JP2663379B2 - Electrofusion apparatus and energization control method thereof - Google Patents

Electrofusion apparatus and energization control method thereof

Info

Publication number
JP2663379B2
JP2663379B2 JP7297460A JP29746095A JP2663379B2 JP 2663379 B2 JP2663379 B2 JP 2663379B2 JP 7297460 A JP7297460 A JP 7297460A JP 29746095 A JP29746095 A JP 29746095A JP 2663379 B2 JP2663379 B2 JP 2663379B2
Authority
JP
Japan
Prior art keywords
joint
temperature
per unit
amount
unit time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7297460A
Other languages
Japanese (ja)
Other versions
JPH09109263A (en
Inventor
卓英 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirata Corp
Original Assignee
Hirata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirata Corp filed Critical Hirata Corp
Priority to JP7297460A priority Critical patent/JP2663379B2/en
Publication of JPH09109263A publication Critical patent/JPH09109263A/en
Application granted granted Critical
Publication of JP2663379B2 publication Critical patent/JP2663379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • B29C65/348Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52292Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91214Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods by measuring the electrical resistance of a resistive element belonging to one of the parts to be welded, said element acting, e.g. as a thermistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • B29C66/91311Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating
    • B29C66/91313Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating by measuring the voltage, i.e. the electric potential difference or electric tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • B29C66/91311Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating
    • B29C66/91315Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating by measuring the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • B29C66/91311Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating
    • B29C66/91317Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating by measuring the electrical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気溶融着装置及び
その通電制御方法に関する。特に、本発明は、パイプの
端部を継手に挿入し、継手の内周面に配設された発熱体
に通電してパイプの端部に溶融着(エレクトロフュージ
ョン)させるための電気溶融着装置の通電制御方法に関
する。また、その方法を用いた電気溶融着装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric fusion welding apparatus and a method for controlling energization thereof. In particular, the present invention relates to an electric fusion welding apparatus for inserting an end of a pipe into a joint and applying heat to a heating element disposed on the inner peripheral surface of the joint to cause fusion to the end of the pipe (electrofusion). The present invention relates to a power supply control method. Further, the present invention relates to an electric fusion bonding apparatus using the method.

【0002】[0002]

【従来の技術】予め螺旋状に巻かれた発熱線(電気抵抗
線)を内周面に配設された熱可塑性樹脂継手内に熱可塑
性樹脂パイプの端部を差込み、発熱線に電流を流して発
熱させ、継手とパイプの接合面を溶融させて接合させる
電気溶融着システムが、従来より用いられている。
2. Description of the Related Art An end of a thermoplastic resin pipe is inserted into a thermoplastic resin joint provided on an inner peripheral surface of a heating wire (electric resistance wire) wound in advance in a spiral shape, and an electric current flows through the heating wire. 2. Description of the Related Art An electric fusion bonding system that generates heat and melts and joins a joint surface between a joint and a pipe has been conventionally used.

【0003】このような電気溶融着装置においては、例
えば発熱線に通電して一定の単位時間当り熱量を発熱さ
せ、継手とパイプの樹脂を溶融させる。発熱線が所定の
通電終了最適温度Tsに達すると、通電を停止し、継手
を放冷させる。従来は、このような方法により、継手と
パイプを接合させるのが一般的である。
In such an electric fusion welding apparatus, for example, a heating wire is energized to generate heat per unit time, thereby melting the resin of the joint and the pipe. When the heating wire reaches a predetermined power supply termination optimum temperature Ts, the power supply is stopped and the joint is allowed to cool. Conventionally, a joint and a pipe are generally joined by such a method.

【0004】[0004]

【発明が解決しようとする課題】しかし、継手とパイプ
の融着をより完璧なものとしたい要求がある。そのよう
な場合には、図9(a)に示すように、本来の通電期間
A1〜A3が経過して発熱線の温度が通電終了最適温度
Tsに達した後も、一定期間A4の間、通電期間を延長
して発熱線に通電を続け、継手及びパイプを通電終了最
適温度Tsに維持する方法がある。
However, there is a demand for more perfect fusion of the joint and the pipe. In such a case, as shown in FIG. 9A, even after the original energization periods A1 to A3 have elapsed and the temperature of the heat generating wire has reached the energization end optimal temperature Ts, for a certain period A4, There is a method in which the power supply period is extended to continue the power supply to the heating wire, and the joint and the pipe are maintained at the power supply termination optimum temperature Ts.

【0005】このためには、期間A1〜A3においては
発熱線を発熱させて継手及びパイプに一定の単位時間当
り熱量Q1を加えるようにしていても、通電終了最適温
度Tsに達した後の延長期間A4には、継手に加える単
位時間当りの熱量と継手における単位時間当りの放熱量
とが等しくなるよう、図9(b)に示すように発熱線か
ら継手に加える単位時間当りの発熱量をQ3に減少させ
る必要がある。
[0005] For this reason, even if the heating wire is heated in the periods A1 to A3 to apply a heat quantity Q1 to the joints and pipes per unit time, the extension after reaching the optimum temperature Ts for ending the energization. In the period A4, the amount of heat generated per unit time added to the joint from the heating wire as shown in FIG. 9B so that the amount of heat applied per unit time to the joint is equal to the amount of heat released per unit time at the joint. It needs to be reduced to Q3.

【0006】従来は、継手の種類毎に実験を通して単位
時間当りの放熱量を求め、実験的に定めた単位時間当り
の放熱量と等しい値を、発熱線への通電条件として予め
メモリに格納していた。このため、継手の各種類毎に多
くの実験データを採取する必要があり、継手を通電終了
最適温度Tsに維持するための単位時間当りの発熱量
(もしくは通電量)を実験的に定める作業に多大の労力
を要していた。また、種類やサイズの異なる継手が販売
されると、その都度メモリのデータを書き換える必要が
あった。
Conventionally, the amount of heat radiation per unit time is obtained through experiments for each type of joint, and a value equal to the amount of heat radiation per unit time determined experimentally is stored in a memory in advance as a condition for energizing a heating wire. I was For this reason, it is necessary to collect a large amount of experimental data for each type of joint, and to experimentally determine the heat generation amount (or energization amount) per unit time for maintaining the joint at the optimal temperature Ts at which the energization ends. It took a lot of effort. When joints of different types and sizes are sold, it is necessary to rewrite the data in the memory each time.

【0007】さらには、継手のバラツキや環境温度の変
化等の原因により、メモリに予め格納されている通電条
件で発熱線を発熱させても発熱線の単位時間当りの発熱
量と放熱量との間に誤差が発生し、その場合には図9
(a)に2点鎖線で示すように維持温度が通電終了最適
温度Tsから次第に外れるという問題があった。特に、
2点鎖線イのように通電終了最適温度Tsよりも低くな
ると、十分な効果をえることができず、2点鎖線ロのよ
うに通電終了最適温度Tsよりも高過ぎると、継手やパ
イプの樹脂が劣化していた。
Furthermore, even if the heat generating wire is heated under the energizing condition stored in the memory in advance due to the variation of the joint or the change of the environmental temperature, the heat generation amount per unit time of the heat generating wire and the heat radiation amount are not changed. An error occurs between them, in which case FIG.
As shown by a two-dot chain line in (a), there has been a problem that the maintenance temperature gradually deviates from the power-supply termination optimum temperature Ts. Especially,
If the temperature is lower than the optimum temperature Ts for terminating the energization as shown by the two-dot chain line a, sufficient effects cannot be obtained. Had deteriorated.

