JP2665739B2 - Visibility measurement device - Google Patents

Visibility measurement device

Info

Publication number
JP2665739B2
JP2665739B2 JP62022206A JP2220687A JP2665739B2 JP 2665739 B2 JP2665739 B2 JP 2665739B2 JP 62022206 A JP62022206 A JP 62022206A JP 2220687 A JP2220687 A JP 2220687A JP 2665739 B2 JP2665739 B2 JP 2665739B2
Authority
JP
Japan
Prior art keywords
light
dark
contrast
visibility
sign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62022206A
Other languages
Japanese (ja)
Other versions
JPS63188741A (en
Inventor
政夫 竹内
敬志 石本
他喜男 野原
義文 福沢
望 三浦
将之 大石
征三 松村
茂之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62022206A priority Critical patent/JP2665739B2/en
Publication of JPS63188741A publication Critical patent/JPS63188741A/en
Application granted granted Critical
Publication of JP2665739B2 publication Critical patent/JP2665739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/538Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、道路上等における視程を計測する視程計
測装置に関するものである。 [従来の技術] 第6図は従来の視程計測装置を示す外観図である。図
において、(11)は投受光装置、(12)はその投光部、
(13)はその受光部で、(14)は投受光装置(11)の出
力を処理するデータ処理装置である。また、第7図は前
記投受光装置(11)の構成を示すブロック図であり、図
において、(15)は光源、(16)は光源(15)の前に配
置されて光源(15)からの光を変調するチョッパ、(1
7)はチョッパ(16)の前に配置されて、投光部(12)
への光の一部を分岐させるハーフミラー、(18)はハー
フミラー(17)で分岐された光の光量を検出する受光素
子、(19)は受光部(13)へ戻ってきた光の光量を検出
する受光素子、(20)は受光素子(18)及び(19)で検
出した光量データを演算処理する演算部である。 次に動作について説明する。光源(15)の発する光は
チョッパ(16)によって変調をかけられた連続光とな
り、投光部(12)より大気中に向けて照射され、またそ
の一部はハーフミラー(17)によって受光素子(18)へ
分岐させられる。受光素子(18)はハーフミラー(17)
で分岐された光を検出してその光量データを演算部(2
0)に出力する。投光部(12)より大気中に照射された
光Ioは大気中の雪等で散乱され、その後散乱光Iが受光
部(13)へ戻ってくる。受光素子(19)はこの後方散乱
光Iを検出してその光量データを演算部(20)へ出力す
る。 ここで、視程の高い清浄な大気では照射された光Ioは
散乱されることはなく、後方散乱光Iが受光部(13)へ
戻ってくることはないが、降雪等によって視程が低くな
るに従ってその雪等による散乱が増大し、受光素子(1
9)で検出される後方散乱光Iの光量も大きくなる。ま
た、外光の影響は照射する光Ioとしてチョッパ(16)で
変調をかけた連続光を用いることで除去している。 演算部(20)はこのようにして受光素子(18)及び
(19)より受け取った各光量データを演算してデータ処
理装置(14)へ送出し、データ処理装置(14)ではそれ
を視程に変換して出力する。ここで、視程Lは次式によ
って求められる。 L=α(I/Io) ここで、αは視程係数、I,Ioはそれぞれ照射した光あ
るいは後方乱反射光の光量である。 [発明が解決しようとする問題点] 従来の視程計測装置は以上のように構成されているの
で、出力は100%任意目盛であり、実際の視程との関係
がその設置場所によって異なるため、設置場所毎に装置
の校正が必要となり、また、運用時もその校正表などに
よる運用をしなくてはならず、さらに、人間の眼による
視程は目標物と周囲との明暗によって決まるが、後方散
乱方式による従来の視程計測装置ではこの点に関する考
慮がなされていないなどの問題点があった。 この発明は上記のような問題点を解消するためになさ
れたもので、明暗の異なる領域を有する示標の認識でき
る距離を周囲の明るさの変化に対応し測定することがで
きる視程計測装置を得ることを目的とする。 [問題点を解決するための手段] この発明に係る視程計測装置は、視程算出手段により
テレビカメラから入力した前記画像情報より明領域部分
と暗領域部分とを切り出し、それぞれの領域の明るさが
データから所定距離だけ離れた位置の示標の明暗のコン
トラストを検出し、大気の混濁の影響を受けない距離で
撮像された明暗のコントラストと明暗コントラスト検出
手段により検出された明暗のコントラストとから示標ま
での視程を算出するものである。 また、別の発明に係る視程計測装置は、交番パターン
に直交する一次元データを求め、この一次元データを高
速フーリエ交換あるいは高速アダマール変換によって、
周波数スペクトルの基本波である周波数の前後n個のパ
ワースペクトルの和を算出した後、この和をn個で平均
化したものにおける振幅を求め、この振幅から求めた大
気の混濁の影響を受けない距離で撮像された明暗のコン
トラストとから視程を求めるものである。 [作用] この発明における視程計測装置は、大気中に設置され
た明暗の異なる領域を有する示標をテレビカメラにより
撮像し、この画像情報より明領域部分と暗領域部分とを
切り出し、それぞれの領域の明るさデータから大気の混
濁の影響を受けない距離で撮像された明暗のコントラス
トとに基づいて示標までの視程を求める。 [実施例] 以下、この発明の一実施例を図について説明する。第
1図において、(1)は道路の路肩等に立てられたポー
ル上に設置され、明暗検出装置として作用するテレビカ
メラ、(2)は黒と白とが上下に塗り分けられ、道路の
路肩等にテレビカメラ(1)から所定の距離Dだけ離れ
た位置に配置された専用示標、(3)はテレビカメラ
(1)からの画像情報を処理するイメージ処理装置であ
る。 また、第2図はイメージ処理装置(3)の構成を示す
ブロック図であり、図において、(4)はテレビカメラ
(1)からの画像情報をアナログ信号からディジタル信
号に変換するアナログ・ディジタル変換器(以下、A/D
変換器という)、(5)はA/D変換器(4)でディジタ
ル信号に変換された画像情報を格納する画像メモリ、
(6)はこのイメージ処理装置(3)の処理を制御する
中央処理装置(以下、CPUという)、(7)はこのCPU
(6)に接続された、メモリ(8)はCPU(6)での処
理結果を出力する出力ユニットである。 次に動作について説明する。テレビカメラ(1)は専
用示標(2)を撮影してその画像情報をイメージ処理装
置(3)へ送っている。イメージ処理装置(3)は送ら
れてきた画像情報をA/D変換器(4)にてディジタル信
号に変換して画像メモリ(5)へ格納する。第3図はテ
レビカメラ(1)の撮像画面の一例を示す説明図であ
り、CPU(6)は前記画像情報中より、専用示標(2)
の黒に塗れらた領域から(2a)で示される部分、また、
白に塗られた領域から(2b)で示される部分を切り出
し、それぞれの明るさのデータBt,Bbを読み込んで、距
離Dをおいて見たときの専用示標(2)の明暗コントラ
ストCdを次式より求める。 Cd=|Bt−Bb|/Bb ついで、この距離Dにおける専用示標(2)の明暗コ
ントラストCdと、大気の混濁の影響を受けない距離で撮
像されたときの専用示標(2)の明暗コントラストC0
基づいて、視程Vを次式によって求め、出力ユニット
(8)より出力する。 V=D・[ln(E)/ln(Cd/Co)] ここで、Dはテレビカメラ(1)と専用示標(2)と
の距離、Eは識別しきい値である。 なお、上記実施例では専用示標(2)として黒と白を
単純に塗り分けたものを示したが、第4図に示すように
黒と白の交番パターンであってもよい。この場合、ま
ず、この専用示標(2)の画像情報により、同図のA−
A線に沿った黒白交番パターンに直交する一次元データ
(第5図参照)を求め、この一次元データを高速フーリ
エ交換、あるいは高速アダマール変換等によって、周波
数スペクトルよりのフーリエ級数展開によるパワースペ
クトルが最も大きい値を示す周期性パターン(以下、基
