14との間)には、排気中のNOx成分濃度を
検出するNOxセンサ17が設けられている。なお、三
元触媒14のさらに下流側には、マフラ18が設けられ
ている。
The NOx catalyst 13 has a catalyst temperature sensor 15 for detecting its temperature. Also, the exhaust passage 1
On the upstream side of the NOx catalyst 13, a so-called wide-range air-fuel ratio sensor 16 for detecting the air-fuel ratio from the exhaust gas composition is provided, and on the downstream side of the NOx catalyst 13 (between the NOx catalyst 13 and the three-way catalyst 14). ) Is provided with a NOx sensor 17 for detecting the concentration of the NOx component in the exhaust gas. Note that a muffler 18 is provided further downstream of the three-way catalyst 14.

【0021】上記の触媒温度センサ15、空燃比センサ
16およびNOxセンサ17の各検出信号は、エアフロ
メータ8やアクセル開度センサ10の検出信号ととも
に、上記エンジンコントロールユニット11に入力され
ている。また、19は、内燃機関1の冷却水温を検出す
る水温センサ、20は、内燃機関1の回転数を検出する
回転数センサであって、これらの検出信号も上記エンジ
ンコントロールユニット11に入力されている。
The detection signals of the catalyst temperature sensor 15, the air-fuel ratio sensor 16 and the NOx sensor 17 are input to the engine control unit 11 together with the detection signals of the air flow meter 8 and the accelerator opening sensor 10. Reference numeral 19 denotes a water temperature sensor for detecting a cooling water temperature of the internal combustion engine 1, and reference numeral 20 denotes a rotation speed sensor for detecting the rotation speed of the internal combustion engine 1. These detection signals are also input to the engine control unit 11. I have.

【0022】エンジンコントロールユニット11は、こ
れらの検出信号に基づいて、燃料噴射弁3による燃料噴
射量や噴射時期、点火プラグ7による点火時期、スロッ
トル弁開度等を制御している。
The engine control unit 11 controls the fuel injection amount and injection timing of the fuel injection valve 3, the ignition timing of the ignition plug 7, the throttle valve opening, and the like based on these detection signals.

【0023】上記のように構成された内燃機関1および
その排気浄化装置の基本的な動作を説明すると、内燃機
関1は、図2に示すような制御マップに従って、成層リ
ーン燃焼と略理論空燃比での均質燃焼とに切り換えられ
る。成層リーン燃焼では、燃料噴射時期は、圧縮行程の
後半に設定され、燃焼室2内のスワールもしくはタンブ
ルを利用して、点火プラグ4近傍に着火可能な比較的濃
い混合気を形成することで、全体としては非常にリーン
な空燃比でもって燃焼が行われる。また、均質燃焼で
は、燃料噴射時期は、吸気行程中に設定され、均質な混
合気とした状態で点火される。
The basic operation of the internal combustion engine 1 and the exhaust gas purifying apparatus constructed as described above will be described. The internal combustion engine 1 performs stratified lean combustion and substantially stoichiometric air-fuel ratio according to a control map as shown in FIG. To homogeneous combustion. In stratified lean combustion, the fuel injection timing is set in the latter half of the compression stroke, and a swirl or tumble in the combustion chamber 2 is used to form a relatively rich mixture that can be ignited near the ignition plug 4, As a whole, combustion is performed with a very lean air-fuel ratio. In the homogeneous combustion, the fuel injection timing is set during the intake stroke, and the fuel is ignited in a state of a homogeneous mixture.

【0024】一方、上記の成層リーン燃焼においては、
当然のことながら、排気ガスの空燃比もリーン相当のも
のとなるが、この成層リーン燃焼中に内燃機関1から排
出されるNOxは、NOx触媒13によって吸収され
る。そして、このNOx触媒13に吸収されたNOx
は、その後、高負荷域等で排気ガスの空燃比がリッチと
なったときに放出され、かつ還元,浄化される。なお、
成層リーン燃焼中のHCやCOは、NOx触媒13およ
び三元触媒14によって酸化される。
On the other hand, in the above-described stratified lean combustion,
Naturally, the air-fuel ratio of the exhaust gas is also equivalent to lean, but NOx exhausted from the internal combustion engine 1 during this stratified lean combustion is absorbed by the NOx catalyst 13. The NOx absorbed by the NOx catalyst 13
Is then released when the air-fuel ratio of the exhaust gas becomes rich in a high load region or the like, and is reduced and purified. In addition,
HC and CO during stratified lean combustion are oxidized by the NOx catalyst 13 and the three-way catalyst 14.