【0008】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、継手からの
単位時間当りの放熱量を検出することにより、通電終了
最適温度に維持する延長期間において継手の温度を精度
よくコントロールできるようにすることにある。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object to detect the amount of heat released from the joint per unit time to maintain the temperature at the end of energization. The purpose of the present invention is to enable the temperature of the joint to be accurately controlled in an extended period of time.

【0009】[0009]

【発明の開示】請求項1に記載の電気溶融着装置の通電
制御方法は、継手の内周面に配設された発熱体に通電す
ることにより、合成樹脂製の継手と継手に挿入された合
成樹脂製のパイプの端部とを溶融着させるための電気溶
融着装置の通電制御方法であって、継手の溶融後継手の
温度が通電終了最適温度に達する前に、継手に加える単
位時間当りの熱量を変化させ、単位時間当りの熱量を変
化させる前後におけるそれぞれの継手温度の時間変化率
から単位時間当りの放熱量を求め、継手の温度が前記通
電終了最適温度に達した後、前記単位時間当りの放熱量
とほぼ等しい単位時間当りの熱量を継手に加えることを
特徴としている。
DISCLOSURE OF THE INVENTION According to a first aspect of the present invention, a power supply control method for an electric fusion splicer is provided in which a heating element disposed on an inner peripheral surface of a joint is energized to be inserted into the joint made of a synthetic resin and the joint. An electric power control method for an electric fusion welding apparatus for fusion-welding an end portion of a synthetic resin pipe, wherein the unit temperature applied to the joint before the temperature of the joint after melting of the joint reaches the optimal temperature at the end of energization is increased. The amount of heat per unit time is calculated from the time rate of change of each joint temperature before and after changing the amount of heat per unit time, and after the joint temperature reaches the optimal temperature at the end of energization, the unit It is characterized in that a heat quantity per unit time approximately equal to the heat release quantity per hour is applied to the joint.

【0010】継手の温度の時間変化率は、単位時間当り
に継手に加える熱量と、継手からの単位時間当りの放熱
量(パイプを通して放熱するものを含む)と、継手及び
パイプの熱容量とから決まる。従って、継手に加える単
位時間当りの熱量を変化させ、その前後における継手温
度の時間変化率を検出すれば、継手からの単位時間当り
の放熱量を自動的に求めることができる。こうして継手
からの単位時間当りの放熱量を求めれば、その単位時間
当りの放熱量と等しい単位時間当りの熱量を継手に加え
ることにより、通電期間の最後に継手の温度を通電終了
最適温度に維持することができる。
The time rate of change of the temperature of the joint is determined by the amount of heat applied to the joint per unit time, the amount of heat released from the joint per unit time (including heat radiated through the pipe), and the heat capacity of the joint and the pipe. . Therefore, by changing the amount of heat applied to the joint per unit time and detecting the time rate of change of the joint temperature before and after the change, the amount of heat released from the joint per unit time can be automatically obtained. When the amount of heat released from the joint per unit time is obtained in this way, the amount of heat per unit time equal to the amount of heat released per unit time is applied to the joint to maintain the temperature of the joint at the optimal temperature at the end of energization at the end of the energization period. can do.

【0011】従って、本発明によれば、予め継手の単位
時間当りの放熱量を実験的に求めてメモリに格納してお
く必要がなくなる。よって、単位時間当りの放熱量を実
験的に定める必要もなく、そのための実験作業を軽減で
きる。
Therefore, according to the present invention, it is not necessary to experimentally determine the amount of heat radiation of the joint per unit time and store it in the memory. Therefore, it is not necessary to experimentally determine the heat radiation amount per unit time, and the experiment work for that purpose can be reduced.

【0012】また、継手毎の単位時間当りの放熱量のデ
ータを必要としないので、対応できる継手の種類に制約
がなく、特に、種類やサイズの異なる新規の継手が販売
された場合にもメモリのデータを書き換えることなく対
応できる。
Since there is no need for data on the amount of heat radiation per unit time for each joint, there is no restriction on the types of joints that can be handled. In particular, even when new joints of different types and sizes are sold, the memory is not required. Can be handled without rewriting the data.

【0013】さらには、通電過程において実測値から継
手の単位時間当りの放熱量を求めているので、継手のバ
ラツキや環境温度の変化等によっても誤差が生じず、継
手の温度を高い精度で最適温度に維持させることができ
る。
Further, since the heat radiation amount per unit time of the joint is obtained from the actually measured value in the energization process, no error occurs due to variations in the joint and changes in the environmental temperature, etc., and the temperature of the joint is optimized with high accuracy. Temperature can be maintained.

【0014】請求項2に記載の電気溶融着装置は、継手
の内周面に配設された発熱体に通電することにより、合
成樹脂製の継手と継手に挿入された合成樹脂製のパイプ
の端部とを溶融着させるための電気溶融着装置におい
て、前記発熱体に流れる電流値を検出する手段と;前記
発熱体に印加されている電圧値を検出する手段と;継手
の溶融後継手の温度が通電終了最適温度に達する前に、
発熱体の単位時間当りの発熱量を変化させ、単位時間当
りの熱量を変化させる前後において、発熱体に流れる電
流値と印加電圧値とから発熱体の温度を求め、当該発熱
体温度の時間変化率から単位時間当りの放熱量を求め、
継手の温度が前記通電終了最適温度に達した後、前記単
位時間当りの放熱量とほぼ等しい単位時間当りの熱量を
発熱体から発生させる手段と;を備えたことを特徴とし
ている。
According to the second aspect of the present invention, the electric fusion welding apparatus energizes a heating element disposed on the inner peripheral surface of the joint, thereby connecting the synthetic resin joint and the synthetic resin pipe inserted into the joint. An electric fusion welding apparatus for fusion-welding the end portion; a means for detecting a current value flowing through the heating element; a means for detecting a voltage value applied to the heating element; Before the temperature reaches the optimal temperature for turning off the power,
Before and after changing the amount of heat generated per unit time of the heating element, and before and after changing the amount of heat per unit time, the temperature of the heating element is determined from the current value flowing through the heating element and the applied voltage value, and the temperature change of the heating element over time Calculate the heat release per unit time from the rate,
Means for generating, from the heating element, an amount of heat per unit time substantially equal to the amount of heat radiation per unit time after the temperature of the joint has reached the optimum temperature for terminating the energization.

【0015】請求項2に記載の電気溶融着装置も請求項
1記載の電気溶融着装置の通電制御方法と同様な作用効
果を奏する。
The electric fusion bonding apparatus according to the second aspect has the same operation and effect as the power supply control method for the electric fusion bonding apparatus according to the first aspect.

【0016】すなわち、発熱体の通電電流と印加電圧を
検出すれば、発熱体の抵抗値を知ることができる。発熱
体の抵抗値はその温度によって変化するので、発熱体温
度(つまり、継手の温度)の時間変化率は発熱体の抵抗
値の時間変化率から知ることができる。
That is, the resistance value of the heating element can be known by detecting the current flowing through the heating element and the applied voltage. Since the resistance value of the heating element changes according to its temperature, the time rate of change of the heating element temperature (that is, the temperature of the joint) can be known from the time rate of change of the resistance value of the heating element.

【0017】従って、請求項2に記載の電気溶融着装置
にあっては、発熱体の通電電流と印加電圧から求めた温
度の時間変化率に基づいて継手の単位時間当りの放熱量
を求め、それに基づいて発熱体温度を通電終了最適温度
に維持するための単位時間当りの熱量を求めることがで
きる。
Accordingly, in the electric fusion bonding apparatus according to the second aspect, the heat release amount per unit time of the joint is obtained based on the time change rate of the temperature obtained from the current flowing through the heating element and the applied voltage, Based on this, it is possible to determine the amount of heat per unit time for maintaining the heating element temperature at the optimal temperature at the end of energization.