本波という)における振幅(パワー)を求める。即ち、
第5図の一次元データに対するパワースペクトルは となる。ここで、IP(I)は画像データ、Z(K)は基
本波の次の周波数Kのパワーである。これにより、 基本波とその近傍のパワースペクトルの和MZは、 MZを平滑化した(これを基本波のパワースペクトルと
した)MMZは、 MMZ=MZ/(n−i) とすれば、明暗のコントラストCCMZは CCMZ=2MZ/(Z(0)+MMZ) となる。これを上記実施例における明暗コントラストCd
に用いれば、同様にして視程Vを求めることができる。 また、上記実施例では示標として黒と白に塗り分けた
専用示標を設けたものを示したが、テレビカメラから既
知の位置にある既存の黒い物体で、背景との明暗コント
ラストが測定でき、直近での黒レベルがわかるものであ
れば、示標として代用可能であり、例えば、立木の画像
情報を第4図の実施例の黒白交番パターンに見立てるこ
ともできる。さらに、示標を路肩等に固定せず、車両等
の先端に取り付け、車両の後端に取り付けたテレビカメ
ラでこれを撮像すれば、上記実施例と同様な処理で移動
しながら視程の測定が可能となり、明暗検出装置もテレ
ビカメラばかりでなく、スポット輝度計等の利用も可能
である。 また、上記実施例では降雪、吹雪等における視程測定
の場合について説明したが、霧、雨、煙、スモッグ等の
視程の測定に利用してもよく、上記実施例と同様の効果
を奏する。 [発明の効果] 以上のように、この発明によれば、大気中に設置され
た明暗の異なる領域を有する示標をテレビカメラにより
撮像し、この画像情報より明領域部分と暗領域部分とを
切り出し、それぞれの領域の明るさがデータから大気の
混濁の影響を受けない距離で撮像された明暗のコントラ
ストとに基づいて示標までの視程を求めるように構成し
たので、イメージ処理装置の設置場所毎の校正作業をテ
レビカメラ画面を見ながら容易に行うことができるとと
もに、目標物と周囲との明暗により視程を直接計測する
ことができ、視程精度を向上させることができる効果が
得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visibility measuring device that measures visibility on a road or the like. [Prior Art] FIG. 6 is an external view showing a conventional visibility measuring device. In the figure, (11) is a light emitting and receiving device, (12) is a light emitting unit,
(13) is a light receiving unit, and (14) is a data processing device for processing the output of the light emitting and receiving device (11). FIG. 7 is a block diagram showing the configuration of the light emitting and receiving device (11). In the drawing, (15) is a light source, and (16) is disposed in front of the light source (15) and extends from the light source (15). Chopper that modulates the light of the
7) is placed in front of the chopper (16), and the light emitting section (12)
A half mirror that splits a part of the light into the mirror, (18) is a light receiving element that detects the amount of light split by the half mirror (17), and (19) is a light amount that returns to the light receiving unit (13). Is a light receiving element for detecting the light amount, and (20) is an arithmetic unit for performing arithmetic processing on the light amount data detected by the light receiving elements (18) and (19). Next, the operation will be described. The light emitted from the light source (15) becomes continuous light modulated by the chopper (16), and is emitted from the light emitting part (12) toward the atmosphere, and a part of the light is received by the half mirror (17). Branched to (18). The light receiving element (18) is a half mirror (17)
Detects the light branched by and calculates the light amount data of the calculation unit (2
0) is output. Light Io emitted from the light projecting unit (12) into the atmosphere is scattered by snow and the like in the atmosphere, and then the scattered light I returns to the light receiving unit (13). The light receiving element (19) detects the backscattered light I and outputs the light amount data to the calculation unit (20). Here, in the clean atmosphere with high visibility, the irradiated light Io is not scattered, and the backscattered light I does not return to the light receiving unit (13). However, as the visibility becomes lower due to snowfall or the like, The scattering due to snow etc. increases and the light receiving element (1
The amount of backscattered light I detected in 9) also increases. The influence of external light is eliminated by using continuous light modulated by a chopper (16) as the light Io to be irradiated. The calculation unit (20) calculates the respective light amount data received from the light receiving elements (18) and (19) in this way and sends the data to the data processing device (14). Convert and output. Here, the visibility L is obtained by the following equation. L = α (I / Io) Here, α is a visibility coefficient, and I and Io are the amounts of irradiated light or backward irregularly reflected light, respectively. [Problems to be Solved by the Invention] Since the conventional visibility measuring device is configured as described above, the output is 100% arbitrary scale, and