【0025】また、均質燃焼として空燃比が略理論空燃
比であるときには、主に三元触媒14によって、HC,
COの酸化とNOxの還元とがなされる。
When the air-fuel ratio is substantially the stoichiometric air-fuel ratio as the homogeneous combustion, HC, HC is mainly controlled by the three-way catalyst 14.
The oxidation of CO and the reduction of NOx are performed.

【0026】また、前述したように、NOx触媒13に
は、硫黄被毒の問題があり、硫黄成分の吸収に伴って徐
々にNOx吸収能力が低下する。従って、この実施の形
態では、硫黄被毒状態を検出したときに、燃料の追加噴
射によって、NOx触媒13を硫黄成分の脱離温度まで
強制的に昇温させるようにしている。そして、これに併
せて、機関始動直後のように、NOx触媒13や三元触
媒14の温度が不十分なときに、追加噴射を利用して、
これらの昇温を促進するようにしている。
Further, as described above, the NOx catalyst 13 has a problem of sulfur poisoning, and the NOx absorbing ability gradually decreases as the sulfur component is absorbed. Therefore, in this embodiment, when the sulfur poisoning state is detected, the temperature of the NOx catalyst 13 is forcibly raised to the desorption temperature of the sulfur component by additional fuel injection. At the same time, when the temperature of the NOx catalyst 13 or the three-way catalyst 14 is insufficient, such as immediately after the start of the engine, the additional injection is used,
The temperature increase is promoted.

【0027】次に、この追加噴射による昇温制御の処理
の流れを図3〜図6のフローチャートに基づいて説明す
る。図3のフローチャートは、機関の運転中繰り返し実
行されるメインルーチンを示すものであって、先ずステ
ップ1で、各種センサが検出した検出信号を読み込み、
かつステップ2で、触媒温度センサ15が検出した触媒
温度Tcatを所定の中間活性温度Tcatth1と比
較し、触媒が中間活性状態となっているか否かを判定す
る。なお、中間活性温度Tcatth1は、例えば触媒
の50パーセント程度の転換性能が得られる触媒温度で
ある。冷間始動直後のように触媒温度Tcatが中間活
性温度Tcatth1未満である場合には、触媒が不活
性であるとみなし、ステップ3へ進む。ステップ3で
は、後述する触媒暖機制御を実行するために、触媒暖機
制御フラグを1とする。
Next, the flow of the process of the temperature rise control by the additional injection will be described with reference to the flowcharts of FIGS. The flowchart of FIG. 3 shows a main routine that is repeatedly executed during operation of the engine. First, in step 1, detection signals detected by various sensors are read,
In step 2, the catalyst temperature Tcat detected by the catalyst temperature sensor 15 is compared with a predetermined intermediate activation temperature Tcatth1 to determine whether the catalyst is in an intermediate activation state. The intermediate activation temperature Tcatth1 is a catalyst temperature at which a conversion performance of, for example, about 50% of the catalyst is obtained. When the catalyst temperature Tcat is lower than the intermediate activation temperature Tcatth1 as in the case immediately after the cold start, the catalyst is considered to be inactive and the process proceeds to step 3. In step 3, the catalyst warm-up control flag is set to 1 in order to execute the catalyst warm-up control described later.

【0028】また触媒温度Tcatが中間活性温度Tc
atth1以上であれば、さらにステップ4で、触媒温
度Tcatを、触媒が略完全に活性したとみなせる活性
温度Tcatth2と比較する。この活性温度Tcat
th2は、例えば触媒の90パーセント程度の転換性能
が得られる触媒温度である。ステップ4で、活性温度T
catth2以上であれば、触媒は十分な活性状態にあ
るとみなし、ステップ5へ進む。活性温度Tcatth
2未満であれば、そのときのフラグの状態をそのまま継
続する。
The catalyst temperature Tcat is the intermediate activation temperature Tc.
If it is not less than atth1, in step 4, the catalyst temperature Tcat is compared with the activation temperature Tcatth2 at which the catalyst can be considered to be almost completely activated. This activation temperature Tcat
th2 is a catalyst temperature at which a conversion performance of, for example, about 90% of the catalyst is obtained. In step 4, the activation temperature T
If catth2 or more, the catalyst is considered to be in a sufficiently active state, and the process proceeds to step 5. Activation temperature Tcatth
If it is less than 2, the state of the flag at that time is continued as it is.