【0018】加えて、この電気溶融着装置にあっては、
発熱体の印加電圧と通電電流(つまり、抵抗値)から発
熱体温度を求めているので、直接的に発熱体温度つまり
継手温度を求めることができ、測定誤差やバラツキを小
さくできる。さらに、発熱体の印加電圧と通電電流から
発熱体温度を求めているので、電気溶融着装置の出力変
動などによらず、正確に熱容量を検出することができ
る。
In addition, in this electrofusion apparatus,
Since the temperature of the heating element is determined from the applied voltage of the heating element and the conduction current (that is, the resistance value), the temperature of the heating element, that is, the joint temperature can be directly determined, and the measurement error and variation can be reduced. Furthermore, since the temperature of the heating element is determined from the voltage applied to the heating element and the current supplied thereto, the heat capacity can be accurately detected irrespective of the output fluctuation of the electric fusion splicer.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(電気溶融着装置の構成)図1は本発明の一実施例によ
る電気溶融着装置1の外観と継手2及びパイプ3の断面
を示す概略正面図である。この電気溶融着装置1は、電
気溶融着装置本体(コントローラ)4と、接続ケーブル
5と、電源ケーブル6とからなる。電気溶融着装置本体
4は、前面にスタートスイッチ7とリセットスイッチ8
と液晶表示パネル等の表示装置9とを有している。スタ
ートスイッチ7は、継手2の発熱線10に通電開始する
ためのスイッチである。リセットスイッチ8は、通電を
途中で中断したり、異常を検知した時に、異常をクリア
するためのスイッチである。表示装置9は、操作指示
や、動作中における動作条件や、異常などを表示するた
めのものである。
FIG. 1 is a schematic front view showing the appearance of an electric fusion welding apparatus 1 according to one embodiment of the present invention, and a cross section of a joint 2 and a pipe 3. The electrofusion apparatus 1 includes an electrofusion apparatus main body (controller) 4, a connection cable 5, and a power cable 6. The electric welding apparatus main body 4 has a start switch 7 and a reset switch 8 on the front.
And a display device 9 such as a liquid crystal display panel. The start switch 7 is a switch for starting energization of the heating wire 10 of the joint 2. The reset switch 8 is a switch for clearing the abnormality when energization is interrupted on the way or when an abnormality is detected. The display device 9 is for displaying operation instructions, operating conditions during operation, abnormalities, and the like.

【0020】電気溶融着装置本体4に接続された電源ケ
ーブル6の先端には商用電源25と接続するための電源
プラグ12が設けられている。また、電気溶融着装置本
体4に接続された接続ケーブル5の先端には、継手2と
接続するための継手コネクタ13が設けられている。
A power plug 12 for connecting to a commercial power supply 25 is provided at the end of the power cable 6 connected to the main body 4 of the electrofusion apparatus. In addition, a joint connector 13 for connecting to the joint 2 is provided at a distal end of the connection cable 5 connected to the electric fusion bonding apparatus main body 4.

【0021】(継手とパイプ)継手2は両端が開口した
管状となっており、少なくとも内周面がポリエチレンや
エンジニアプラスチック等の熱可塑性樹脂により成形さ
れ、その内周面には継手樹脂と同材質の樹脂により被覆
された発熱線10(抵抗体)を螺旋状に巻いて配設され
ている。継手2の外面には、接続ケーブル5の継手コネ
クタ13を接続するためのケーブル接続部14が設けら
れており、ケーブル接続部14内には発熱線10と導通
した端子ピン15が位置している。しかして、ケーブル
接続部14に電気溶融着装置1の継手コネクタ13を接
続すると、端子ピン15を介して発熱線10の両端に電
気溶融着装置1が接続される。パイプ3は少なくとも端
部外周面が熱可塑性樹脂により成形されている。パイプ
3は、継手2内周面に突設されたストッパー16に当た
るまで深く継手2内に挿入される。
(Joint and Pipe) The joint 2 has a tubular shape with both ends opened, and at least the inner peripheral surface is formed of a thermoplastic resin such as polyethylene or engineering plastic, and the inner peripheral surface is made of the same material as the joint resin. The heating wire 10 (resistor) covered with the resin is spirally wound and disposed. A cable connecting portion 14 for connecting the joint connector 13 of the connection cable 5 is provided on an outer surface of the joint 2, and a terminal pin 15 electrically connected to the heating wire 10 is located in the cable connecting portion 14. . Thus, when the joint connector 13 of the electric fusion bonding apparatus 1 is connected to the cable connection portion 14, the electric fusion bonding apparatus 1 is connected to both ends of the heating wire 10 via the terminal pins 15. At least the outer peripheral surface of the end of the pipe 3 is formed of a thermoplastic resin. The pipe 3 is inserted into the joint 2 deeply until it hits a stopper 16 protruding from the inner peripheral surface of the joint 2.

【0022】(回路構成)図2は電気溶融着装置本体4
の回路構成を示すブロック図であって、主として、電力
制御部17、電圧検出部18、電流検出部19、抵抗値
演算部20、温度演算部21、時間変化率演算部22、
メモリ23、放熱量検出部24からなっている。
(Circuit Configuration) FIG.
FIG. 2 is a block diagram showing a circuit configuration of a power control unit 17, a voltage detection unit 18, a current detection unit 19, a resistance value calculation unit 20, a temperature calculation unit 21, a time change rate calculation unit 22,
It comprises a memory 23 and a heat radiation amount detector 24.

【0023】電圧検出部18は、通電中に電力制御部1
7から発熱線10に印加されている電圧値(つまり、発
熱線10の両端間電圧)Vを検出している。電流検出部
19は、電力制御部17により発熱線10に供給されて
いる電流値Iを検出している。
The voltage detecting unit 18 controls the power control unit 1 during energization.
7, a voltage value V applied to the heating wire 10 (that is, a voltage between both ends of the heating wire 10) is detected. The current detection unit 19 detects the current value I supplied to the heating wire 10 by the power control unit 17.

【0024】抵抗値演算部20は、電圧検出部18で検
出された発熱線10の印加電圧Vと、電流検出部19で
検出された発熱線10の通電電流Iから、発熱線10の
抵抗値R=V/Iを求める。抵抗値演算部20として
は、例えば除算回路を用いることができる。さらに、温
度演算部21は、予めメモリ23に格納されている発熱
線10の抵抗値と発熱線温度との関係に基づいて発熱線
10の温度Tを求める。時間変化率演算部22は、発熱
線10の温度Tの時間変化率(増加速度)ΔT/Δt
(tは通電時間を示す)を演算する。ここでの処理は、
連続的に温度Tを求め、時間変化率演算部22において
温度Tの変化を微分演算して時間変化率ΔT/Δtを求
めるようにしてもよいが、簡単には、発熱線10の通電
過程における2点の温度T1,T2を求め、その温度差
ΔT=T2−T1を時間間隔Δtで割って求めるように
しても十分である。
The resistance value calculating section 20 calculates the resistance value of the heating wire 10 from the applied voltage V of the heating wire 10 detected by the voltage detecting section 18 and the conduction current I of the heating wire 10 detected by the current detecting section 19. Find R = V / I. As the resistance value calculation unit 20, for example, a division circuit can be used. Further, the temperature calculation unit 21 obtains the temperature T of the heating wire 10 based on the relationship between the resistance value of the heating wire 10 and the temperature of the heating wire 10 stored in the memory 23 in advance. The time change rate calculation unit 22 calculates a time change rate (increase rate) ΔT / Δt of the temperature T of the heating wire 10.
(T indicates the energizing time). The process here is
The temperature T may be continuously obtained, and the time change rate calculating section 22 may differentiate the change in the temperature T to obtain the time change rate ΔT / Δt. It is sufficient to determine the temperatures T1 and T2 at two points and divide the temperature difference ΔT = T2−T1 by the time interval Δt.