the relationship with the actual visibility differs depending on the installation location. It is necessary to calibrate the device for each location, and it is necessary to use the calibration table during operation, and the visibility of the human eye is determined by the brightness of the target and the surroundings, but backscattering There is a problem that this point is not considered in the conventional visibility measuring device based on the system. The present invention has been made in order to solve the above-described problems, and a visibility measuring device capable of measuring a recognizable distance of a sign having an area with different brightness in accordance with a change in surrounding brightness. The purpose is to gain. [Means for Solving the Problem] The visibility measuring device according to the present invention cuts out a bright region portion and a dark region portion from the image information input from the television camera by the visibility calculating device, and the brightness of each region is reduced. The contrast of the sign at a position separated by a predetermined distance from the data is detected, and the contrast is detected from the contrast of light and dark captured at a distance not affected by atmospheric turbidity and the contrast of light and dark detected by the contrast detector. This is to calculate the visibility to the target. In addition, the visibility measuring device according to another invention obtains one-dimensional data orthogonal to the alternating pattern, and converts the one-dimensional data by fast Fourier exchange or fast Hadamard transform.
After calculating the sum of n power spectra before and after the frequency that is the fundamental wave of the frequency spectrum, the amplitude is obtained by averaging this sum with n, and is not affected by the turbidity of the atmosphere obtained from this amplitude. The visibility is determined from the contrast between light and dark images captured at a distance. [Operation] The visibility measuring device according to the present invention captures, by a television camera, a sign having regions of different lightness and darkness installed in the atmosphere, and cuts out a bright region portion and a dark region portion from the image information. The visibility up to the sign is determined based on the brightness data and the contrast of light and dark captured at a distance that is not affected by the turbidity of the atmosphere. Embodiment An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, (1) is a television camera installed on a pole standing on the shoulder of a road or the like and acts as a light / dark detection device. An exclusive sign disposed at a position separated from the television camera (1) by a predetermined distance D, and (3) is an image processing device for processing image information from the television camera (1). FIG. 2 is a block diagram showing the configuration of the image processing apparatus (3). In the figure, (4) is an analog / digital conversion for converting image information from the television camera (1) from an analog signal to a digital signal. Container (hereinafter A / D
And (5) an image memory for storing image information converted into a digital signal by the A / D converter (4).
(6) is a central processing unit (hereinafter referred to as a CPU) for controlling the processing of the image processing device (3), and (7) is a CPU
The memory (8) connected to (6) is an output unit for outputting the processing result of the CPU (6). Next, the operation will be described. The television camera (1) captures the exclusive sign (2) and sends the image information to the image processing device (3). The image processing device (3) converts the received image information into a digital signal by the A / D converter (4) and stores the digital signal in the image memory (5). FIG. 3 is an explanatory view showing an example of an image pickup screen of the television camera (1). The CPU (6) uses a dedicated sign (2) from the image information.