【0029】ステップ5では、触媒暖機制御を終了すべ
く触媒暖機制御フラグを0とし、かつステップ6に進ん
で、硫黄被毒状態の判定を行う前提として、成層リーン
燃焼領域であるか否かを、図2のマップを参照して判断
する。ここで、均質燃焼であれば、硫黄被毒状態の判定
は行えないので、一連のルーチンを終了する。
In step 5, the catalyst warm-up control flag is set to 0 in order to end the catalyst warm-up control, and the process proceeds to step 6, where it is assumed that the determination of the sulfur poisoning state is based on whether or not the engine is in the stratified lean combustion region. Is determined with reference to the map of FIG. Here, if the combustion is homogeneous, the determination of the sulfur poisoning state cannot be performed, and thus a series of routines is terminated.

【0030】またステップ6で成層リーン燃焼領域にあ
れば、ステップ7へ進み、NOx触媒13下流のNOx
センサ17によって検出されたNOx濃度から、NOx
触媒13のNOx吸収性能の低下、換言すれば、硫黄被
毒状態であるか否かを判定する。具体的には、図7に示
したNOx排出量マップから、そのときの運転条件の下
でのNOx排出量を求めるとともに、図8に示したNO
x吸収効率マップから、そのときの運転条件の下でのN
Ox吸収効率を求め、両者の積(NOx排出量×NOx
吸収効率)よりもNOxセンサ17の検出値が大きい場
合に、硫黄被毒状態と判断する。なお、この両者の大小
の比較には、測定誤差等も含めた適当なヒステリシスが
与えられる。なお、NOx触媒13の吸収効率は、図8
に示したように、成層リーン燃焼領域では、酸素濃度お
よび空間速度の影響により、低速低負荷側ほど高いもの
となる。また、均質燃焼領域では、ほとんど吸収はなさ
れず、吸収効率は実質的に0となる。ステップ7で硫黄
被毒状態と判断した場合には、ステップ8へ進んで、後
述する触媒加熱制御を実行するための触媒加熱制御フラ
グを1とし、また硫黄被毒状態でないと判断した場合に
は、ステップ9へ進んで、触媒加熱制御フラグを0とす
る。
If it is determined in step 6 that the fuel is in the stratified lean combustion region, the process proceeds to step 7 where NOx downstream of the NOx catalyst 13
From the NOx concentration detected by the sensor 17,
It is determined whether or not the NOx absorption performance of the catalyst 13 is reduced, in other words, whether or not the catalyst 13 is in a sulfur poisoning state. Specifically, the NOx emission amount under the operating conditions at that time is obtained from the NOx emission amount map shown in FIG. 7, and the NOx emission amount shown in FIG.
x Absorption efficiency map shows that N under the current operating conditions
Obtain the Ox absorption efficiency, and calculate the product of both (NOx emission amount × NOx
When the detection value of the NOx sensor 17 is larger than the value (absorption efficiency), it is determined that the state is sulfur poisoning. An appropriate hysteresis including a measurement error and the like is given to the comparison between the magnitudes of the two. The absorption efficiency of the NOx catalyst 13 is shown in FIG.
As shown in (2), in the stratified lean combustion region, due to the influence of the oxygen concentration and the space velocity, it becomes higher on the low speed and low load side. Further, in the homogeneous combustion region, almost no absorption is made, and the absorption efficiency becomes substantially zero. If it is determined in step 7 that the fuel is in a sulfur poisoning state, the process proceeds to step 8 in which a catalyst heating control flag for executing catalyst heating control described later is set to 1, and if it is determined that the fuel is not in a sulfur poisoning state, Proceeding to step 9, the catalyst heating control flag is set to 0.