【0025】放熱量検出部24は、後述のように、発熱
線10の単位時間当りの発熱量を変化させた前後におけ
る発熱体温度の時間変化率が時間変化率演算部22で求
められた後、その2つの時間変化率の値に基づいて継手
2の単位時間当りの放熱量(パイプ3を通じて放熱する
ものも含む)を検出するものである。
As will be described later, the heat radiation amount detection unit 24 calculates the time change rate of the heating element temperature before and after the heat generation amount per unit time of the heating wire 10 is calculated by the time change rate calculation unit 22. The amount of heat radiation per unit time of the joint 2 (including that which radiates heat through the pipe 3) is detected based on the two time change rates.

【0026】電力制御部17は電気溶融着装置1の主な
機能を果たす部分であって、商用電源25から得た電力
をソースとして、接続ケーブル5を介して継手2の発熱
線10に通電制御するものである。電力制御部17は、
予めメモリ23に格納されているプログラムに従って、
所定の制御方法で発熱線10に通電し、発熱線10を発
熱させる(図3参照)。
The power control unit 17 is a part that performs the main function of the electric fusion welding apparatus 1. The power control unit 17 controls the power supply to the heating wire 10 of the joint 2 via the connection cable 5 by using the power obtained from the commercial power supply 25 as a source. Is what you do. The power control unit 17
According to a program stored in the memory 23 in advance,
The heating wire 10 is energized by a predetermined control method to cause the heating wire 10 to generate heat (see FIG. 3).

【0027】なお、電力制御部17や抵抗値演算部2
0、放熱量検出部24などは、ICやマイクロコンピュ
ータ(CPU)等を用いて構成されている。
The power control unit 17 and the resistance value calculation unit 2
The heat radiation amount detection unit 24 and the like are configured using an IC, a microcomputer (CPU), or the like.

【0028】(継手とパイプの溶融着動作、継手の単位
時間当りの放熱量を求める原理)つぎに、電気溶融着装
置1により継手2とパイプ3を接続する動作と、継手2
の単位時間当りの放熱量を自動的に検出するための原理
を説明する。図3(a)は発熱線10に通電を開始した
ときの発熱線10の温度変化を示す図、図3(b)は発
熱線10の単位時間当りの発熱量(つまり、継手2に加
える単位時間当りの熱量)の変化を示す図である。ま
た、期間A1は通電開始から継手2が溶融を始める直前
までを示し、期間A2は発熱線10近傍の継手樹脂が溶
け始め、溶けた継手樹脂が十分にパイプ3に密着するま
でを示し、期間A3は溶けた樹脂がパイプ3に密着し、
継手2とパイプ3の接合面が互いに溶融している期間を
示し、期間A4は接合された継手2及びパイプ3を通電
終了最適温度Tsに維持する期間を示している。また、
図4〜図6は上記各期間A1〜A3における継手2とパ
イプ3の状態を示す図であって、図4〜図6における斜
線部分は継手2及びパイプ3の溶融部分αを示してい
る。
(Principle of fusion splicing operation of joint and pipe, principle of obtaining heat radiation amount per unit time of joint) Next, the operation of connecting the joint 2 and the pipe 3 by the electric fusion splicer 1 and the operation of the joint 2
The principle for automatically detecting the amount of heat radiation per unit time will be described. FIG. 3A is a diagram showing a temperature change of the heating wire 10 when energization of the heating wire 10 is started, and FIG. 3B is a heating value per unit time of the heating wire 10 (that is, a unit added to the joint 2). It is a figure which shows the change of the amount of heat per time). A period A1 indicates a period from the start of energization to immediately before the joint 2 starts to be melted, and a period A2 indicates a period from when the joint resin near the heating wire 10 starts to melt and when the melted joint resin sufficiently adheres to the pipe 3. In A3, the melted resin adheres to the pipe 3,
A period in which the joint surfaces of the joint 2 and the pipe 3 are melted with each other is shown, and a period A4 is a period in which the joined joint 2 and the pipe 3 are maintained at the optimal temperature Ts at which the energization ends. Also,
4 to 6 are views showing the state of the joint 2 and the pipe 3 in each of the periods A1 to A3, and the hatched portions in FIGS.

【0029】以下、発熱線10に通電を開始してから接
合を完了するまでの動作と継手2及びパイプ3の状態を
図3(a)(b)及び図4〜図6により説明する。電気
溶融着装置1により発熱線10に通電を開始すると、図
3(b)に示すように、発熱線10には単位時間当りQ
1の熱量が発生して継手2に加えられる。しかして、発
熱線10の温度は、図3(a)に示すように次第に上昇
していく。各期間A1〜A3における温度上昇の傾き
(時間変化率)は、継手2に加える単位時間当りの熱量
と、発熱線10とパイプ3の間の熱伝導度、継手2及び
パイプ3の熱容量により決まるものである。まず、通電
直後の期間A1においては、発熱線10の温度は、初め
の環境温度から次第に上昇していく。この過程では、継
手2の樹脂が溶け始めるまでには至っておらず、図4に
示すように、発熱線10の近くの継手樹脂はパイプ3と
一部接触しているものの、密着はしていないので、熱容
量及び熱伝導度は比較的小さく、このため、発熱線10
の温度上昇の傾きは比較的急になっている。
The operation from the start of energization of the heating wire 10 to the completion of joining and the state of the joint 2 and the pipe 3 will be described below with reference to FIGS. 3 (a) and 3 (b) and FIGS. When electric current is started to the heating wire 10 by the electric fusion bonding apparatus 1, as shown in FIG.
1 is generated and applied to the joint 2. Thus, the temperature of the heating wire 10 gradually increases as shown in FIG. The gradient of the temperature rise (time change rate) in each of the periods A1 to A3 is determined by the amount of heat applied to the joint 2 per unit time, the thermal conductivity between the heating wire 10 and the pipe 3, and the heat capacity of the joint 2 and the pipe 3. Things. First, in the period A1 immediately after energization, the temperature of the heating wire 10 gradually increases from the initial environmental temperature. In this process, the resin of the joint 2 has not been melted yet, and as shown in FIG. 4, the joint resin near the heating wire 10 is partially in contact with the pipe 3 but not in close contact. Therefore, the heat capacity and the heat conductivity are relatively small.
The slope of the temperature rise is relatively steep.

【0030】つぎに、期間A2においては、図5に示す
ように発熱線10の周囲の継手樹脂が溶け始め、溶けた
継手樹脂がパイプ3に密着し始める。このとき継手樹脂
の溶融熱により、発熱線10の温度上昇の傾きが緩やか
になり始め、さらに、継手樹脂がパイプ3と密着するこ
とにより熱容量及び熱伝導度が増し、発熱線10の温度
上昇の傾きは一層緩やかになる。
Next, in the period A2, the joint resin around the heating wire 10 starts to melt as shown in FIG. 5, and the melted joint resin starts to adhere to the pipe 3. At this time, due to the heat of fusion of the joint resin, the slope of the temperature rise of the heating wire 10 starts to be gentle, and further, the joint resin comes into close contact with the pipe 3 to increase the heat capacity and the thermal conductivity. The slope becomes even gentler.