The part shown in (2a) from the area painted black,
The portion indicated by (2b) is cut out from the area painted white, and the brightness data Bt and Bb are read, and the contrast Cd of the exclusive sign (2) when viewed at a distance D is calculated. It is calculated from the following equation. Cd = | Bt−Bb | / Bb Next, the light-dark contrast Cd of the exclusive sign (2) at this distance D and the light-dark contrast of the exclusive sign (2) when imaged at a distance not affected by the turbidity of the atmosphere. Based on the contrast C 0 , the visibility V is obtained by the following equation, and is output from the output unit (8). V = D · [ln (E) / ln (Cd / Co)] Here, D is the distance between the television camera (1) and the exclusive sign (2), and E is the identification threshold. In the above-described embodiment, black and white are simply painted separately as the exclusive sign (2). However, as shown in FIG. 4, an alternating pattern of black and white may be used. In this case, first, the image information of this exclusive sign (2) is
One-dimensional data (see FIG. 5) orthogonal to the black-and-white alternating pattern along the line A is obtained, and the power spectrum obtained by Fourier series expansion from the frequency spectrum is converted to the one-dimensional data by fast Fourier exchange or fast Hadamard transform. An amplitude (power) in a periodic pattern (hereinafter, referred to as a fundamental wave) having the largest value is obtained. That is,
The power spectrum for the one-dimensional data in FIG. 5 is Becomes Here, IP (I) is the image data, and Z (K) is the power of the next frequency K of the fundamental wave. Thus, the sum MZ of the fundamental wave and the power spectrum in the vicinity thereof is If the MMZ obtained by smoothing the MZ (this is defined as the power spectrum of the fundamental wave) is MMZ = MZ / (ni), the contrast CCMZ of light and dark is CCMZ = 2MZ / (Z (0) + MMZ). . This is referred to as the light-dark contrast Cd in the above embodiment.
, The visibility V can be obtained in the same manner. Further, in the above-described embodiment, a dedicated sign painted black and white is provided as a sign.However, with an existing black object at a known position from a TV camera, the contrast between the background and the background can be measured. If the latest black level is known, it can be used as a sign. For example, image information of a standing tree can be regarded as a black-and-white alternating pattern of the embodiment of FIG. Furthermore, if the sign is not fixed to the road shoulder or the like, but is attached to the tip of a vehicle or the like, and the image is taken by a TV camera attached to the rear end of the vehicle, the visibility can be measured while moving by the same processing as in the above embodiment. It becomes possible to use not only a television camera but also a spot luminance meter as a light / dark detector. Further, in the above-described embodiment, the case of visibility measurement in snowfall, snowstorm, and the like has been described. However, the present invention may be used for measurement of visibility in fog, rain, smoke, smog, and the like, and has the same effect as the above-described embodiment. [Effects of the Invention] As described above, according to the present invention, a sign provided in the atmosphere and having different light and dark areas is imaged by a television camera, and the light area and the dark area are determined based on the image information. It is configured so that the visibility of each area is determined based on the brightness of each area from the data and the contrast of light and dark captured at a distance that is not affected by the turbidity of the atmosphere. The calibration operation can be easily performed while watching the television camera screen, and the visibility can be directly measured based on the brightness of the target and the surroundings, so that the visibility accuracy can be improved.