【0031】次に、図4は、触媒暖機制御フラグおよび
触媒加熱制御フラグがいずれも0である場合の通常運転
時のフローチャートを示している。このルーチンは、や
はり繰り返し実行されるもので、ステップ11で各種セ
ンサが検出した検出信号を読み込み、かつステップ12
で、そのときの運転条件が成層リーン燃焼領域であるか
均質燃焼領域であるを、図2のマップを参照して判断す
る。ここで、均質燃焼であれば、ステップ13へ進み、
均質燃焼用の噴射時期マップならびに点火時期マップを
用いて、噴射時期ならびに点火時期を決定し、均質燃焼
を行う。また、成層リーン燃焼であれば、ステップ14
へ進み、成層リーン燃焼用の噴射時期マップならびに点
火時期マップを用いて、噴射時期ならびに点火時期を決
定し、成層リーン燃焼を行う。
Next, FIG. 4 shows a flowchart during normal operation when both the catalyst warm-up control flag and the catalyst heating control flag are 0. This routine is also executed repeatedly, and reads the detection signals detected by the various sensors in step 11 and executes step 12
Then, it is determined with reference to the map in FIG. 2 whether the operating condition at that time is the stratified lean combustion region or the homogeneous combustion region. Here, if the combustion is homogeneous, the process proceeds to step 13,
The injection timing and the ignition timing are determined using the injection timing map and the ignition timing map for the homogeneous combustion, and the homogeneous combustion is performed. If it is stratified lean combustion, step 14
Then, the injection timing and the ignition timing are determined using the injection timing map and the ignition timing map for stratified lean combustion, and the stratified lean combustion is performed.

【0032】次に、図5は、触媒暖機制御フラグが1と
なっている場合に実行される触媒暖機制御の処理を示す
フローチャートである。先ず、ステップ21で各種セン
サが検出した検出信号を読み込み、かつステップ22
で、そのときの運転条件が成層リーン燃焼領域であるか
均質燃焼領域であるかを、図2のマップを参照して判断
する。ここで、均質燃焼であれば、ステップ23へ進
み、触媒温度Tcatを、触媒が略完全に活性したとみ
なせる前述の活性温度Tcatth2と比較する。すな
わち、均質燃焼領域は、そもそも排気温度が高い中〜高
負荷運転であるため、追加噴射による積極的な昇温は行
わず、触媒温度の昇温を待つようにしている。触媒温度
Tcatが活性温度Tcatth2に達したら、ステッ
プ24で触媒暖機制御フラグを0とし、この触媒暖機制
御を終了する。
Next, FIG. 5 is a flowchart showing a process of the catalyst warm-up control executed when the catalyst warm-up control flag is set to "1". First, in step 21, the detection signals detected by the various sensors are read, and in step 22
Then, it is determined with reference to the map of FIG. 2 whether the operating condition at that time is a stratified lean combustion region or a homogeneous combustion region. Here, if the combustion is homogeneous, the routine proceeds to step 23, where the catalyst temperature Tcat is compared with the above-mentioned activation temperature Tcatth2 at which the catalyst can be considered to be almost completely activated. That is, in the homogeneous combustion region, since the exhaust gas temperature is a medium to high load operation in the first place, the temperature is not positively increased by the additional injection, and the temperature of the catalyst is waited for. When the catalyst temperature Tcat reaches the activation temperature Tcatth2, the controller sets the catalyst warm-up control flag to 0 in step 24, and ends the catalyst warm-up control.

【0033】一方、ステップ22で成層リーン燃焼領域
である場合には、ステップ25へ進み、所定の2度噴射
用のマップを参照して、機関回転数およびアクセル開度
に基づき、主噴射の噴射量および追加噴射の噴射量をそ
れぞれ決定し、かつ、ステップ26で、それぞれの噴射
を実行する。主噴射は、通常の成層リーン燃焼の場合と
同様に圧縮行程において行われ、追加噴射は、これより
も遅れて膨張行程中に行われる。なお、主噴射と追加噴
射との総噴射量による排気ガスの空燃比が、理論空燃比
よりもリッチとならないように追加噴射の噴射量が設定
されている。そして、ステップ27で触媒温度Tcat
を活性温度Tcatth2と比較し、該活性温度Tca
tth2に達するまで追加噴射による暖機制御を継続す
る。触媒温度Tcatが活性温度Tcatth2に達し
たら、ステップ28で触媒暖機制御フラグを0とし、こ
の触媒暖機制御を終了する。
On the other hand, if it is determined in step 22 that the engine is in the stratified lean combustion region, the routine proceeds to step 25, where the injection of the main injection is performed based on the engine speed and the accelerator opening with reference to a predetermined twice-injection map. The injection amount and the injection amount of the additional injection are respectively determined, and each injection is executed in step 26. The main injection is performed in the compression stroke as in the case of normal stratified lean combustion, and the additional injection is performed later in the expansion stroke. The injection amount of the additional injection is set so that the air-fuel ratio of the exhaust gas based on the total injection amount of the main injection and the additional injection does not become richer than the stoichiometric air-fuel ratio. Then, at step 27, the catalyst temperature Tcat
Is compared with the activation temperature Tcatth2, and the activation temperature Tca
The warm-up control by the additional injection is continued until tth2 is reached. When the catalyst temperature Tcat reaches the activation temperature Tcatth2, the controller sets the catalyst warm-up control flag to 0 in step 28, and ends the catalyst warm-up control.