【0031】さらに、継手樹脂がパイプ3に十分密着す
ると、期間A3の過程に入る。図6に示すように、継手
樹脂が溶融してパイプ3に密着すると熱容量が増加する
ので、発熱線10の単位時間当りの発熱量が同じであれ
ば、期間A3における温度上昇の傾きは、期間A1にお
ける温度上昇の傾きよりも緩やかになる。ここで期間A
3の終りは、発熱線温度が所定の通電終了最適温度Ts
に達したときである。図3(a)に示すように、期間A
32は、発熱線温度が通電終了最適温度Tsよりも低い
所定温度Ts−ΔT1(加熱条件変更の温度)に達して
から、さらに通電終了最適温度Tsになるまでの期間、
期間A31は、発熱線温度が加熱条件変更の温度Ts−
ΔT1よりも低い所定温度Ts−ΔT2(検出開始の温
度)に達してから、加熱条件変更の温度Ts−ΔT1に
なるまでの期間であって、両期間A31及びA32は期
間A3の終了前の区間に位置している。期間A31にお
いては、発熱線10の単位時間当りの発熱量はQ1に維
持されているが、発熱線温度がTs−ΔT1に達して期
間A32になると、図3(b)に示すように発熱線10
の単位時間当りの発熱量はQ2に変化する。なお、この
単位時間当りの熱量Q2の値はQ1より小さくてもよ
く、大きくてもよい。そして、期間A31においては、
発熱線10の単位時間当りの発熱量がQ1の時の発熱線
温度の時間変化率が求められ、期間量A32において
は、発熱線10の単位時間当りの発熱量がQ2の時の発
熱線温度の時間変化率が求められる。
Further, when the joint resin sufficiently adheres to the pipe 3, the process enters a period A3. As shown in FIG. 6, since the heat capacity increases when the joint resin is melted and adhered to the pipe 3, if the heat generation amount of the heating wire 10 per unit time is the same, the slope of the temperature rise in the period A3 is It becomes gentler than the slope of the temperature rise in A1. Here period A
At the end of 3, the heating wire temperature is equal to the predetermined end-of-power supply
Is reached. As shown in FIG.
32 is a period from when the temperature of the heating wire reaches a predetermined temperature Ts-ΔT1 (temperature for changing the heating condition) lower than the optimal temperature Ts for energization, to when the temperature reaches the optimal temperature Ts for energizing further.
In the period A31, the heating line temperature is changed to the temperature Ts−
This is a period from when a predetermined temperature Ts-ΔT2 (temperature at which detection is started) lower than ΔT1 is reached to when the temperature Ts-ΔT1 for changing the heating condition is reached, and both periods A31 and A32 are periods before the end of the period A3. It is located in. In the period A31, the heat generation amount of the heating line 10 per unit time is maintained at Q1, but when the heating line temperature reaches Ts-ΔT1 and the period A32 starts, as shown in FIG. 10
The heat value per unit time changes to Q2. The value of the heat quantity Q2 per unit time may be smaller or larger than Q1. Then, in the period A31,
The time rate of change of the heating wire temperature when the heating value of the heating wire 10 per unit time is Q1 is obtained. In the period amount A32, the heating wire temperature when the heating value of the heating wire 10 per unit time is Q2. Is determined over time.

【0032】放熱量検出部24は、期間A31及び期間
A32における各発熱線温度の時間変化率から継手2の
単位時間当りの放熱量を求める。具体的にいうと、期間
A31における発熱線温度の時間変化率をκ1、期間A
31における発熱線10の単位時間当りの発熱量をQ1
とし、また期間A32における発熱線温度の時間変化率
をκ2、期間A32における発熱線10の単位時間当り
の発熱量をQ2とし、継手2からの単位時間当りの放熱
量をD、継手2及びパイプ3の熱容量をCとすると、こ
れらの間には次の,の関係がある。 κ1=(Q1−D)/C … κ2=(Q2−D)/C … ここで、κ1,κ2は時間変化率検出部22によって検
出されており、単位時間当りの発熱量Q1,Q2は予め
決められているから、式及び式を連立方程式として
解くことにより、単位時間当りの放熱量D及び熱容量C
を求めることができる。
The heat radiation amount detection unit 24 obtains the heat radiation amount per unit time of the joint 2 from the time change rate of each heating wire temperature in the period A31 and the period A32. Specifically, the time change rate of the heating wire temperature in the period A31 is κ1,
The heat value of the heating wire 10 per unit time at 31 is Q1
In addition, the time change rate of the heating wire temperature in the period A32 is κ2, the heat generation amount of the heating wire 10 per unit time in the period A32 is Q2, the heat release amount per unit time from the joint 2 is D, the joint 2 and the pipe Assuming that the heat capacity of No. 3 is C, there is the following relationship between them. κ1 = (Q1-D) / C... κ2 = (Q2-D) / C where κ1 and κ2 are detected by the time change rate detecting unit 22, and the heat values Q1 and Q2 per unit time are determined in advance. By solving the equations and the equations as simultaneous equations, the heat release amount D per unit time and the heat capacity C
Can be requested.

【0033】発熱線10の温度が通電終了最適温度Ts
に達し、継手2とパイプ3の樹脂が十分に融着する温度
になると、上記のようにして放熱量検出部24が継手2
及びパイプ3の放熱量Dを検出し、発熱線10の単位時
間当りの発熱量Q3が単位時間当りの放熱量Dと等しく
なるように(つまり、Q3=D … となるように)
発熱線10への通電量を求める。しかして、延長期間A
4において、発熱線10を単位時間当りの放熱量Dと等
しい熱量Q3で発熱させることにより、発熱線温度を一
定値(通電終了最適温度Ts)に保つことができる。こ
の後、発熱線10への通電を終了し、継手2とパイプ3
を環境温度付近まで放冷する。
The temperature of the heating wire 10 is the optimum temperature Ts at which the energization ends.
When the temperature reaches a temperature at which the resin of the joint 2 and the resin of the pipe 3 are sufficiently fused, the heat radiation amount detection unit 24
And the heat radiation amount D of the pipe 3 is detected so that the heat generation amount Q3 of the heating wire 10 per unit time is equal to the heat radiation amount D per unit time (that is, Q3 = D...).
The amount of electricity to the heating wire 10 is determined. Then, extension period A
In 4, the heat generating wire 10 is heated by the heat amount Q3 equal to the heat radiation amount D per unit time, so that the heat generating wire temperature can be kept at a constant value (the optimal temperature Ts for ending the energization). Thereafter, the power supply to the heating wire 10 is terminated, and the joint 2 and the pipe 3
Is allowed to cool to near ambient temperature.

【0034】厳密には、単位時間当りの放熱量Dは温度
の関数となり、上記式及び式における各単位時間当
りの放熱量Dは、それぞれ温度が異なるので補正する必
要がある。また、式の放熱量Dも、通電終了最適温度
Tsにおける値に補正したものを用いる必要がある。し
かしながら、一次的な近似においては、これらの放熱量
Dを等しい値として扱っても差し支えない。
Strictly speaking, the heat radiation amount D per unit time is a function of the temperature, and the heat radiation amount D per unit time in the above equation and the equation needs to be corrected because the temperature is different. In addition, it is necessary to use the heat release amount D in the equation corrected to a value at the power supply end optimum temperature Ts. However, in a linear approximation, these heat radiation amounts D may be treated as equal values.