【図面の簡単な説明】 第1図はこの発明の一実施例による視程計測装置を示す
外観図、第2図はそのイメージ処理装置の構成を示すブ
ロック図、第3図はそのテレビカメラの撮像画面の一例
を示す説明図、第4図はこの発明の他の実施例による専
用示標を示す正面図、第5図はその黒白パターンに直交
する一次元データを示すグラフ図、第6図は従来の視程
計測装置を示す外観図、第7図はその投受光装置の構成
を示すブロック図である。 (1)は明暗検出装置(テレビカメラ)、(2)は示標
(専用示標)、(3)はイメージ処理装置。 なお、図中、同一符号は同一、又は相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view showing a visibility measuring device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a configuration of the image processing device, and FIG. FIG. 4 is a front view showing a dedicated sign according to another embodiment of the present invention, FIG. 5 is a graph showing one-dimensional data orthogonal to the black-and-white pattern, and FIG. FIG. 7 is an external view showing a conventional visibility measuring device, and FIG. 7 is a block diagram showing a configuration of the light emitting / receiving device. (1) is a light / dark detection device (television camera), (2) is a sign (dedicated sign), and (3) is an image processing device. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野原 他喜男 札幌市豊平区平岸1条3丁目1番地34号 北海道開発局土木試験所内 (72)発明者 福沢 義文 札幌市豊平区平岸1条3丁目1番地34号 北海道開発局土木試験所内 (72)発明者 三浦 望 神戸市兵庫区和田崎町1丁目1番2号 三菱電機株式会社制御製作所内 (72)発明者 大石 将之 神戸市兵庫区和田崎町1丁目1番2号 三菱電機株式会社制御製作所内 (72)発明者 松村 征三 神戸市兵庫区和田崎町1丁目1番2号 三菱電機株式会社制御製作所内 (72)発明者 内藤 茂之 神戸市兵庫区和田崎町1丁目1番2号 三菱電機株式会社制御製作所内 (56)参考文献 特開 昭50−81579(JP,A) 特開 昭51−88830(JP,A) 特開 昭59−128033(JP,A) 実開 昭50−42784(JP,U)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshio Nohara               No. 34, 1-3-1, Hiragishi, Toyohira-ku, Sapporo-shi                 Hokkaido Development Bureau Civil Engineering Laboratory (72) Inventor Yoshifumi Fukuzawa               No. 34, 1-3-1, Hiragishi, Toyohira-ku, Sapporo-shi                 Hokkaido Development Bureau Civil Engineering Laboratory (72) Inventor Noboru Miura               1-2-1, Wadazakicho, Hyogo-ku, Kobe-shi               Mitsubishi Electric Corporation Control Factory (72) Inventor Masayuki Oishi               1-2-1, Wadazakicho, Hyogo-ku, Kobe-shi               Mitsubishi Electric Corporation Control Factory (72) Inventor Seizo Matsumura               1-2-1, Wadazakicho, Hyogo-ku, Kobe-shi               Mitsubishi Electric Corporation Control Factory (72) Inventor Shigeyuki Naito               1-2-1, Wadazakicho, Hyogo-ku, Kobe-shi               Mitsubishi Electric Corporation Control Factory                (56) References JP-A-50-81579 (JP, A)                 JP-A-51-88830 (JP, A)                 JP-A-59-128033 (JP, A)                 50-42784 (JP, U)