【0034】次に、図6は、触媒加熱制御フラグが1と
なっている場合に実行される触媒加熱制御の処理を示す
フローチャートである。先ず、ステップ31で各種セン
サが検出した検出信号を読み込み、かつステップ32
で、そのときの運転条件が、2度噴射の許容領域である
か禁止領域であるかを、図9のマップを参照して判断す
る。上記許容領域および禁止領域は、図2の成層リーン
燃焼領域および均質燃焼領域に、概ね対応しているが、
2度噴射の許容領域は成層リーン燃焼領域よりも高速高
負荷側へ拡大している。
Next, FIG. 6 is a flow chart showing the processing of the catalyst heating control executed when the catalyst heating control flag is set to "1". First, in step 31, the detection signals detected by the various sensors are read, and in step 32
Then, it is determined with reference to the map of FIG. 9 whether the operating condition at that time is the allowable region or the prohibited region of the double injection. Although the above-mentioned allowable area and prohibited area generally correspond to the stratified lean combustion area and the homogeneous combustion area in FIG. 2,
The allowable range of the second injection is extended to the high speed and high load side than the stratified lean combustion region.

【0035】ここで、高速高負荷側の2度噴射禁止領域
であれば、2度噴射は行わず、通常の均質燃焼を行う。
そしてステップ33へ進み、触媒温度Tcatを、硫黄
成分が脱離し得る温度に相当する第3設定温度Tcat
th3(例えば500℃)と比較する。すなわち、上記
の禁止領域は、そもそも排気温度が高い中〜高負荷運転
であるため、追加噴射による積極的な昇温は行わない。
触媒温度Tcatが第3設定温度Tcatth3に達し
た場合には、ステップ34に進んで空燃比をリッチ補正
し、NOx触媒13に吸収されていた硫黄成分を放出さ
せる。この空燃比のリッチ化は、処理タイマTmが所定
時間Tmth(例えば15秒)に達するまで継続される
(ステップ35,38)。所定時間Tmthに達した
ら、ステップ36でタイマTmの値をクリヤし、かつス
テップ37で触媒加熱制御フラグを0として、この触媒
加熱制御を終了する。
Here, in the double injection prohibition region on the high-speed, high-load side, normal injection is not performed but normal homogeneous combustion is performed.
Then, the process proceeds to a step 33, wherein the catalyst temperature Tcat is set to a third set temperature Tcat corresponding to a temperature at which a sulfur component can be desorbed.
th3 (for example, 500 ° C.). That is, in the above-described prohibited area, since the exhaust temperature is high and the load is in the middle to high load operation, the temperature is not positively increased by the additional injection.
If the catalyst temperature Tcat has reached the third set temperature Tcatth3, the routine proceeds to step 34, where the air-fuel ratio is richly corrected, and the sulfur component absorbed by the NOx catalyst 13 is released. This enrichment of the air-fuel ratio is continued until the processing timer Tm reaches a predetermined time Tmth (for example, 15 seconds) (steps 35 and 38). When the predetermined time Tmth has been reached, the value of the timer Tm is cleared in step 36, the catalyst heating control flag is set to 0 in step 37, and this catalyst heating control ends.