【0035】(溶融着方法)図7は上記のような原理に
より継手2とパイプ3を接続する際の電気溶融着装置1
の動作手順を説明するフロー図である。まず、スタート
スイッチ7を押して(S31)発熱線10に通電を開始
する。通電を開始すると、電力制御部17は単位時間当
りの発熱量が一定値Q1となるように発熱線10に通電
する(図3(b))。ついで、発熱線10の電流及び電
圧が安定するのを待って、電流検出部19により発熱線
10に流れる電流値を検出すると共に電圧検出部18に
より発熱線10に印加されている電圧を検出し(S3
2)、抵抗値演算部20により通電電流と印加電圧の検
出値から発熱線10の抵抗値を求め(S33)、つい
で、温度演算部21により発熱線10の抵抗値を発熱線
温度に換算する(S34)。こうして繰り返し発熱線温
度を検出しながら(S32〜S34)、発熱線温度が期
間A3中の検出開始温度Ts−ΔT2になるのを待つ
(S35)。この検出開始温度Ts−ΔT2は、期間A
3における加熱条件変更の温度Ts−ΔT1よりも低い
適当な温度に定められている(つまり、ΔT2>ΔT
1;図3(a)参照)。
(Fusing Method) FIG. 7 shows an electric welding device 1 for connecting the joint 2 and the pipe 3 according to the above principle.
It is a flowchart explaining the operation | movement procedure of. First, the start switch 7 is pressed (S31) to start energizing the heating wire 10. When the energization is started, the power control unit 17 energizes the heating wire 10 so that the amount of heat generated per unit time becomes a constant value Q1 (FIG. 3B). Then, after the current and voltage of the heating wire 10 are stabilized, the current detection unit 19 detects the value of the current flowing through the heating wire 10 and the voltage detection unit 18 detects the voltage applied to the heating wire 10. (S3
2) The resistance value calculating section 20 determines the resistance value of the heating wire 10 from the detected values of the supplied current and the applied voltage (S33), and then converts the resistance value of the heating wire 10 to the heating wire temperature by the temperature calculating section 21. (S34). While repeatedly detecting the heating line temperature (S32 to S34), the process waits until the heating line temperature becomes the detection start temperature Ts-ΔT2 during the period A3 (S35). This detection start temperature Ts-ΔT2 is equal to the period A
3 is set to an appropriate temperature lower than the temperature Ts-ΔT1 of the heating condition change (that is, ΔT2> ΔT
1: see FIG. 3 (a)).

【0036】発熱線温度が検出開始温度Ts−ΔT2に
達すると、さらに電流検出部19により発熱線10に流
れる電流値を検出すると共に電圧検出部18により発熱
線10に印加されている電圧を検出し(S36)、抵抗
値演算部20により通電電流と印加電圧の検出値から発
熱線10の抵抗値を求め(S37)、ついで、温度演算
部21により発熱線10の抵抗値を発熱線温度に換算す
る(S38)。こうして、発熱線温度が加熱条件変更の
温度Ts−ΔT1に達するまで(S39)、繰り返し発
熱線温度を検出する(S36〜S38)。
When the temperature of the heating wire reaches the detection start temperature Ts-ΔT2, the current detecting unit 19 detects the value of the current flowing through the heating wire 10 and the voltage detecting unit 18 detects the voltage applied to the heating wire 10. (S36), the resistance value calculating section 20 obtains the resistance value of the heating wire 10 from the detected values of the supplied current and the applied voltage (S37), and then the temperature calculation section 21 converts the resistance value of the heating wire 10 to the heating wire temperature. It is converted (S38). In this way, until the heating wire temperature reaches the heating condition change temperature Ts-ΔT1 (S39), the heating wire temperature is repeatedly detected (S36 to S38).

【0037】発熱線温度が加熱条件変更の温度Ts−Δ
T1に達すると、時間変化率演算部22は、検出開始の
温度Ts−ΔT2と加熱条件変更の温度Ts−ΔT1の
間の期間に求めた発熱線温度の上昇量とその間の通電時
間とから、期間A31における発熱線温度の時間変化率
を求める(S40)。ついで、電力制御部17は、継手
2の加熱条件、すなわち発熱線の単位時間当りの発熱量
をQ2に変化させる(S41)。
The heating wire temperature is the temperature Ts-Δ at which the heating conditions are changed.
When the temperature reaches T1, the time rate-of-change calculating unit 22 calculates the heating wire temperature rise amount obtained during the period between the detection start temperature Ts-ΔT2 and the heating condition change temperature Ts-ΔT1, and the energization time during that, The time rate of change of the heating wire temperature in the period A31 is obtained (S40). Next, the power control unit 17 changes the heating condition of the joint 2, that is, the amount of heat generated per unit time of the heating wire to Q2 (S41).

【0038】継手2の加熱条件を変化させた後、さらに
電流検出部19により発熱線10に流れる電流値を検出
すると共に電圧検出部18により発熱線10に印加され
ている電圧を検出し(S42)、抵抗値演算部20によ
り通電電流と印加電圧の検出値から発熱線10の抵抗値
を求め(S43)、ついで、温度演算部21により発熱
線10の抵抗値を発熱線温度に換算する(S44)。こ
うして発熱線温度が通電終了最適温度Tsに達するまで
(S45)、発熱線温度を繰り返し検出する(S42〜
S44)。
After the heating condition of the joint 2 is changed, the value of the current flowing through the heating wire 10 is further detected by the current detection unit 19, and the voltage applied to the heating wire 10 is detected by the voltage detection unit 18 (S42). ), The resistance value calculating section 20 determines the resistance value of the heating wire 10 from the detected values of the supplied current and the applied voltage (S43), and then converts the resistance value of the heating wire 10 to the heating wire temperature by the temperature calculating section 21 (S43). S44). In this way, the heating wire temperature is repeatedly detected until the heating wire temperature reaches the power supply termination optimum temperature Ts (S45) (S42 to S42).
S44).

【0039】発熱線温度が通電終了最適温度Tsに達す
ると、時間変化率演算部22は、加熱条件変更後の期間
A32における発熱線温度の上昇量とその間の通電時間
とから、期間A32における発熱線温度の時間変化率を
求める(S46)。ついで、放熱量検出部24は、期間
A31における発熱線温度の時間変化率と期間A32に
おける発熱線温度の時間変化率とから、前記のようにし
て継手2の単位時間当りの放熱量Dを検出し、発熱線1
0の単位時間当りの発熱量Q3が検出された単位時間当
りの放熱量Dと等しくなるように発熱線10への通電量
を求めて電力制御部17に自動的に設定する(S4
7)。電力制御部17は設定された通電量に応じて発熱
線10の加熱条件を変化させ(S48)、所定時間(期
間A4)の間、設定された通電量の電流を発熱線10に
供給し(S49)、発熱線10から単位時間当りQ3の
熱量を発生させる。これにより、発熱線温度つまり継手
2の温度は、期間A4のあいだ通電終了最適温度Tsに
維持される。期間A4が経過すると、通電を終了する
(S50)。
When the temperature of the heating wire reaches the optimum temperature Ts for terminating the energization, the time rate-of-change calculating unit 22 determines the heat generation in the time period A32 from the amount of increase in the heating wire temperature in the time period A32 after the change of the heating condition and the energizing time during that time. The time rate of change of the linear temperature is determined (S46). Next, the heat radiation amount detection unit 24 detects the heat radiation amount D per unit time of the joint 2 as described above from the time change rate of the heating wire temperature in the period A31 and the time change rate of the heating wire temperature in the period A32. And heating wire 1
The amount of power to the heating wire 10 is obtained and automatically set in the power control unit 17 so that the heat generation amount Q3 per unit time of 0 becomes equal to the detected heat release amount D per unit time (S4).
7). The power control unit 17 changes the heating condition of the heating wire 10 according to the set energization amount (S48), and supplies a current of the set energization amount to the heating wire 10 for a predetermined time (period A4) ( S49) Generate a heat quantity of Q3 per unit time from the heating wire 10. As a result, the heating wire temperature, that is, the temperature of the joint 2 is maintained at the power-supply end optimal temperature Ts during the period A4. When the period A4 has elapsed, the energization ends (S50).

【0040】本発明にあっては、上記のように期間A3
において加熱条件を変更し、その前後における発熱線温
度の時間変化率から継手2の単位時間当りの放熱量を検
出し、単位時間当りの放熱量Dの検出値に基づいて期間
A4における継手2の温度を通電終了最適温度Tsに維
持している。従って、単位時間当りの放熱量のデータを
各継手毎にメモリに予め記憶させておく必要がなくな
り、特に期間A4において継手2の温度を通電終了最適
温度Tsに維持するための条件を定めるための繁雑な実
験を不要にすることができる。また、新規な継手の場合
にも対応することができる。
In the present invention, as described above, the period A3
, The amount of heat released per unit time of the joint 2 is detected from the time change rate of the heating wire temperature before and after the heating condition. Based on the detected value of the amount D of heat released per unit time, the joint 2 The temperature is maintained at the power supply end optimum temperature Ts. Therefore, it is not necessary to previously store the data of the heat radiation amount per unit time in the memory for each joint, and in particular, in the period A4, the condition for maintaining the temperature of the joint 2 at the energization termination optimum temperature Ts is determined. Complex experiments can be eliminated. In addition, it can cope with the case of a new joint.

【0041】しかも、継手2とパイプ3の溶融着工程を
利用して継手2の単位時間当りの放熱量を求めているの
で、工程時間が長くなって作業効率を低下させることも
ない。
In addition, since the heat radiation amount per unit time of the joint 2 is obtained by using the fusion bonding process of the joint 2 and the pipe 3, the process time is not lengthened and the working efficiency is not reduced.

【0042】さらに、本発明にあっては、発熱線温度の
時間変化率を発熱線10の抵抗値から直接的に求めてい
るので、発熱線温度の時間変化率を安定に求めることが
できる。例えば、発熱線10の温度を測定するために、
熱電対やサーミスタ等の温度測定器を発熱線10の近傍
に接触させる場合には、発熱線10と温度測定器との間
の熱抵抗(樹脂の厚み等により変化する)のバラツキに
よって測定結果もばらついて安定しない。これに対し、
発熱線10の抵抗値によって求めれば、安定に発熱線温
度を検出できる。なお、抵抗値の温度係数の大きな発熱
線10を用いれば、より検出感度が向上する。
Further, according to the present invention, the time change rate of the heating wire temperature is directly obtained from the resistance value of the heating wire 10, so that the time change rate of the heating wire temperature can be obtained stably. For example, to measure the temperature of the heating wire 10,
When a temperature measuring device such as a thermocouple or a thermistor is brought into contact with the heating wire 10, the measurement result also varies due to the variation in the thermal resistance (changes due to the thickness of the resin or the like) between the heating wire 10 and the temperature measuring device. Unstable and unstable. In contrast,
If it is determined from the resistance value of the heating wire 10, the temperature of the heating wire can be detected stably. If the heating wire 10 having a large temperature coefficient of resistance is used, the detection sensitivity is further improved.

【0043】しかも、発熱線10の抵抗値を、電流検出
部19で検出した瞬時電流と電圧検出部18で検出した
瞬時電圧から求めているので、発熱線10の電流値や電
圧値が変動している場合にも、精密に抵抗値を求めるこ
とができる。これに対し、定電流制御の電力制御部17
を用いて発熱線10の電圧値だけを監視する場合や、定
電圧制御の電力制御部17を用いて発熱線10の電流値
だけを監視する場合には、電力制御部17の出力値の変
動や電源電圧の変動等により、求めた抵抗値の精度が影
響され、精密に抵抗値測定するのが困難である。
Further, since the resistance value of the heating wire 10 is obtained from the instantaneous current detected by the current detection unit 19 and the instantaneous voltage detected by the voltage detection unit 18, the current value and the voltage value of the heating wire 10 fluctuate. In this case, the resistance value can be determined precisely. On the other hand, the power control unit 17 of the constant current control
In the case where only the voltage value of the heating wire 10 is monitored using the power control unit 17 or only the current value of the heating wire 10 is monitored using the power control unit 17 of the constant voltage control, the output value of the power control unit 17 varies. The accuracy of the obtained resistance value is affected by fluctuations in the power supply voltage and the like, and it is difficult to accurately measure the resistance value.

【0044】(他の実施形態)前記実施形態では、発熱
線10の印加電圧と通電電流から抵抗値を求め、さらに
発熱線温度を求め、発熱線温度の時間変化率を検出した
が、発熱線10が同じであれば、抵抗値と発熱線温度と
の関係は定まっているから、図2の構成は簡略化するこ
とができる。すなわち、温度演算部21において、発熱
線10の印加電圧と通電電流から直接に発熱線温度を求
めることもできる。その場合には、図8に示すように、
抵抗値演算部20を省くことができ、動作フローもそれ
に応じて簡略化することができる。
(Other Embodiments) In the above-described embodiment, the resistance value is determined from the applied voltage and the conduction current of the heating wire 10, the heating wire temperature is further determined, and the time change rate of the heating wire temperature is detected. If 10 is the same, the relationship between the resistance value and the heating wire temperature is fixed, so that the configuration in FIG. 2 can be simplified. In other words, the temperature calculating section 21 can directly determine the heating wire temperature from the applied voltage and the conduction current of the heating wire 10. In that case, as shown in FIG.
The resistance value calculation unit 20 can be omitted, and the operation flow can be simplified accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による電気溶融着装置の外
観と継手及びパイプの断面を示す図である。
FIG. 1 is a diagram showing an external appearance of an electric fusion welding apparatus according to an embodiment of the present invention and a cross section of a joint and a pipe.

【図2】同上の電気溶融着装置の回路構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a circuit configuration of the electric fusion bonding apparatus according to the first embodiment.

【図3】(a)は同上の電気溶融着装置を用いて継手の
発熱線を加熱する場合の通電時間と発熱線の温度(発熱
線の抵抗値)との関係を示す図、(b)は継手及びパイ
プに加える単位時間当りの熱量の変化を示す図である。
FIG. 3 (a) is a diagram showing the relationship between the energizing time and the temperature of the heating wire (resistance value of the heating wire) when the heating wire of the joint is heated using the above electric fusion bonding apparatus, and (b). FIG. 3 is a diagram showing a change in the amount of heat per unit time applied to a joint and a pipe.

【図4】期間A1における継手及びパイプの状態を示す
断面図である。
FIG. 4 is a cross-sectional view showing a state of a joint and a pipe during a period A1.

【図5】期間A2における継手及びパイプの状態を示す
断面図である。
FIG. 5 is a cross-sectional view showing a state of a joint and a pipe in a period A2.

【図6】期間A3における継手及びパイプの状態を示す
断面図である。
FIG. 6 is a cross-sectional view illustrating a state of a joint and a pipe in a period A3.

【図7】同上の電気溶融着装置の動作フロー図である。FIG. 7 is an operation flowchart of the above electric fusion bonding apparatus.

【図8】本発明の別な実施形態による電気溶融着装置の
回路構成を示すブロック図である。
FIG. 8 is a block diagram showing a circuit configuration of an electrofusion apparatus according to another embodiment of the present invention.