Claims (1)

(57)【特許請求の範囲】 1.大気中の所定距離だけ離れた位置に設置された明暗
の異なる領域を有する示標を撮像しその撮像した画像情
報を出力するテレビカメラと、このテレビカメラから入
力した前記画像情報より明領域部分と暗領域部分とを切
り出し、それぞれの領域の明るさがデータから前記所定
距離だけ離れた位置の前記示標の明暗のコントラストを
検出する明暗コントラスト検出手段および大気の混濁の
影響を受けない距離で撮像された明暗のコントラストと
前記明暗コントラスト検出手段により検出された明暗の
コントラストとから前記示標までの視程を算出する視程
算出手段を有するイメージ処理装置とを備えた視程計測
装置。 2.示標は明暗の異なる領域を交互に塗り分けた交番パ
ターンであるとともに、イメージ処理装置はこの交番パ
ターンに直交する一次元データを求め、この一次元デー
タを高速フーリエ交換あるいは高速アダマール変換によ
って、周波数スペクトルの基本波である周波数の前後n
個のパワースペクトルの和を算出した後、この和をn個
で平均化したものにおける振幅を求め、この振幅から求
めた明暗のコントラストと大気の混濁の影響を受けない
距離で撮像された明暗のコントラストとから視程を求め
ることを特徴とする請求項1記載の視程計測装置。
(57) [Claims] A television camera that captures a sign having a different area of light and darkness installed at a position separated by a predetermined distance in the atmosphere and outputs image information of the captured image, and a brighter area than the image information input from the television camera. A dark area portion is cut out, and the brightness of each area is detected by the light / dark contrast detecting means for detecting the light / dark contrast of the sign at a position separated from the data by the predetermined distance, and imaged at a distance which is not affected by the turbidity of the atmosphere. A visibility measuring device comprising: an image processing device having visibility calculating means for calculating the visibility to the sign from the contrast of light and dark and the contrast of light and dark detected by the light and dark contrast detecting means. 2. The sign is an alternating pattern in which areas of different lightness and darkness are alternately painted, and the image processing apparatus obtains one-dimensional data orthogonal to the alternating pattern, and the one-dimensional data is subjected to high-speed Fourier exchange or high-speed Hadamard transform to obtain a frequency. N around the frequency that is the fundamental wave of the spectrum
After calculating the sum of the power spectra, the amplitude of the average of the sum is calculated by n, and the contrast of the light and dark obtained from this amplitude and the light and dark captured at a distance not affected by the turbidity of the atmosphere are obtained. The visibility measuring device according to claim 1, wherein the visibility is determined from the contrast.
JP62022206A 1987-02-02 1987-02-02 Visibility measurement device Expired - Lifetime JP2665739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62022206A JP2665739B2 (en) 1987-02-02 1987-02-02 Visibility measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62022206A JP2665739B2 (en) 1987-02-02 1987-02-02 Visibility measurement device