【0036】一方、ステップ32で2度噴射の許容領域
である場合には、ステップ39へ進み、所定の2度噴射
用のマップを参照して、機関回転数およびアクセル開度
に基づき、主噴射の噴射量および追加噴射の噴射量をそ
れぞれ決定し、かつ、ステップ40で、それぞれの噴射
を実行する。主噴射は、通常の成層リーン燃焼の場合と
同様に圧縮行程において行われ、追加噴射は、これより
も遅れて膨張行程中に行われる。なお、この場合の追加
噴射の量は、前述した触媒暖機制御のステップ25での
追加噴射量と等しいものであってもよく、あるいは別の
特性に沿って与えるようにしてもよい。但し、この場合
も、主噴射と追加噴射との総噴射量による排気ガスの空
燃比が、理論空燃比よりもリッチとならないように追加
噴射の噴射量が設定されている。そして、ステップ41
で触媒温度Tcatを上記第3設定温度Tcatth3
と比較し、該第3設定温度Tcatth3に達するまで
追加噴射による加熱制御を継続する。触媒温度Tcat
が第3設定温度Tcatth3に達したら、ステップ4
2に進んで空燃比をリッチ補正し、NOx触媒13に吸
収されていた硫黄成分を放出させる。この空燃比のリッ
チ化は、処理タイマTmが所定時間Tmth(例えば1
5秒)に達するまで継続される(ステップ43,4
6)。所定時間Tmthに達したら、ステップ44でタ
イマTmの値をクリヤし、かつステップ45で触媒加熱
制御フラグを0として、この触媒加熱制御を終了する。
On the other hand, if it is determined in step 32 that the region is within the allowable range of the double injection, the process proceeds to step 39, and the main injection is performed based on the engine speed and the accelerator opening with reference to a predetermined double injection map. And the injection amount of the additional injection are determined, and in step 40, each injection is executed. The main injection is performed in the compression stroke as in the case of normal stratified lean combustion, and the additional injection is performed later in the expansion stroke. The amount of additional injection in this case may be equal to the additional injection amount in step 25 of the catalyst warm-up control described above, or may be provided according to another characteristic. However, also in this case, the injection amount of the additional injection is set so that the air-fuel ratio of the exhaust gas based on the total injection amount of the main injection and the additional injection does not become richer than the stoichiometric air-fuel ratio. And step 41
And the catalyst temperature Tcat at the third set temperature Tcatth3
And the heating control by the additional injection is continued until the temperature reaches the third set temperature Tcatth3. Catalyst temperature Tcat
When the temperature reaches the third set temperature Tcatth3, step 4
The process proceeds to step 2 where the air-fuel ratio is rich-corrected, and the sulfur component absorbed by the NOx catalyst 13 is released. This enrichment of the air-fuel ratio is performed by setting the processing timer Tm to a predetermined time Tmth (for example, 1
(5 seconds) (steps 43 and 4).
6). When the predetermined time Tmth has been reached, the value of the timer Tm is cleared in step 44, and the catalyst heating control flag is set to 0 in step 45 to terminate the catalyst heating control.

【0037】なお、上記の実施の形態では、図9の特性
を図2のマップとは別のマップとしてメモリ内に保持し
ているものとして説明したが、図2に示した特性の境界
を、高負荷側もしくは高速側へシフトさせるような形で
補正することにより、2度噴射の許容領域であるか禁止
領域であるかを判別するように構成することも可能であ
る。
In the above embodiment, the characteristics shown in FIG. 9 are stored in the memory as a map different from the map shown in FIG. 2. However, the boundary of the characteristics shown in FIG. By performing correction in such a manner as to shift to a higher load side or a higher speed side, it is also possible to determine whether it is a double injection allowable area or a prohibited injection area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態の構成を示す構成説明
図。
FIG. 1 is a configuration explanatory diagram showing a configuration of an embodiment of the present invention.

【図2】成層リーン燃焼領域と均質燃焼領域とを示す特
性図。
FIG. 2 is a characteristic diagram showing a stratified lean combustion region and a homogeneous combustion region.

【図3】この実施の形態のメインルーチンを示すフロー
チャート。
FIG. 3 is a flowchart showing a main routine of the embodiment.

【図4】通常運転時の制御の流れを示すフローチャー
ト。
FIG. 4 is a flowchart showing the flow of control during normal operation.

【図5】触媒暖機制御の処理を示すフローチャート。FIG. 5 is a flowchart illustrating a process of catalyst warm-up control.

【図6】触媒加熱制御の処理を示すフローチャート。FIG. 6 is a flowchart showing processing of catalyst heating control.

【図7】内燃機関のNOx排出量を示すNOx排出量マ
ップの特性図。
FIG. 7 is a characteristic diagram of a NOx emission map showing the NOx emission of the internal combustion engine.