【図9】(a)は従来の電気溶融着装置を用いて継手の
発熱線を加熱する場合の通電時間と発熱線の温度(発熱
線の抵抗値)との関係を示す図、(b)は継手及びパイ
プに加える単位時間当りの熱量の変化を示す図である。
FIG. 9 (a) is a diagram showing the relationship between the energization time and the temperature of the heating wire (resistance value of the heating wire) when heating the heating wire of the joint using the conventional electric fusion bonding apparatus, and (b). FIG. 3 is a diagram showing a change in the amount of heat per unit time applied to a joint and a pipe.

【符号の説明】[Explanation of symbols]

2 継手 3 パイプ 4 電気溶融着装置本体 10 発熱線 17 電力制御部 18 電圧検出部 19 電流検出部 20 抵抗値演算部 21 温度演算部 22 時間変化率演算部 24 放熱量検出部 DESCRIPTION OF SYMBOLS 2 Joint 3 Pipe 4 Electric fusion bonding apparatus main body 10 Heating wire 17 Power control unit 18 Voltage detection unit 19 Current detection unit 20 Resistance value calculation unit 21 Temperature calculation unit 22 Time change rate calculation unit 24 Heat release amount detection unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 卓英 東京都品川区戸越3丁目9番20号 平田 機工株式会社内 (56)参考文献 特開 平8−270870(JP,A) 特開 平8−99358(JP,A) 特開 平7−16930(JP,A) 特開 平8−52804(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Takuhide Nakayama 3-9-20 Togoshi, Shinagawa-ku, Tokyo Hirata Kiko Co., Ltd. (56) References JP-A-8-270870 (JP, A) JP-A-8 -99358 (JP, A) JP-A-7-16930 (JP, A) JP-A-8-52804 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 継手の内周面に配設された発熱体に通電
することにより、合成樹脂製の継手と継手に挿入された
合成樹脂製のパイプの端部とを溶融着させるための電気
溶融着装置の通電制御方法であって、 継手の溶融後継手の温度が通電終了最適温度に達する前
に、継手に加える単位時間当りの熱量を変化させ、 単位時間当りの熱量を変化させる前後におけるそれぞれ
の継手温度の時間変化率から単位時間当りの放熱量を求
め、 継手の温度が前記通電終了最適温度に達した後、前記単
位時間当りの放熱量とほぼ等しい単位時間当りの熱量を
継手に加えることを特徴とする電気溶融着装置の通電制
御方法。
An electric power for fusing a synthetic resin joint and an end of a synthetic resin pipe inserted into the joint by energizing a heating element disposed on an inner peripheral surface of the joint. A method of controlling the power supply of a fusion splicer, comprising: changing the amount of heat per unit time applied to the joint before and after changing the amount of heat per unit time before the temperature of the joint after melting of the joint reaches an optimum temperature at which the energization ends. The amount of heat radiation per unit time is determined from the time change rate of each joint temperature, and after the temperature of the joint reaches the optimal temperature at the end of energization, the amount of heat per unit time approximately equal to the amount of heat radiation per unit time is applied to the joint. A current supply control method for an electric fusion welding apparatus, characterized by adding.
【請求項2】 継手の内周面に配設された発熱体に通電
することにより、合成樹脂製の継手と継手に挿入された
合成樹脂製のパイプの端部とを溶融着させるための電気
溶融着装置において、 前記発熱体に流れる電流値を検出する手段と;前記発熱
体に印加されている電圧値を検出する手段と;継手の溶
融後継手の温度が通電終了最適温度に達する前に、発熱
体の単位時間当りの発熱量を変化させ、 単位時間当りの熱量を変化させる前後において、発熱体
に流れる電流値と印加電圧値とから発熱体の温度を求
め、当該発熱体温度の時間変化率から単位時間当りの放
熱量を求め、 継手の温度が前記通電終了最適温度に達した後、前記単
位時間当りの放熱量とほぼ等しい単位時間当りの熱量を
発熱体から発生させる手段と;を備えたことを特徴とす
る電気溶融着装置。
2. An electric power supply for applying heat to a heating element disposed on the inner peripheral surface of the joint to melt-bond the synthetic resin joint and the end of the synthetic resin pipe inserted into the joint. In the fusion-bonding apparatus, means for detecting a current value flowing through the heating element; means for detecting a voltage value applied to the heating element; Before and after changing the amount of heat generated per unit time of the heating element, before and after changing the amount of heat per unit time, the temperature of the heating element is obtained from the current value flowing through the heating element and the applied voltage value. Means for determining the amount of heat radiation per unit time from the rate of change, and after the temperature of the joint has reached the optimum temperature for terminating energization, generating a heat amount per unit time from the heating element substantially equal to the heat radiation amount per unit time; Characterized by having Electric welding equipment.
JP7297460A 1995-10-19 1995-10-19 Electrofusion apparatus and energization control method thereof Expired - Lifetime JP2663379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7297460A JP2663379B2 (en) 1995-10-19 1995-10-19 Electrofusion apparatus and energization control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7297460A JP2663379B2 (en) 1995-10-19 1995-10-19 Electrofusion apparatus and energization control method thereof

Publications (2)

Publication Number Publication Date
JPH09109263A JPH09109263A (en) 1997-04-28
JP2663379B2 true JP2663379B2 (en) 1997-10-15

Family

ID=17846790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7297460A Expired - Lifetime JP2663379B2 (en) 1995-10-19 1995-10-19 Electrofusion apparatus and energization control method thereof

Country Status (1)

Country Link
JP (1) JP2663379B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431160B1 (en) * 2012-10-18 2014-08-18 주식회사 태일 Apparatus of controlling electric power for electric fusion pipe fitting using conductive polymer composite and method thereof
DE102016205039A1 (en) * 2016-03-24 2017-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for connecting two joining elements

Also Published As

Publication number Publication date
JPH09109263A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
US4684789A (en) Thermoplastic fitting electric welding method and apparatus
US4642155A (en) Thermoplastic fitting electric heat welding method and apparatus
CN101356462B (en) Optical fiber reinforcing device and reinforcing method
JPS61274920A (en) Heating welding method and device for thermoplastic pipe joint
US20080307879A1 (en) Method for Control of a Thermal/Calorimetric Flow Measuring Device
US4978837A (en) Method and apparatus for electrically heat welding thermoplastic fittings
JP2663379B2 (en) Electrofusion apparatus and energization control method thereof
US5500510A (en) Method of automatically controlling the fusion process between thermoplastic articles
JP2660990B2 (en) Electric welding equipment
US4631107A (en) Thermoplastic fitting electric heat welding apparatus
JP2819011B2 (en) Electric welding equipment
JP2819010B2 (en) Electric welding equipment
EP0403260B1 (en) Solder joint system
EP0323793A1 (en) Method for connecting plastic pipes
JP2578104B2 (en) Electric welding equipment
JP2546783B2 (en) Electric fusion welding equipment
JP3559649B2 (en) Welding equipment
JP2699161B2 (en) Fusion method of thermoplastic resin products
JPH0780943A (en) Confirmation of fusion bonding resin product
JP2843894B2 (en) How to connect plastic tubes
JPH03183528A (en) Fusion bonding detection method of electric fusion bonded joint for thermoplastic pipe
JP2000085016A (en) Current supply abnormality detector for electric fusion joint
JP4685268B2 (en) Resin joint energization control device
JPH09164597A (en) Electric fusing apparatus and current supply control method
JPH0214129A (en) Electric welding device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970520

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term