JP2661418B2 - Charging device and method - Google Patents

Charging device and method

Info

Publication number
JP2661418B2
JP2661418B2 JP3193257A JP19325791A JP2661418B2 JP 2661418 B2 JP2661418 B2 JP 2661418B2 JP 3193257 A JP3193257 A JP 3193257A JP 19325791 A JP19325791 A JP 19325791A JP 2661418 B2 JP2661418 B2 JP 2661418B2
Authority
JP
Japan
Prior art keywords
charging
latent image
holding member
image
image holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3193257A
Other languages
Japanese (ja)
Other versions
JPH0534964A (en
Inventor
博視 堀内
政行 廣井
錦織  卓哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3193257A priority Critical patent/JP2661418B2/en
Publication of JPH0534964A publication Critical patent/JPH0534964A/en
Application granted granted Critical
Publication of JP2661418B2 publication Critical patent/JP2661418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は帯電装置及び方法に関す
るものである。特に、電子写真装置の潜像保持部材への
帯電に用いられる接触帯電装置及び方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device and a charging method. In particular, the present invention relates to a contact charging device and a method for charging a latent image holding member of an electrophotographic apparatus.

【0002】[0002]

【従来の技術】従来、電子写真装置例えば普通紙複写機
或いはレーザープリンター、LEDプリンター、液晶プ
リンター等に用いられる潜像保持部材への帯電装置はコ
ロナ放電装置を使うのが一般的で有り広く使われてい
る。しかしコロナ放電装置には、次の問題がある。 1)放電を生じさせるために高圧電源が必要で凡そ4K
V以上が要求される。従って電源のコストが高くなり、
配線等にも高圧ケーブルが必要になり、また電気的な高
圧絶縁材も使用しなければならないので、更にコストを
押上げることになる。 2)気中放電の為、オゾンの発生が避けられない。近年
環境問題の為に、人体には好ましくないこのオゾンの発
生は極力避けなければならない。 3)帯電が不均一になりがちである。即ち放電現象を生
じさせる為に、一般的にはワイアーとその周りにシール
ドケースを配置しこれらの間に高電圧を印加することに
なるが、長時間使用すると放電による生成物がワイアー
およびケースに沈着し放電が不安定になる。従って潜像
保持部材の帯電が不均一になり、画像上にムラが生じ
る。特に負コロナ放電時にはこの生成物がワイアーの汚
れとなり著しく放電を不安定にする。従って定期的なワ
イアー清掃が不可欠になり、メンテナンスに手間がかか
る。これらのコロナ放電装置の欠点を改良する為に接触
帯電装置を使用し、低圧電源でオゾンの発生が少ないコ
ンパクトな帯電装置とすることが提案されている(例え
ば特開昭63−149669号公報参照)。
2. Description of the Related Art Conventionally, as a charging device for a latent image holding member used in an electrophotographic apparatus such as a plain paper copier or a laser printer, an LED printer, a liquid crystal printer, etc., a corona discharge device is generally used and widely used. Have been done. However, the corona discharge device has the following problems. 1) A high voltage power supply is required to generate electric discharge
V or more is required. Therefore, the cost of the power supply increases,
Since a high-voltage cable is required for wiring and the like, and an electric high-voltage insulating material must be used, the cost is further increased. 2) Ozone generation is inevitable due to air discharge. In recent years, due to environmental problems, the generation of ozone, which is undesirable for the human body, must be avoided as much as possible. 3) Charging tends to be uneven. That is, in order to cause a discharge phenomenon, generally, a wire and a shield case are arranged around the wire, and a high voltage is applied between them. Deposition and unstable discharge. Therefore, the charging of the latent image holding member becomes non-uniform, and unevenness occurs on the image. In particular, at the time of negative corona discharge, this product becomes a stain on the wire and makes the discharge extremely unstable. Therefore, regular wire cleaning becomes indispensable, and maintenance is troublesome. In order to improve the drawbacks of these corona discharge devices, it has been proposed to use a contact charging device to provide a compact charging device that generates less ozone with a low-voltage power supply (see, for example, JP-A-63-149669). ).

【0003】また電子写真技術の中核となる潜像保持部
材については、その光導電材料として、従来よりセレニ
ウム、ヒ素−セレニウム合金、硫化カドミウム、酸化亜
鉛、アモルファスシリコン等の無機系光導電性物質が使
用されていたが、最近では無公害で、成膜性、生産性が
有利な有機光導電性物質が種々開発されている。有機系
潜像保持部材の中でも、電荷発生層及び電荷輸送層を積
層した、いわゆる機能分離型積層潜像保持部材が、高感
度且つ高寿命ということで実用に多く供せられている。
As for the latent image holding member which is the core of the electrophotographic technique, inorganic photoconductive substances such as selenium, arsenic-selenium alloy, cadmium sulfide, zinc oxide and amorphous silicon have been used as the photoconductive material. Although they have been used, recently, various organic photoconductive substances which are non-polluting and have advantageous film-forming properties and productivity have been developed. Among the organic latent image holding members, a so-called function-separation type laminated latent image holding member in which a charge generation layer and a charge transport layer are stacked has been widely used in practice because of its high sensitivity and long life.

【0004】[0004]

【発明が解決しようとする課題】しかるに、潜像保持部
材に接触させて帯電させる帯電装置及び方法を用いた場
合、 (1)一般に潜像保持部材の光導電層は導電性基体上に
設けられるが、光導電層に直接帯電部材が接触するの
で、光導電層に欠陥があると帯電部材から電流のリーク
が集中して、潜像保持部材が不均一に帯電し、帯状の画
像欠陥が生じる。またこの時、帯電部材自体もリーク電
流により損傷を受けて使用に耐えなくなる。 (2)基体の表面に異物の付着、汚れ、微細な穴等の欠
陥が存在すると、それらに起因する画像欠陥がコピー上
に現れる場合がある。 (3)反転現像方式の場合、微小黒点、地カブリ等の画
像欠陥がコピー上に現れる場合がある。特に高湿の環境
条件のもとでは地カブリが著るしく実用に耐えない。
However, when a charging device and method for charging by contacting the latent image holding member are used, (1) the photoconductive layer of the latent image holding member is generally provided on a conductive substrate. However, since the charging member directly contacts the photoconductive layer, if there is a defect in the photoconductive layer, current leakage from the charging member concentrates, the latent image holding member is unevenly charged, and a band-shaped image defect occurs. . At this time, the charging member itself is damaged by the leak current and cannot be used. (2) When defects such as adhesion of foreign matter, dirt, and fine holes are present on the surface of the base, image defects caused by the defects may appear on the copy. (3) In the case of the reversal development method, image defects such as minute black spots and background fog may appear on a copy. In particular, under high humidity environmental conditions, ground fog is remarkable and is not practical.