【図8】NOx触媒のNOx吸収効率を示す吸収効率マ
ップの特性図。
FIG. 8 is a characteristic diagram of an absorption efficiency map showing the NOx absorption efficiency of the NOx catalyst.

【図9】2度噴射の許容領域と禁止領域とを示す特性
図。
FIG. 9 is a characteristic diagram showing an allowable area and a prohibited area of the second injection.

【符号の説明】[Explanation of symbols]

1…内燃機関 3…燃料噴射弁 11…エンジンコントロールユニット 13…NOx触媒 14…三元触媒 15…触媒温度センサ 17…NOxセンサ DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 3 ... Fuel injection valve 11 ... Engine control unit 13 ... NOx catalyst 14 ... Three-way catalyst 15 ... Catalyst temperature sensor 17 ... NOx sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 330 F02D 41/04 330M 41/14 310 41/14 310K (72)発明者 岡田 圭司 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G091 AA17 AA24 AB03 AB06 BA11 CB02 CB03 EA01 EA05 EA07 EA16 EA18 EA33 EA34 FA09 FA14 HA08 HA36 HA37 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/04 330 F02D 41/04 330M 41/14 310 41/14 310K (72) Inventor Keiji Okada Kanagawa F-term in Nissan Motor Co., Ltd. 2 Takaracho, Kanagawa-ku, Yokohama 3G091 AA17 AA24 AB03 AB06 BA11 CB02 CB03 EA01 EA05 EA07 EA16 EA18 EA33 EA34 FA09 FA14 HA08 HA36 HA37

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ内に直接燃料を噴射する燃料噴
射弁を備え、主に圧縮行程に燃料を噴射することにより
成層リーン燃焼を実現するとともに、主に吸気行程に燃
料を噴射することにより理論空燃比近傍での均質燃焼を
実現する筒内直噴型内燃機関であって、かつ排気通路
に、流入する排気ガスの空燃比に応じてNOxの吸収,
放出を行う作用を有するNOx触媒を備えてなる内燃機
関の排気浄化装置において、 上記NOx触媒の強制的な昇温の要求を検出する昇温要
求検出手段と、この昇温要求時に、上記燃料噴射弁によ
る主噴射に加えて追加噴射を行う燃料噴射制御手段と、
機関の運転条件に基づいて上記追加噴射を禁止する禁止
手段と、を有し、上記禁止手段は、上記成層リーン燃焼
を行う運転領域よりも高速高負荷側へ拡大した領域まで
追加噴射を許容することを特徴とする内燃機関の排気浄
化装置。
1. A fuel injection valve for directly injecting fuel into a cylinder to realize stratified lean combustion by injecting fuel mainly in a compression stroke and theoretically by injecting fuel mainly in an intake stroke. An in-cylinder direct injection internal combustion engine that achieves homogeneous combustion near the air-fuel ratio, and absorbs NOx according to the air-fuel ratio of exhaust gas flowing into an exhaust passage.
In an exhaust gas purifying apparatus for an internal combustion engine having a NOx catalyst having a function of releasing, a temperature rise request detecting means for detecting a request for forcibly raising the temperature of the NOx catalyst, and the fuel injection Fuel injection control means for performing additional injection in addition to the main injection by the valve,
Prohibition means for prohibiting the additional injection based on the operating conditions of the engine, wherein the prohibition means permits the additional injection up to a high-speed, high-load region that is wider than the operation region in which the stratified lean combustion is performed. An exhaust gas purification device for an internal combustion engine, comprising:
【請求項2】 上記昇温要求検出手段は、上記NOx触
媒が硫黄被毒状態にあることを検出するものであること
を特徴とする請求項1記載の内燃機関の排気浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said temperature increase request detecting means detects that said NOx catalyst is in a sulfur poisoning state.
【請求項3】 上記硫黄被毒状態を、上記NOx触媒の
下流に設けたNOxセンサが検出するNOx濃度に基づ
いて判定することを特徴とする請求項2記載の内燃機関
の排気浄化装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein the sulfur poisoning state is determined based on a NOx concentration detected by a NOx sensor provided downstream of the NOx catalyst.
【請求項4】 主噴射を圧縮行程において行い、追加噴
射を膨張行程において行うことを特徴とする請求項1〜
3のいずれかに記載の内燃機関の排気浄化装置。
4. The method according to claim 1, wherein the main injection is performed in a compression stroke, and the additional injection is performed in an expansion stroke.
3. The exhaust gas purifying apparatus for an internal combustion engine according to any one of 3.
【請求項5】 主噴射と追加噴射との総噴射量による排
気ガスの空燃比が、理論空燃比よりもリッチとならない
ように追加噴射の噴射量が設定されていることを特徴と
する請求項1〜4のいずれかに記載の内燃機関の排気浄
化装置。
5. The injection amount of the additional injection is set so that the air-fuel ratio of the exhaust gas based on the total injection amount of the main injection and the additional injection does not become richer than the stoichiometric air-fuel ratio. An exhaust purification device for an internal combustion engine according to any one of claims 1 to 4.
JP30970298A 1998-10-30 1998-10-30 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3675198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30970298A JP3675198B2 (en) 1998-10-30 1998-10-30 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30970298A JP3675198B2 (en) 1998-10-30 1998-10-30 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000130212A true JP2000130212A (en) 2000-05-09
JP3675198B2 JP3675198B2 (en) 2005-07-27