Publications (2)

Publication Number Publication Date
JPS63188741A JPS63188741A (en) 1988-08-04
JP2665739B2 true JP2665739B2 (en) 1997-10-22

Family

ID=12076318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62022206A Expired - Lifetime JP2665739B2 (en) 1987-02-02 1987-02-02 Visibility measurement device

Country Status (1)

Country Link
JP (1) JP2665739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326541A (en) * 1998-05-21 1999-11-26 Nissan Motor Co Ltd Image pickup environmental assumer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4463388B2 (en) * 2000-06-29 2010-05-19 小糸工業株式会社 Visual status measurement device
DE10034461A1 (en) 2000-07-15 2002-01-31 Bosch Gmbh Robert Procedure for determining visibility
JP3412013B2 (en) * 2000-11-27 2003-06-03 国土交通省国土技術政策総合研究所長 Obstacle collision prevention support system
DE10219788C1 (en) * 2002-05-03 2003-11-13 Bosch Gmbh Robert Method and device for measuring visibility with image sensor systems
JP4725391B2 (en) * 2006-03-29 2011-07-13 株式会社デンソー Visibility measuring device for vehicle and driving support device
JP2012037418A (en) * 2010-08-09 2012-02-23 Asmo Co Ltd Visual field information acquisition method, and visual field information acquisition apparatus
CN102253013A (en) * 2011-04-29 2011-11-23 陈伟 Transmission method visibility detection device and method applied in field of transportation
CN107110648A (en) 2014-11-06 2017-08-29 金泰克斯公司 The system and method detected for visual range
IT201800005817A1 (en) * 2018-05-29 2019-11-29 DEVICE AND METHOD FOR VISIBILITY MEASUREMENTS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413103Y2 (en) * 1973-08-13 1979-06-05
JPS5246823B2 (en) * 1973-11-21 1977-11-28
JPS5188830A (en) * 1975-01-31 1976-08-03
JPS59128033A (en) * 1983-01-12 1984-07-24 Nippon Denso Co Ltd Controller of wiper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326541A (en) * 1998-05-21 1999-11-26 Nissan Motor Co Ltd Image pickup environmental assumer

Also Published As

Publication number Publication date
JPS63188741A (en) 1988-08-04

Similar Documents

Publication Publication Date Title
US7016519B1 (en) Method and device for detecting three-dimensional information
JP3083918B2 (en) Image processing device
JP2665739B2 (en) Visibility measurement device
US8953839B2 (en) Recognition object detecting apparatus
JP4408095B2 (en) Vehicle and road marking recognition device
EP2927710B1 (en) Ranging system, information processing method and program thereof
US20060197937A1 (en) Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
KR20000071087A (en) Outdoor range finder
Kwon Atmospheric visibility measurements using video cameras: Relative visibility
WO2006054425A1 (en) Three-dimensional measuring instrument, three-dimensional measuring method, and three-dimensional measuring program
JP4389602B2 (en) Object detection apparatus, object detection method, and program
JP3695188B2 (en) Shape measuring apparatus and shape measuring method
KR102460791B1 (en) Method and arrangements for providing intensity peak position in image data from light triangulation in a three-dimensional imaging system
US20200408916A1 (en) Distance measurement device having external light illuminance measurement function and external light illuminance measurement method
US20020005956A1 (en) Method and device for measuring three-dimensional position
JPH10162287A (en) Compound sensor type vehicle sensor
CN111127436A (en) Displacement detection early warning method for bridge
JP3475529B2 (en) Signal processing device of optical information reading device
JPS6326841B2 (en)
JPH07209402A (en) Target detecting tracking device
US20200200908A1 (en) Object monitoring system including distance measuring device
JP2775924B2 (en) Image data creation device
JP3031577B2 (en) Surface measuring method and surface measuring device for device under test
JP2726830B2 (en) Road surface freeze detection device
JPH10208037A (en) Target detector

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term