【0005】反転現像方式においては暗電位部が白地と
なり、明電位部が黒地部(画線部)になるが、このシス
テムにおいては潜像保持部材上に欠陥等による局所的帯
電不良が存在すると、白地への黒点あるいは多数存在す
ると地かぶりのような現像となり、著るしい画像不良と
なって現われる。この様な局所的帯電不良は正規現像に
おいて使用した場合には何ら問題を引き起こすことのな
いレベルであっても、反転現像においては画像不良とな
り易く、しかも従来より得られている積層型潜像保持部
材では程度の差こそあれ、黒点、かぶりに問題をもって
いることが判った。
In the reversal developing method, a dark potential portion becomes a white background and a bright potential portion becomes a black background (image area). However, in this system, if there is a local charging failure due to a defect or the like on the latent image holding member. If there are a large number of black spots on a white background, development such as background fogging will occur, resulting in a remarkable image defect. Even if such a local charging defect does not cause any problem when used in regular development, it is easy to cause an image defect in reversal development, and the conventionally obtained multilayer latent image holding It was found that the members had problems with black spots and fogging to varying degrees.

【0006】この問題の原因即ち局所的帯電不良には種
々の原因が考えられるが、電極である導電性基体と光導
電層の間で、電荷の注入が局所的に起こり帯電電位が上
がらないものと考えられる。そこで本発明者等はこれら
の問題を解決する為に種々検討した結果、帯電部材を潜
像保持部材に直接接触させて帯電させる装置及び方法に
於いて、特定の潜像保持部材を用いる事によって、画像
欠陥が生じにくい帯電装置及び方法が得られる事を知得
して本発明に到達した。
Although various causes can be considered as the cause of this problem, that is, local charging failure, there is a case where charge is locally injected between the conductive substrate as an electrode and the photoconductive layer and the charging potential does not rise. it is conceivable that. The present inventors have conducted various studies to solve these problems, and as a result, by using a specific latent image holding member in an apparatus and a method for charging the charging member by directly contacting the charging member with the latent image holding member. As a result, the present inventor has learned that a charging device and a method which are less likely to cause image defects can be obtained, and arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】即ち本発明の要旨は、潜
像保持部材と該潜像保持部材に接触させて帯電させる帯
電部材とからなる帯電装置に於いて、前記潜像保持部材
が、表面を陽極酸化処理したアルミニウム基体上に光導
電層を設けたものであることを特徴とする帯電装置及び
方法に存する。
That is, the gist of the present invention is to provide a charging device comprising a latent image holding member and a charging member for charging the latent image holding member by contacting the latent image holding member. A charging device and method comprising a photoconductive layer provided on an aluminum substrate having a surface anodized.

【0008】以下、本発明を詳細に説明する。一般に潜
像を保持部材の基体として用いられる材料としてはアル
ミニウム、鉄、ステンレス、銅、亜鉛、ニッケル、導電
化処理したプラスチック、ガラス等が挙げられるが、そ
れらの中では比較的安価で軽量で加工性がよく、電気特
性を損なわないアルミニウムが広く使用されている。
Hereinafter, the present invention will be described in detail. In general, materials used as the base of the holding member for the latent image include aluminum, iron, stainless steel, copper, zinc, nickel, plasticized plastic, glass, and the like. Aluminum, which has good properties and does not impair the electrical characteristics, is widely used.

【0009】通常アルミニウムをドラム状の基体として
用いる場合は、アルミニウムビュレットをポートホール
法、マンドレル法等により、押出し管に加工し、続いて
所定の肉厚、外型寸法のドラムとするため、引抜き加
工、インパクト加工、しごき加工等を行なうことにより
作ることができる。しかし、例えば押出し加工は通常高
温・高圧下で行なわれるため、アルミニウムドラムの表
面が荒れたり、冷却時に異種金属の析出が生じるなど、
そのままの状態では、ドラム表面に様々な欠陥ができて
しまい、満足なものを作ることは難しい。そのため、更
に表面切削を行なったり、場合によってはドラム表面に
他の導電層を設けたりして使用しているのが現状である
が、まだ実用上十分な程度の均一な表面を有していると
は言えない。
Usually, when aluminum is used as a drum-shaped substrate, the aluminum buret is processed into an extruded tube by a porthole method, a mandrel method, or the like, and then is drawn to form a drum having a predetermined thickness and outer dimensions. It can be made by performing processing, impact processing, ironing, and the like. However, for example, extrusion processing is usually performed under high temperature and high pressure, so that the surface of the aluminum drum is rough, and the precipitation of dissimilar metals occurs during cooling,
In this state, various defects are formed on the drum surface, and it is difficult to produce a satisfactory product. For this reason, the surface is further cut or, in some cases, another conductive layer is provided on the drum surface and used, but it still has a uniform enough surface for practical use. It can not be said.

【0010】本発明で用いられるアルミニウム基体は前
述のような引抜き加工、インパクト加工、しごき加工等
の加工により所望の形状として得られる。更に必要に応
じて、切削加工による鏡面仕上げが行なわれる。アルミ
ニウム基体は、陽極酸化処理を施す前に、酸、アルカ
リ、有機溶剤、界面活性剤、エマルジョン、電解などの
各種脱脂洗浄方法により脱脂処理されることが好まし
い。
The aluminum substrate used in the present invention can be obtained in a desired shape by a process such as drawing, impact, or ironing as described above. Further, mirror finishing by cutting is performed as necessary. The aluminum substrate is preferably subjected to a degreasing treatment by various degreasing methods such as an acid, an alkali, an organic solvent, a surfactant, an emulsion, and electrolysis before the anodizing treatment is performed.

【0011】陽極酸化処理は通常、たとえばクロム酸、
硫酸、しゅう酸、リン酸、ホウ酸、スルファミン酸など
の酸性浴中で行なわれるが、硫酸中での陽極酸化処理が
最も良好な結果を与える。硫酸中での陽極酸化の場合、
硫酸濃度は50〜400g/l、溶存アルミ濃度は2〜
20g/l、液温は10〜40℃、電解電圧は5〜30
V、電流密度は0.5〜2A/dm2 の範囲内に設定さ
れるのが良い。
The anodizing treatment is usually carried out, for example, with chromic acid,
It is carried out in an acidic bath such as sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the best results. In the case of anodic oxidation in sulfuric acid,
Sulfuric acid concentration is 50-400g / l, dissolved aluminum concentration is 2-
20 g / l, liquid temperature 10 to 40 ° C., electrolysis voltage 5 to 30
V and the current density are preferably set in the range of 0.5 to 2 A / dm 2 .

【0012】また陽極酸化被膜の平均膜厚は、0.1〜
20μmで形成されることが好ましい。より好ましくは
1〜10μmである。この様にして形成された陽極酸化
皮膜は、皮膜の安定性を高めるため、たとえば主成分と
してフッ化ニッケルを含有する水溶液中に浸漬させる低
温封孔処理、あるいはたとえば主成分として酢酸ニッケ
ルを含有する水溶液中に浸漬させる高温封孔処理やその
他蒸気封孔、沸騰水封孔等の封孔処理を施すことが好ま
しい。
The average thickness of the anodic oxide coating is 0.1 to
Preferably, it is formed to have a thickness of 20 μm. More preferably, it is 1 to 10 μm. In order to enhance the stability of the anodic oxide film formed in this way, for example, a low-temperature sealing treatment in which it is immersed in an aqueous solution containing nickel fluoride as a main component, or, for example, contains nickel acetate as a main component It is preferable to perform high-temperature sealing treatment immersed in an aqueous solution and other sealing treatments such as steam sealing and boiling water sealing.

【0013】低温封孔処理の場合に使用されるフッ化ニ
ッケル水溶液の濃度は適宜選べるが、2〜10g/lの
範囲内で使用された場合が最も効果的である。また封孔
処理をスムーズに進めるために、処理温度としては15
〜40℃、好ましくは25〜35℃で、フッ化ニッケル
水溶液のpHは4.5〜6.5、好ましくは5.5〜
6.0の範囲内で処理するのが良い。この場合、pH調
節剤としてシュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナト
リウム、酢酸ナトリウム、アンモニア水等を用いること
ができる。処理時間は被膜の膜厚1μm当たり1〜3分
の範囲内で処理するのが好ましい。被膜物性を更に改良
するため、フッ化コバルト、酢酸コバルト、硫酸ニッケ
ル、界面活性剤等をフッ化ニッケル水溶液に添加してお
いてもよい。次いで水洗、乾燥して低温封孔処理を終え
る。
The concentration of the aqueous nickel fluoride solution used in the case of the low-temperature sealing treatment can be appropriately selected, but is most effective when used in the range of 2 to 10 g / l. In order to smoothly proceed with the sealing process, the processing temperature is set to 15
-40 ° C, preferably 25-35 ° C, and the pH of the aqueous nickel fluoride solution is 4.5-6.5, preferably 5.5-5.5.
It is better to process within the range of 6.0. In this case, oxalic acid, boric acid, formic acid, acetic acid, sodium hydroxide, sodium acetate, aqueous ammonia or the like can be used as the pH adjuster. The processing time is preferably within a range of 1 to 3 minutes per 1 μm of the film thickness. In order to further improve the film properties, cobalt fluoride, cobalt acetate, nickel sulfate, a surfactant and the like may be added to the nickel fluoride aqueous solution. Next, it is washed with water and dried to complete the low-temperature sealing treatment.

【0014】前記高温封孔処理の場合の封孔剤として
は、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケ
ル−コバルト、硝酸バリウム等の金属塩水溶液を用いる
ことができるが、特に酢酸ニッケルを用いるのが好まし
い。酢酸ニッケル水溶液を用いる場合の濃度は3〜20
g/lの範囲内で使用するのが好ましい。処理温度は6
5〜100℃、好ましくは80〜98℃で、酢酸ニッケ
ル水溶液のpHは5.0〜6.5の範囲で処理するのが
良い。ここでpH調節剤としてアンモニア水、酢酸ナト
リウム等を用いることができる。
As the sealing agent in the case of the high-temperature sealing treatment, an aqueous solution of a metal salt such as nickel acetate, cobalt acetate, lead acetate, nickel-cobalt acetate, barium nitrate and the like can be used. In particular, nickel acetate is used. Is preferred. The concentration when using an aqueous nickel acetate solution is 3 to 20.
It is preferably used within the range of g / l. Processing temperature is 6
The treatment is preferably performed at 5 to 100 ° C., preferably 80 to 98 ° C., and the pH of the aqueous nickel acetate solution is in the range of 5.0 to 6.5. Here, ammonia water, sodium acetate, or the like can be used as the pH adjuster.

【0015】処理時間は10分以上、好ましくは20分
以上処理するのが良い。この場合も被膜物性を改良する
ために酢酸ナトリウム、有機カルボン酸塩と、アニオン
系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添
加しても良い。次いで水洗後乾燥して高温封孔処理を終
える。以上の様にして形成された陽極酸化被膜上に光導
電層が設けられるが、陽極酸化被膜と光導電層との間に
公知の下引きが設けられても良い。下引き材料としては
ポリビニルアルコール、カゼイン、カゼインナトリウ
ム、ポリビニルピロリドン、ポリアクリル酸、セルロー
ス類、ゼラチン、デンプン、ポリウレタン、ポリイミ
ド、ポリアミド、フェノール樹脂等が挙げられる。下引
き層の膜厚は5μm以下が好ましく、特に2μm以下で
設けられることが好ましい。
The processing time is 10 minutes or more, preferably 20 minutes or more. Also in this case, sodium acetate, an organic carboxylate and an anionic or nonionic surfactant may be added to the nickel acetate aqueous solution in order to improve the physical properties of the film. Then, after washing with water and drying, the high-temperature sealing treatment is completed. The photoconductive layer is provided on the anodic oxide film formed as described above, but a known undercoat may be provided between the anodic oxide film and the photoconductive layer. Examples of the undercoat material include polyvinyl alcohol, casein, casein sodium, polyvinylpyrrolidone, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, polyamide, and phenol resin. The thickness of the undercoat layer is preferably 5 μm or less, particularly preferably 2 μm or less.

【0016】以上の様にして形成された基板上に設けら
れる光導電層としては、無機系、有機系の各種光導電層
が使用できるが、電荷発生層、電荷移動層よりなる積層
型光導電層を用いた場合が極めて有用である。電荷発生
層に用いる光導電体としては、セレン及びその合金、砒
素−セレン、硫化カドミニウム、酸化亜鉛その他の無機
光導電体、フタロシアニン、アゾ、キナクリドン、多環
キノン、ペリレン、インジゴ、ベンズイミダゾールなど
の各種有機顔料を使用することができる。なかでも、モ
ノアゾ、ビスアゾ、トリスアゾ、ボリアゾ類などのアゾ
顔料、無金属フタロシアニン;銅、塩化インジウム、塩
化ガリウム、スズ、オキシチタニウム、亜鉛、バナジウ
ムなどの金属、又はその酸化物、塩化物の配位したフタ
ロシアニン類が好ましい。
As the photoconductive layer provided on the substrate formed as described above, various inorganic or organic photoconductive layers can be used, and a laminated photoconductive layer comprising a charge generation layer and a charge transfer layer is used. The use of layers is very useful. As the photoconductor used for the charge generation layer, selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide and other inorganic photoconductors, phthalocyanine, azo, quinacridone, polycyclic quinone, perylene, indigo, benzimidazole and the like Various organic pigments can be used. Among them, azo pigments such as monoazo, bisazo, trisazo, and borazos; metal-free phthalocyanines; coordination of metals such as copper, indium chloride, gallium chloride, tin, oxytitanium, zinc, and vanadium, or oxides and chlorides thereof. Phthalocyanines are preferred.

【0017】電荷発生層はこれら物質の均一層としてあ
るいはバインダー中に微粒子分散した状態で形成され
る。ここで使用されるバインダー樹脂としてはポリビニ
ルプチラール、フェノキシ樹脂、エポキシ樹脂、ポリエ
ステル樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸
ビニル、ポリ塩化ビニル、メチルセルロース、ポリカー
ポネート樹脂などが挙げられる。バインダー樹脂100
重量部中、上記光導電体を20〜300重量部含有させ
ることが好ましく、特に30〜150重量部が好まし
い。この様な電荷発生層の膜厚は通常5μm以下、好ま
しくは0.01〜1μm、更に好ましくは0.15〜
0.6μmが、適当である。
The charge generation layer is formed as a uniform layer of these substances or in a state where fine particles are dispersed in a binder. Examples of the binder resin used here include polyvinyl butyral, phenoxy resin, epoxy resin, polyester resin, acrylic resin, methacrylic resin, polyvinyl acetate, polyvinyl chloride, methyl cellulose, and polycarbonate resin. Binder resin 100
It is preferable that the photoconductor is contained in an amount of 20 to 300 parts by weight, more preferably 30 to 150 parts by weight. The thickness of such a charge generation layer is usually 5 μm or less, preferably 0.01 to 1 μm, more preferably 0.15 to
0.6 μm is appropriate.

【0018】前記電荷移動層中に用いる電荷移動材料と
し種々の材料が使用できる。例えばヒドラゾン誘導体、
ピラゾリン誘導体、カルバゾール、インドール、オキサ
ジアゾール等の複素環誘導体、トリフェニルアミン等の
アリールアミンの誘導体、スチルベン誘導体、側鎖ある
いは主鎖に上記の化合物を有する高分子化合物などが挙
げられる。なかでもヒドラゾン誘導体、アリールアミン
類、スチルベン誘導体はより好ましい電荷移動材料であ
る。これらの電荷移動材料と共に必要に応じてバインダ
ー樹脂が配合される。
As the charge transfer material used in the charge transfer layer, various materials can be used. For example, hydrazone derivatives,
Examples include pyrazoline derivatives, heterocyclic derivatives such as carbazole, indole, and oxadiazole, derivatives of arylamines such as triphenylamine, stilbene derivatives, and high molecular compounds having the above compound in the side chain or main chain. Among them, hydrazone derivatives, arylamines and stilbene derivatives are more preferred charge transfer materials. A binder resin is blended with these charge transfer materials as needed.

【0019】好ましいバインダー樹脂としては、ポリメ
チルメタクリレート、ポリスチレン、ポリ塩化ビニルな
どのビニル重合体及びその共重合体、ポリアリレート樹
脂、ウレタン、尿素、メラミンポリカーボネート、ポリ
エステル、ポリサルホン、フェノキシ樹脂、エポキシ樹
脂、シリコーン樹脂などが挙げられ、またこれらの部分
的架橋硬化物も使用される。上記電荷移動材料を、バイ
ンダー樹脂100重量部中に30〜200重量部、特に
50〜150重量部含有させることが好ましい。
Preferred binder resins include vinyl polymers such as polymethyl methacrylate, polystyrene and polyvinyl chloride and copolymers thereof, polyarylate resins, urethane, urea, melamine polycarbonate, polyester, polysulfone, phenoxy resins, epoxy resins, and the like. Examples thereof include silicone resins, and partially crosslinked and cured products thereof. The charge transfer material is preferably contained in an amount of 30 to 200 parts by weight, particularly 50 to 150 parts by weight, per 100 parts by weight of the binder resin.

【0020】また電荷移動層には、必要に応じて酸化防
止剤、増感剤などの各種添加剤を含んでいてもよい。電
荷移動層の膜厚は通常10〜40μm、好ましくは10
〜25μmの厚みで使用される。なお、光導電層の他の
例として、バインダー樹脂と上記電荷移動材料からなる
結合剤中に、前記の如き光導電体粒子を分散させてなる
分散型導電層がある。この場合には、光導電体と電荷移
動材料の合計の含有量は、バインダー樹脂100重量部
に対して、20〜200重量部が好ましく、特に40〜
150重量部が好ましい。
The charge transfer layer may contain various additives such as an antioxidant and a sensitizer, if necessary. The thickness of the charge transfer layer is usually 10 to 40 μm, preferably 10 to 40 μm.
Used with a thickness of 2525 μm. As another example of the photoconductive layer, there is a dispersion-type conductive layer in which the above-described photoconductor particles are dispersed in a binder made of a binder resin and the above-described charge transfer material. In this case, the total content of the photoconductor and the charge transfer material is preferably 20 to 200 parts by weight, and particularly preferably 40 to 200 parts by weight based on 100 parts by weight of the binder resin.
150 parts by weight are preferred.

【0021】上記の潜像保持部材に帯電を行なう帯電部
材の形状はブラシ状、ブレード状、或いはローラー状等
潜像保持部材に接触すればその形態は問わないが、ロー
ラー状の形状が使用上好ましい。帯電装置がローラー状
の場合通常は、芯材とその周囲を覆う帯電部材から構成
される。帯電部材としては潜像保持部材に密着させて接
触させる必要から比較的硬度が低い導電性または半導電
性の弾性体が好ましく、例えばゴム材にカーボン等の導
電性粒子或いはその他の半導電性粒子を含有させた導電
性ゴム等が使用される。
The shape of the charging member for charging the latent image holding member is not limited as long as it comes into contact with the latent image holding member, such as a brush, a blade, or a roller. preferable. When the charging device is in the form of a roller, it usually comprises a core material and a charging member that covers the core material. As the charging member, a conductive or semiconductive elastic body having relatively low hardness is preferable because it needs to be brought into close contact with the latent image holding member. For example, conductive particles such as carbon or other semiconductive particles in a rubber material are preferable. And a conductive rubber containing the same.

【0022】また、帯電部材を支持部材と表面部材に分
けて、支持部材に適当な硬度を持たせ潜像保持部材への
密着性等を保ちながら、表面部材で適度な電気抵抗を保
持させた機能分離型帯電部材を用いる事も出来る。以下
ローラー状の帯電部材を本発明の帯電装置の一例を示す
図1に基づいて説明する。
Further, the charging member is divided into a supporting member and a surface member, and the supporting member has an appropriate hardness to maintain an appropriate electric resistance by the surface member while maintaining the adhesion to the latent image holding member. A function-separated charging member can also be used. Hereinafter, a roller-shaped charging member will be described with reference to FIG. 1 showing an example of the charging device of the present invention.

【0023】図中1は本発明の潜像保持部材である。無
機及び有機の潜像保持部材であって、形状はドラム状又
はシート状等目的に応じて何でも使用出来る。図中2は
帯電部材を支える芯材である。この芯材の両端は潜像保
持部材に帯電部材を接触させる為に適当な圧力印加装
置、例えば金属バネ等で支えられた軸受けに保持され
る。そしてこの芯材の軸受け或いは他の電気的接触手段
を使ってバイアス電位が印加される。芯材の材質として
は導電性をもつものならば何でも良く、通常は金属が使
われることが多い。金属の例としては、鉄,銅,真鍮,
ステンレス材,アルミニウム等がある。その他導電性の
有機材料例えばカーボン等を練り込んだ樹脂成型品等を
用いることも出来る。
In FIG. 1, reference numeral 1 denotes a latent image holding member of the present invention. It is an inorganic and organic latent image holding member, and any shape such as a drum shape or a sheet shape can be used according to the purpose. In the figure, reference numeral 2 denotes a core material supporting the charging member. Both ends of the core material are held by bearings supported by a suitable pressure applying device, for example, a metal spring or the like, for bringing the charging member into contact with the latent image holding member. A bias potential is then applied using the core bearing or other electrical contact means. Any material may be used as the material of the core as long as it has conductivity, and usually, metal is often used. Examples of metals include iron, copper, brass,
Stainless steel, aluminum, etc. are available. In addition, a resin molded product in which a conductive organic material such as carbon is kneaded can be used.

【0024】図中3はローラー状の支持部材であり、潜
像保持部材に密着して接触し回転する。回転の駆動力は
外部から加えても良く、または潜像保持部材との接触摩
擦力で自由に回転させても良い。支持部材の材質として
は導電性或いは半導電性を持つものならばなんでも良
い。通常は潜像保持部材と密着させて接触させる必要か
ら比較的表面の硬度が低い弾性体であるゴム材例えば、
NBR,EPDM,シリコン,ネオプレン,或いは天然
のゴム材およびこれらのゴムにカーボン等の導電性粒子
或いは半導電性粒子を練り込んだ導電性ゴム等が使用さ
れる。もちろん良好な密着性が保たれる様によく精密加
工された表面をもてば、ゴムのような弾性体以外の材料
でも良い。しかるに、この様な接触帯電装置を用いた場
合、帯電の均一性が問題となり、帯電部材の電気電導度
が大きすぎると潜像保持部材の帯電ムラが生じて、正規
現像時は黒部分の画像ムラ、反転現像時は白部分のカブ
リとなる画像欠陥になる。逆に電気電導度が小さすぎる
と帯電不良が生じて像担持体が、十分に帯電されない。
従って、支持部材の、抵抗率としては102 −1015Ω
cmが好ましく、特に104 −1012Ωcmが好まし
い。
In the drawing, reference numeral 3 denotes a roller-shaped support member, which comes into close contact with the latent image holding member and rotates. The driving force for rotation may be applied from the outside, or may be freely rotated by contact friction with the latent image holding member. Any material may be used as the material of the support member as long as it has conductivity or semi-conductivity. Usually, a rubber material that is an elastic body having a relatively low surface hardness because it is necessary to bring the latent image holding member into close contact with the rubber member, for example,
NBR, EPDM, silicon, neoprene, or natural rubber materials, and conductive rubber obtained by kneading conductive particles such as carbon or semiconductive particles into these rubbers are used. Of course, a material other than an elastic material such as rubber may be used as long as it has a surface that is precisely processed so as to maintain good adhesion. However, when such a contact charging device is used, uniformity of charging becomes a problem, and if the electrical conductivity of the charging member is too large, uneven charging of the latent image holding member occurs. At the time of non-uniformity and reversal development, an image defect becomes fog of a white portion. Conversely, if the electric conductivity is too small, poor charging occurs, and the image carrier is not sufficiently charged.
Therefore, the resistivity of the support member is 10 2 -10 15 Ω.
cm, particularly preferably 10 4 -10 12 Ωcm.

【0025】図中4は表面部材で機能分離型帯電部材を
使用する場合に設けられる。材質としてはポリアミド樹
脂、フッ素樹脂、塩化ビニール樹脂、アクリル樹脂、そ
の他種々のポリエステル樹脂等が主成分として使用され
る。表面部材の抵抗率としては、103 −1014Ωcm
が好ましく、特に105 −1012Ωcmが好ましい。表
面部材の膜厚は、帯電部材としての磨耗による耐久性を
考慮すると厚いほうが良いが、厚くしすぎると潜像保持
部材への帯電能が悪くなるので、通常0.01μ−10
00μ、好ましくは0.1μ−500μである。表面部
材の製法としては支持部材の上にディップ法、スプレー
法、真空蒸着法、プラズマコーティング法等で表面部材
を形成するが、これらの方法に於いて製造工程の点では
ディップ法が有利である。
Reference numeral 4 in the figure is provided when a function-separating type charging member is used as the surface member. As a material, a polyamide resin, a fluorine resin, a vinyl chloride resin, an acrylic resin, other various polyester resins, and the like are used as main components. The resistivity of the surface member is 10 3 -10 14 Ωcm
, And particularly preferably 10 5 -10 12 Ωcm. The thickness of the surface member is preferably thicker in consideration of the durability due to wear as a charging member. However, if the thickness is too large, the charging ability of the latent image holding member deteriorates.
00μ, preferably 0.1μ-500μ. As a method of manufacturing the surface member, the surface member is formed on the support member by a dipping method, a spray method, a vacuum deposition method, a plasma coating method, etc. In these methods, the dip method is advantageous in terms of a manufacturing process. .

【0026】潜像保持部材を帯電させる為に、帯電部材
即ち芯材に印加する電圧としては直流電圧のみ、あるい
は直流に交流を重畳しても良い。交流としては周期的に
変化する電圧ならば何でも良い。電圧の範囲としては直
流電圧の場合正又は負の100−4000V、好ましく
は300−3000Vである。重畳する交流電圧として
はピーク間電圧が100−4000V、好ましくは30
0−3000Vである。
In order to charge the latent image holding member, only a DC voltage may be applied to the charging member, that is, the core material, or AC may be superimposed on DC. Any alternating voltage may be used as long as it varies periodically. The range of the voltage is positive or negative 100 to 4000 V, preferably 300 to 3000 V in the case of a DC voltage. As the superimposed AC voltage, the peak-to-peak voltage is 100 to 4000 V, preferably 30 to 40 V.
0-3000V.

【0027】[0027]

【実施例】以下実施例により本発明を更に具体的に説明
するが、本発明はその要旨を超えない限り、以下の実施
例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples without departing from the scope of the invention.

【0028】実施例1.アルミニウム押出し管を、しご
き加工により、肉厚0.75mm、外径30mm、長さ
246mmのアルミニウムシリンダーを作製した。この
アルミシリンダーの最大表面粗さを測定したところ0.
5μmであった。このアルミニウムシリンダーを脱脂剤
NG−#30(キザイ(株)製)の30g/l水溶液中
で60℃、5分間脱脂洗浄を行なった。続いて水洗を行
なった後7%硝酸に25℃で1分間浸漬した。更に水洗
後、180g/lの硫酸電解液中(溶存アルミニウム濃
度7g/l)で、1.0A/dm2 の電流密度で陽極酸
化を行ない、平均膜厚6μmの陽極酸化被膜を形成し
た。次いで水洗後、酢酸ニッケルを主成分とする高温封
孔剤トップシールDX−500(奥野製薬工業(株)
製)の10g/lの水溶液に90℃で20分間浸漬し封
孔処理を行なった。続いて水洗を行なった後、95℃の
純水熱水浴に10分間浸漬した後、取り出し乾燥した。
Embodiment 1 FIG. An aluminum cylinder having a wall thickness of 0.75 mm, an outer diameter of 30 mm, and a length of 246 mm was produced by ironing the aluminum extrusion tube. The maximum surface roughness of this aluminum cylinder was measured.
It was 5 μm. This aluminum cylinder was degreased and washed in a 30 g / l aqueous solution of a degreasing agent NG- # 30 (manufactured by Kizai Co., Ltd.) at 60 ° C. for 5 minutes. Subsequently, after washing with water, it was immersed in 7% nitric acid at 25 ° C. for 1 minute. After further washing with water, anodic oxidation was carried out in a 180 g / l sulfuric acid electrolytic solution (dissolved aluminum concentration: 7 g / l) at a current density of 1.0 A / dm 2 to form an anodic oxide film having an average film thickness of 6 μm. Then, after washing with water, a high-temperature sealing agent top seal DX-500 containing nickel acetate as a main component (Okuno Pharmaceutical Co., Ltd.)
Was immersed in a 10 g / l aqueous solution at 90 ° C. for 20 minutes for sealing. Subsequently, after washing with water, it was immersed in a hot water bath of 95 ° C. for 10 minutes, taken out and dried.

【0029】一方、オキシチタニウムフタロシアニン1
0重量部、ポリビニルプチラール(積水化学工業社製、
エスレックBH−3)5重量部に1,2−ジメトキシエ
タン500重量部を加え、サンドグラインドミルで粉砕
・分散処理を行なった。この分散液に、先に形成した陽
極酸化被膜を設けたアルミニウムシリンダーを浸漬塗布
し、乾燥後の膜厚が0.4μmとなるように電荷発生層
を設けた。
On the other hand, oxytitanium phthalocyanine 1
0 parts by weight, polyvinyl butyral (Sekisui Chemical Co., Ltd.
To 5 parts by weight of Esrec BH-3) was added 500 parts by weight of 1,2-dimethoxyethane, and the mixture was pulverized and dispersed by a sand grind mill. An aluminum cylinder provided with the previously formed anodic oxide film was dip-coated on this dispersion, and a charge generation layer was provided so that the film thickness after drying was 0.4 μm.

【0030】次にこのアルミニウムシリンダーを次に示
すヒドラゾン化合物56重量部と
Next, this aluminum cylinder was mixed with 56 parts by weight of a hydrazone compound shown below.

【0031】[0031]

【化1】 Embedded image

【0032】次に示すヒドラゾン化合物14重量部14 parts by weight of the following hydrazone compound

【0033】[0033]

【化2】 Embedded image

【0034】次に示すシアノ化合物1.5重量部1.5 parts by weight of the following cyano compound

【0035】[0035]

【化3】 Embedded image

【0036】パラ−3,5−ジ(タ−シャリ−ブチル)
ヒドロキシトルエン8重量部及びポリカーボネート樹脂
(三菱化成(株)製、ノパレックス(登録商標)702
5A)100重量部を1,4−ジオキサン1000重量
部に溶解させた溶液に浸漬塗布し、乾燥後の膜厚が17
μmとなるように電荷移動層を設けた。
Para-3,5-di (tert-butyl)
8 parts by weight of hydroxytoluene and polycarbonate resin (NOPAREX (registered trademark) 702, manufactured by Mitsubishi Chemical Corporation)
5A) Dip-coating in a solution in which 100 parts by weight of 1,4-dioxane was dissolved in 1000 parts by weight, and the film thickness after drying was 17
The charge transfer layer was provided to have a thickness of μm.

【0037】以上のようにして潜像保持部材1を作製し
た。次に、芯材2として6mm径のステンレス棒を使用
し、支持部材3として抵抗108 Ωcmの導電性EPD
Mゴムを使用した12mm径のローラを使用した帯電部
材を作製した。そして市販のプリンター(日本電気
(株)製PR406LM)の潜像保持部材とコロナ帯電
器の替りに、上記で作成した潜像保持部材と帯電部材を
用いかつ帯電部材を潜像保持部材に接触させて、電源バ
イアスとして直流−1200Vを芯材に印加して、画像
を評価をしたその結果、白地、黒地、中間調の画像とも
良好な画像が得られた。
The latent image holding member 1 was manufactured as described above. Next, a stainless steel rod having a diameter of 6 mm is used as the core material 2, and a conductive EPD having a resistance of 10 8 Ωcm is used as the support member 3.
A charging member using a 12 mm diameter roller using M rubber was produced. Then, instead of the latent image holding member and the corona charger of a commercially available printer (PR406LM manufactured by NEC Corporation), the latent image holding member and the charging member prepared above are used, and the charging member is brought into contact with the latent image holding member. As a result, the image was evaluated by applying DC-1200 V to the core material as a power source bias. As a result, good images were obtained for white background, black background, and halftone images.

【0038】また光導電層の局所的な凹部等の欠陥に対
しても電荷がリークした時に発生する黒い帯状の画像欠
陥が発生しなかった。
Further, no black band-like image defect, which is generated when electric charge is leaked, occurs even for a defect such as a local concave portion of the photoconductive layer.

【0039】実施例2.支持部材を抵抗104 Ωcmの
導電性EPDMゴムにした以外は実施例1と同様にし
て、画像を評価をした結果、白地、黒地、中間調の画像
とも良好な画像が得られた。また光導電層の局所的な凹
部等の欠陥に対しても電荷がリークした時に発生する黒
い帯状の画像欠陥が発生しなかった。
Embodiment 2 FIG. The images were evaluated in the same manner as in Example 1 except that the supporting member was made of a conductive EPDM rubber having a resistance of 10 4 Ωcm. As a result, good images were obtained for white, black, and halftone images. In addition, black band-like image defects generated when electric charge leaked did not occur even for defects such as local concave portions of the photoconductive layer.

【0040】実施例3.電源バイアスを直流−700V
にピーク間電圧1400Vの交流を重畳した以外は実施
例1と同様にして、画像を評価した結果、白地、黒地、
中間調の画像とも良好な画像が得られた。また光導電層
の局所的な凹部等の欠陥に対しても電荷がリークした時
に発生する黒い帯状の画像欠陥が発生しなかった。
Embodiment 3 FIG. Power supply bias DC-700V
The image was evaluated in the same manner as in Example 1 except that an alternating current having a peak-to-peak voltage of 1400 V was superimposed on the image.
Good images were obtained for both halftone images. In addition, black band-like image defects generated when electric charge leaked did not occur even for defects such as local concave portions of the photoconductive layer.

【0041】実施例4.支持部材の抵抗を104 Ωcm
にした以外は実施例3と同様にして、画像を評価した結
果、白地、黒地、中間調の画像とも良好な画像が得られ
た。また光導電層の局所的な凹部等の欠陥に対しても電
荷がリークした時に発生する黒い帯状の画像欠陥が発生
しなかった。
Embodiment 4 FIG. The resistance of the supporting member is 10 4 Ωcm
As a result of evaluating the image in the same manner as in Example 3 except that the image quality was changed to, good images were obtained for white, black, and halftone images. In addition, black band-like image defects generated when electric charge leaked did not occur even for defects such as local concave portions of the photoconductive layer.

【0042】実施例5〜8.表面に切削加工を行なって
鏡面仕上した肉厚1.0mm、外径30mm、長さ24
6mmのアルミニウムシリンダーを用いた以外は、各
々、実施例1〜4と同様にして、画像を評価した。その
結果、いずれにおいても白地、黒地、中間調の画像とも
良好な画像が得られた。また光導電層の局所的な凹部等
の欠陥に対しても電荷がリークした時に発生する黒い帯
状の画像欠陥がいずれも発生しなかった。
Embodiments 5 to 8 The surface is cut and mirror finished to a thickness of 1.0 mm, an outer diameter of 30 mm, and a length of 24
The images were evaluated in the same manner as in Examples 1 to 4, except that a 6 mm aluminum cylinder was used. As a result, good images were obtained for all of the white, black, and halftone images. In addition, no black band-like image defects generated when electric charge leaked were generated for defects such as local concave portions of the photoconductive layer.

【0043】実施例9.支持部材として、抵抗率108
Ωcmの導電性EPDMゴムを使用し、更に抵抗率10
10Ωcmのポリアミド系樹脂から成る表面部材(膜圧1
μm)を設けた12mm径のローラを使用した帯電部材
を用いる以外は実施例1と同様にして、画像を評価した
結果、白地、黒地、中間調の画像とも良好な画像が得ら
れた。また光導電層の局所的な凹部等の欠陥に対しても
電荷がリークした時に発生する黒い帯状の画像欠陥が発
生しなかった。
Embodiment 9 FIG. As a support member, resistivity 10 8
Ωcm conductive EPDM rubber and resistivity 10
Surface member made of polyamide resin of 10 Ωcm (film pressure 1
The image was evaluated in the same manner as in Example 1 except that a charging member using a roller having a diameter of 12 mm provided with a .mu.m) was used. As a result, good images were obtained for white, black, and halftone images. In addition, black band-like image defects generated when electric charge leaked did not occur even for defects such as local concave portions of the photoconductive layer.

【0044】実施例10.支持部材として、抵抗率10
8 Ωcmの導電性EPDMゴムを使用し、更に抵抗率1
10Ωcmのポリアミド系樹脂から成る表面部材(膜厚
1μm)を設けた12mm径のローラを使用した帯電部
材を用いる以外は実施例5と同様にして、画像を評価し
た結果、白地、黒地、中間調の画像とも良好な画像が得
られた。また光導電層の局所的な凹部等の欠陥に対して
も電荷がリークした時に発生する黒い帯状の画像欠陥が
発生しなかった。
Embodiment 10 FIG. As a supporting member, a resistivity of 10
Using a conductive EPDM rubber of 8 Ωcm and a resistivity of 1
An image was evaluated in the same manner as in Example 5 except that a charging member using a roller having a diameter of 12 mm provided with a surface member (thickness: 1 μm) made of a polyamide resin of 0 10 Ωcm was evaluated. Good images were obtained for both halftone images. In addition, black band-like image defects generated when electric charge leaked did not occur even for defects such as local concave portions of the photoconductive layer.

【0045】比較例1.実施例1と同様にアルミニウム
シリンダーを作製し、陽極酸化皮膜を設けない替わりに
トリクレンにより脱脂洗浄を行ない、実施例1と同様に
電荷発生層及び電荷移動層を順次もうけた。次に、実施
例1と同様の帯電部材を作製した。そして実施例1と同
様に、画像を評価した結果、特に中間調の画像に於いて
画像欠陥が多数見られカブリが多かった。
Comparative Example 1 An aluminum cylinder was produced in the same manner as in Example 1, and instead of not providing an anodic oxide film, degreasing and washing were performed with trichlorene. As in Example 1, a charge generation layer and a charge transfer layer were sequentially formed. Next, the same charging member as in Example 1 was produced. As in Example 1, as a result of evaluating the image, many image defects were observed especially in the halftone image, and the fog was large.

【0046】比較例2.支持部材を抵抗104 Ωcmの
導電性EPDMゴムにした以外は比較例1と同様にして
画像を評価した結果、特に中間調の画像に於いて画像欠
陥が多数見られ、カブリが多かった。また光導電層の局
所的な凹部等の欠陥に対しても電荷がリークした時に発
生する黒い帯状の画像欠陥が発生した。
Comparative Example 2 The image was evaluated in the same manner as in Comparative Example 1 except that the supporting member was made of a conductive EPDM rubber having a resistance of 10 4 Ωcm. As a result, many image defects were observed particularly in a halftone image, and fog was large. In addition, black band-like image defects generated when electric charge leaked also occurred for defects such as local concave portions of the photoconductive layer.

【0047】比較例3.電源バイアスを直流−700V
に、ピーク間電圧1400Vの交流を重畳した以外は比
較例1と同様にして画像を評価をした結果、特に中間調
の画像に於いて画像欠陥が多数見られ、カブリが多かっ
た。
Comparative Example 3 Power supply bias DC-700V
The image was evaluated in the same manner as in Comparative Example 1 except that an alternating current having a peak-to-peak voltage of 1400 V was superimposed.

【0048】比較例4.支持部材の抵抗を104 Ωcm
にした以外は比較例3と同様にして、画像を評価をした
結果、特に中間調の画像に於いて画像欠陥が多数見ら
れ、カブリが多かった。また光導電層の局所的な凹部等
の欠陥に対しても電荷がリークした時に発生する黒い帯
状の画像欠陥が発生した。
Comparative Example 4 The resistance of the supporting member is 10 4 Ωcm
As a result of evaluating the image in the same manner as in Comparative Example 3 except that the image quality was changed, many image defects were observed especially in the halftone image, and the fog was large. In addition, black band-like image defects generated when electric charge leaked also occurred for defects such as local concave portions of the photoconductive layer.

【0049】比較例5.表面に切削加工を行なって鏡面
仕上した肉厚1.0mm、外径30mm、長さ246m
mのアルミニウムシリンダーを用いた以外は比較例1と
同様にして、画像を評価した結果、特に中間調の画像に
於いて画像欠陥が多数見られ、カブリが多かった。
Comparative Example 5 The surface is cut to a mirror finish with a thickness of 1.0 mm, an outer diameter of 30 mm, and a length of 246 m.
The image was evaluated in the same manner as in Comparative Example 1 except that an aluminum cylinder having a m of m was used. As a result, many image defects were observed especially in the halftone image, and the fog was large.

【0050】比較例6.支持部材の抵抗を104 Ωcm
にした以外は比較例5と同様にして、画像を評価した結
果、特に中間調の画像に於いて画像欠陥が多数見られ、
カブリが多かった。また光導電層の局所的な凹部等の欠
陥に対しても電荷がリークした時に発生する黒い帯状の
画像欠陥が発生した。
Comparative Example 6 The resistance of the supporting member is 10 4 Ωcm
As a result of evaluating the image in the same manner as in Comparative Example 5 except that the image quality was changed, many image defects were observed particularly in the halftone image.
There were many fog. In addition, black band-like image defects generated when electric charge leaked also occurred for defects such as local concave portions of the photoconductive layer.

【0051】比較例7.電源バイアスを直流−700V
にピーク間電圧1400Vの交流を重畳した以外は比較
例5と同様にして、画像を評価した結果、特に中間調の
画像に於いて画像欠陥が多数見られ、カブリが多かっ
た。
Comparative Example 7 Power supply bias DC-700V
The image was evaluated in the same manner as in Comparative Example 5 except that an alternating current having a peak-to-peak voltage of 1400 V was superimposed. As a result, many image defects were observed particularly in the halftone image, and the fog was large.

【0052】比較例8.支持部材の抵抗を104 Ωcm
にした以外は比較例7と同様にして、画像を評価した結
果、特に中間調の画像に於いて画像欠陥が多数見られ、
カブリが多かった。また光導電層の局所的な凹部等の欠
陥に対しても電荷がリークした時に発生する黒い帯状の
画像欠陥が発生した。
Comparative Example 8 The resistance of the supporting member is 10 4 Ωcm
As a result of evaluating the image in the same manner as in Comparative Example 7 except that the image quality was changed, many image defects were observed particularly in the halftone image.
There were many fog. In addition, black band-like image defects generated when electric charge leaked also occurred for defects such as local concave portions of the photoconductive layer.

【0053】[0053]

【発明の効果】本発明により得られる帯電装置及び方法
によれば、潜像保持部材としてそのままでは表面に汚れ
や突起、傷、窪み等が数多く存在し、使用できないよう
なアルミニウム基体を、陽極酸化処理を施すことにより
それらの欠陥を除去できる。それによって接触帯電装置
及び方法を用いた場合に生じる、画像欠陥及び光導電層
の局所的な凹み等の欠陥による画像欠陥の影響を受けに
くい良好な帯電装置及び方法を提供できる。
According to the charging device and method obtained by the present invention, an aluminum substrate which cannot be used as a latent image holding member, which has many dirt, projections, scratches, dents and the like on its surface as it is, can be anodized. By performing the treatment, those defects can be removed. As a result, it is possible to provide a good charging device and method which are less susceptible to image defects caused by image defects and defects such as local dents in the photoconductive layer, which occur when the contact charging device and method are used.

【0054】更に本発明によって得られた帯電装置及び
方法を、市販の複写機や、より基体の欠陥が厳しく画像
に出やすい反転現像方式のプロセスを含む、電子写真シ
ステムにおいて使用しても、高湿下を含めた広い環境条
件下で、カブリやその他の画像欠陥が極めて少ない良好
な画像が得られる。
Further, even if the charging device and method obtained by the present invention are used in a commercially available copying machine or in an electrophotographic system including a reversal developing system process in which a defect of a substrate is more severe and an image is more likely to appear, Under a wide range of environmental conditions including wet conditions, a good image with very little fog and other image defects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の帯電装置の一例の断面説明図。FIG. 1 is an explanatory sectional view of an example of a charging device of the present invention.

【符号の説明】[Explanation of symbols]

1 潜像保持部材 2 芯材 3 支持部材 4 表面部材 DESCRIPTION OF SYMBOLS 1 Latent image holding member 2 Core material 3 Support member 4 Surface member

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−242264(JP,A) 特開 昭63−298250(JP,A) 特開 昭63−267952(JP,A) 特開 昭64−44964(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-242264 (JP, A) JP-A-63-298250 (JP, A) JP-A-63-267952 (JP, A) JP-A 64-64 44964 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 潜像保持部材と該潜像保持部材に接触さ
せて帯電させる帯電部材とからなる帯電装置に於いて、
前記潜像保持部材が、表面を陽極酸化処理したアルミニ
ウム基体上に光導電層を設けたものであることを特徴と
する帯電装置。
1. A charging device comprising: a latent image holding member; and a charging member that contacts and charges the latent image holding member.
A charging device, wherein the latent image holding member has a photoconductive layer provided on an aluminum substrate whose surface is anodized.
【請求項2】 帯電部材を潜像保持部材に接触させて帯
電させる帯電方法に於いて、該潜像保持部材が表面を陽
極酸化処理したアルミニウム基体上に光導電層を設けた
ものであることを特徴とする帯電方法。
2. A charging method for charging a charging member by bringing the charging member into contact with a latent image holding member, wherein the latent image holding member is provided with a photoconductive layer on an aluminum substrate whose surface is anodized. A charging method comprising:
JP3193257A 1991-08-01 1991-08-01 Charging device and method Expired - Lifetime JP2661418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193257A JP2661418B2 (en) 1991-08-01 1991-08-01 Charging device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193257A JP2661418B2 (en) 1991-08-01 1991-08-01 Charging device and method

Publications (2)

Publication Number Publication Date
JPH0534964A JPH0534964A (en) 1993-02-12
JP2661418B2 true JP2661418B2 (en) 1997-10-08

Family

ID=16304944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193257A Expired - Lifetime JP2661418B2 (en) 1991-08-01 1991-08-01 Charging device and method

Country Status (1)

Country Link
JP (1) JP2661418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047461A (en) * 2020-12-23 2021-03-25 富士電機株式会社 Photoreceptor for electrophotographic, manufacturing method thereof, and electro-photographic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444995B2 (en) * 1994-12-07 2003-09-08 キヤノン株式会社 Electrophotographic photoreceptor and electrophotographic apparatus
DE69730668T2 (en) * 1996-11-12 2005-09-22 Canon K.K. Photosensitive element, electrophotographic apparatus and replaceable part element
US6432603B1 (en) 1998-11-27 2002-08-13 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member
US6400916B1 (en) 1998-11-30 2002-06-04 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus
JP2000162806A (en) 1998-11-30 2000-06-16 Canon Inc Electrophotographic photoreceptor, its production, process cartridge and electrophotographic device
JP2002258504A (en) 2001-03-06 2002-09-11 Fuji Denki Gazo Device Kk Substrate for electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic device
JP4547675B2 (en) 2005-12-27 2010-09-22 富士電機システムズ株式会社 Electrophotographic photoreceptor
TWI453552B (en) 2008-12-16 2014-09-21 Fuji Electric Co Ltd An electrophotographic photoreceptor, a manufacturing method thereof, and an electrophotographic apparatus
JP5721610B2 (en) * 2011-11-17 2015-05-20 京セラドキュメントソリューションズ株式会社 Electrophotographic photosensitive member and image forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267952A (en) * 1987-04-27 1988-11-04 Canon Inc Cylindrical amorphous silicon photosensitive body
JPS63298250A (en) * 1987-05-29 1988-12-06 Ricoh Co Ltd Electrophotographic sensitive body
JP2694745B2 (en) * 1987-08-14 1997-12-24 キヤノン株式会社 Electrophotographic equipment
JPH02242264A (en) * 1989-03-15 1990-09-26 Fuji Electric Co Ltd Production of electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047461A (en) * 2020-12-23 2021-03-25 富士電機株式会社 Photoreceptor for electrophotographic, manufacturing method thereof, and electro-photographic device
JP7001144B2 (en) 2020-12-23 2022-01-19 富士電機株式会社 Photoreceptor for electrophotographic, its manufacturing method and electrophotographic equipment

Also Published As

Publication number Publication date
JPH0534964A (en) 1993-02-12

Similar Documents

Publication Publication Date Title
JPH01211779A (en) Electrostatic charging member
JP2661418B2 (en) Charging device and method
US5875375A (en) Electrophotographic apparatus and process cartridge
JP2661435B2 (en) Proximity charging device
JP4600106B2 (en) Image forming apparatus
JP3831672B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4804099B2 (en) Electrophotographic photoreceptor, drum cartridge using the photoreceptor, and image forming apparatus
JP3753988B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2008216929A (en) Electrophotographic photoreceptor and electrophotographic device using electrophotographic photoreceptor
JP4513686B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, image forming apparatus, and image forming method
JP4661617B2 (en) Electrophotographic photoreceptor, image forming method and image forming apparatus
JP4720527B2 (en) Electrophotographic photoreceptor, image forming method and image forming apparatus
JP3710272B2 (en) Electrophotographic apparatus and process cartridge
JP7232720B2 (en) image forming device
JP7261663B2 (en) image forming device
JPH09179323A (en) Electrophotographic photoreceptor and image forming method
JP2718066B2 (en) Electrophotographic photoreceptor
JP3279167B2 (en) Electrophotographic photoreceptor
JP2004101813A (en) Image forming apparatus
JP2002268257A (en) Electrophotographic photoreceptor and manufacturing method thereof, electrophotographic method, electrophotographic apparatus and process cartridge for electrophotographic apparatus using the same
JP2000338700A (en) Electrophotographic photoreceptor, its production, process cartridge and electrophotographic device
JPH0477762A (en) Electrifying member
JP2006145870A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2019061152A (en) Image forming unit, process cartridge, and image forming apparatus
JP2018136421A (en) Image forming apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 15