Family

ID=17996265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30970298A Expired - Fee Related JP3675198B2 (en) 1998-10-30 1998-10-30 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3675198B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018764A1 (en) * 2000-09-02 2002-03-07 Robert Bosch Gmbh Method for heating up catalysts in the exhaust gas of internal combustion engines
US6813879B2 (en) 2000-09-02 2004-11-09 Robert Bosch Gmbh Method for heating up catalysts in the exhaust gas of internal combustion engines
US6941744B2 (en) 2002-10-21 2005-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system and method
JP2009133256A (en) * 2007-11-30 2009-06-18 Yanmar Co Ltd Method for controlling dual fuel engine
CN101059111B (en) * 2007-05-17 2010-07-28 大连理工大学 Fuel oil jet method of direct-jet type gasoline engine adopting ignition chamber burning system
WO2011122015A1 (en) 2010-03-31 2011-10-06 Mazda Motor Corporation Control system for gasoline engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018764A1 (en) * 2000-09-02 2002-03-07 Robert Bosch Gmbh Method for heating up catalysts in the exhaust gas of internal combustion engines
US6813879B2 (en) 2000-09-02 2004-11-09 Robert Bosch Gmbh Method for heating up catalysts in the exhaust gas of internal combustion engines
US6941744B2 (en) 2002-10-21 2005-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system and method
CN101059111B (en) * 2007-05-17 2010-07-28 大连理工大学 Fuel oil jet method of direct-jet type gasoline engine adopting ignition chamber burning system
JP2009133256A (en) * 2007-11-30 2009-06-18 Yanmar Co Ltd Method for controlling dual fuel engine
WO2011122015A1 (en) 2010-03-31 2011-10-06 Mazda Motor Corporation Control system for gasoline engine
US9650984B2 (en) 2010-03-31 2017-05-16 Mazda Motor Corporation Control system for gasoline engine

Also Published As

Publication number Publication date
JP3675198B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP4389372B2 (en) Engine fuel control device
US6502391B1 (en) Exhaust emission control device of internal combustion engine
JP3680611B2 (en) Exhaust gas purification device for internal combustion engine
US6438943B1 (en) In-cylinder injection type internal combustion engine
JP3702924B2 (en) Exhaust purification device
US6907862B2 (en) Combustion control apparatus for internal combustion engine
JP4099272B2 (en) Method for regenerating nitrogen oxide trap in exhaust system of internal combustion engine
JP3052777B2 (en) In-cylinder injection internal combustion engine
JP3257420B2 (en) In-cylinder injection internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP3085192B2 (en) Engine exhaust gas purifier
JP3873537B2 (en) Exhaust gas purification device for internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP3911917B2 (en) Exhaust gas purification device for internal combustion engine
JP3962920B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP3680241B2 (en) Exhaust gas purification device for internal combustion engine
JP3520731B2 (en) Engine exhaust purification device
JP3496572B2 (en) Exhaust gas purification device for internal combustion engine
JPH11107828A (en) Air-fuel ratio controller for internal combustion engine
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine
JP2002013414A (en) Exhaust emission control device for internal combustion engine
JP4457442B2 (en) Exhaust gas purification device for internal combustion engine
JPH11200852A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees