JP2659833B2 - Hot forging method for Ni-base superalloys - Google Patents

Hot forging method for Ni-base superalloys

Info

Publication number
JP2659833B2
JP2659833B2 JP1313804A JP31380489A JP2659833B2 JP 2659833 B2 JP2659833 B2 JP 2659833B2 JP 1313804 A JP1313804 A JP 1313804A JP 31380489 A JP31380489 A JP 31380489A JP 2659833 B2 JP2659833 B2 JP 2659833B2
Authority
JP
Japan
Prior art keywords
temperature
forging
hot forging
strength
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1313804A
Other languages
Japanese (ja)
Other versions
JPH03174938A (en
Inventor
信夫 金丸
統 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1313804A priority Critical patent/JP2659833B2/en
Publication of JPH03174938A publication Critical patent/JPH03174938A/en
Application granted granted Critical
Publication of JP2659833B2 publication Critical patent/JP2659833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はNi基超耐熱合金の熱間鍛造方法に関する。か
かる熱間鍛造により形成されるものの例としては、ジェ
ットエンジンや発電機の高温ガスタービンに用いられる
ディスクやブレードがある。
Description: TECHNICAL FIELD The present invention relates to a hot forging method for a Ni-base superalloy. Examples of those formed by such hot forging include disks and blades used in high-temperature gas turbines of jet engines and generators.

(従来の技術) Ni基超耐熱合金は、変形抵抗が高く、また、変形能も
一般的に低いため、複雑形状の鍛造加工は難しいとされ
てきた。
(Prior Art) Ni-base superalloys have been considered to be difficult to forge into complex shapes because of their high deformation resistance and generally low deformability.

しかし、近年、Ni基超耐熱合金の微粉末焼結体を用い
て押出した微細結晶粒超塑性合金(例えばIN−100)を
超塑性発現温度に加熱して熱間鍛造することによって、
所期の製品形状に成形加工する方法(Gatorizing法)が
実用化された。
However, in recent years, by extruding a fine-grained superplastic alloy (for example, IN-100) extruded using a fine-powder sintered body of a Ni-base super-heat-resistant alloy, it is heated to a superplastic expression temperature and hot forged.
The method of forming into the expected product shape (Gatorizing method) has been put to practical use.

この方法を実施するための鍛造装置については、Ni基
超耐熱、超塑性合金の超塑性発現温度が1000〜1150℃と
著しく高温であり、かかる温度で熱間鍛造するために、
型材として1000℃以上でも高強度を有するMo合金やW合
金(例えば、AISIのH20番系、H40番系の合金)が使用さ
れている。これらの合金は1000℃以上でも高温強度には
優れるものの大気中で激しく酸化するため、鍛造装置全
体が不活性や真空雰囲気のチャンバー内に収容されてい
る。更に、素材の搬入や製品の取出しにも専用のマニュ
ピレーター装置が設けられるのが通例である。
Regarding forging equipment to carry out this method, Ni-based super heat resistance, the superplasticity manifestation temperature of the superplastic alloy is remarkably high as 1000-1150 ℃, in order to hot forging at such temperature,
Mo alloys and W alloys having high strength even at 1000 ° C. or higher (for example, AISI H20-series and H40-series alloys) are used as mold materials. Although these alloys are excellent in high-temperature strength even at 1000 ° C. or higher, they violently oxidize in the air, so that the entire forging apparatus is housed in an inert or vacuum atmosphere chamber. Further, it is customary to provide a dedicated manipulator device for loading materials and removing products.

(発明が解決しようとする課題) しかしながら、かかる設備は高価であり、又操作も煩
雑になるためコスト上昇や生産性低下を余儀なくされ
る。
(Problems to be Solved by the Invention) However, such equipment is expensive and the operation is complicated, so that the cost increases and the productivity decreases.

一方、雰囲気チャンバーや特殊マニュピレーターを用
いることなく、大気中で熱間鍛造するには、Mo合金等が
酸化しないような400℃程度の温度に鍛造型を加熱し、
素材を超塑性発現温度に加熱し、大気中でも型材が酸化
しないようにして熱間鍛造すればよい。
On the other hand, in order to perform hot forging in the air without using an atmosphere chamber or a special manipulator, the forging die is heated to a temperature of about 400 ° C. so that the Mo alloy or the like does not oxidize.
The material may be heated to a temperature at which superplasticity is exhibited, and hot forging may be performed so that the mold material does not oxidize even in the air.

しかしながら、Ni基超塑性合金の変形速度は、10-4
10-3set-1と遅いため、大型の製品では成形に時間を要
し、このため素材に1000℃以下の温度硬化が生じ、クラ
ックなどの欠陥を発生するという問題があり、成形時間
の短い小型部品しか大気中で熱間鍛造を行うことができ
ない。
However, the deformation rate of Ni-base superplastic alloy is 10 -4
Since it is as slow as 10 -3 set -1, it takes a long time to mold large products.Therefore, there is a problem that the material hardens at a temperature of 1000 ° C or less and cracks and other defects occur. Only small parts can be hot forged in air.

本発明はかかる問題に鑑みてなされたもので、Ni基超
耐熱、超塑性合金を大気中で熱間鍛造するに際し、成形
時間を長く取ることができる方法を提供することを目的
とする。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a method capable of taking a long molding time when hot forging a Ni-based super heat-resistant, superplastic alloy in the air.

(課題を解決するための手段) 上記目的を達成するためになされた本発明のNi基超耐
熱合金の熱間鍛造方法は、超塑性発現温度が1000℃以上
のNi基超耐熱合金素材を超塑性発現温度域において熱間
鍛造する方法において、 素材を鍛造温度以上の融点を有する金属材で被覆し、
かつ鍛造用金型を耐酸化性高温高強度材で形成し、被覆
した素材を超塑性発現温度に加熱し、高温に加熱した鍛
造用金型によって大気中で熱間鍛造することを発明の構
成とするものである。
(Means for Solving the Problems) The hot forging method of a Ni-based super-heat-resistant alloy of the present invention, which has been made to achieve the above-mentioned object, uses a Ni-based super-heat-resistant alloy material having a superplastic onset temperature of 1000 ° C or more. In a method of hot forging in a plasticity manifestation temperature range, the material is coated with a metal material having a melting point equal to or higher than the forging temperature,
In addition, the forging die is formed of an oxidation-resistant high-temperature, high-strength material, the coated material is heated to the superplasticity manifestation temperature, and hot forging is performed in the atmosphere by the forging die heated to a high temperature. It is assumed that.

この際、耐酸化性高温高強度材として1000℃において
25kgf/mm2以上の強度を有するNi基高温高強度材を用い
るとよい。
At this time, at 1000 ℃ as oxidation resistant high temperature high strength material
It is preferable to use a Ni-based high-temperature high-strength material having a strength of 25 kgf / mm 2 or more.

(作用) Ni基超耐熱合金素材を所定の金属材で被覆するので、
該素材を超塑性発現温度に加熱後、素材の熱放散が防止
され、被覆層の内部の素材は温度降下が生じにくい。
(Function) Since the Ni-base super heat-resistant alloy material is covered with a predetermined metal material,
After the material is heated to the superplastic temperature, the heat dissipation of the material is prevented, and the temperature of the material inside the coating layer hardly drops.

また、鍛造用金型を耐酸化性高温高強度材で形成する
ことにより、型として必要とされる強度(通常25kgf/mm
2とされる。)を損わない温度範囲で、大気中で可及的
に高温まで加熱することができ、前記素材の被覆と相ま
って鍛造中に素材に生じる温度降下を可及的に防止する
ことができ、成形時間を長く取ることができ、より複雑
な大型部品の成形が可能になる。
In addition, by forming the forging die with oxidation resistant high temperature and high strength material, the strength required for the die (normally 25kgf / mm
It is 2 . ) Can be heated to the highest possible temperature in the air within a temperature range that does not impair the temperature, and a temperature drop that occurs in the material during forging in combination with the coating of the material can be prevented as much as possible. A long time can be taken, and a more complicated large part can be formed.

Ni基高温高強度材には、1000℃においても25kgf/mm2
以上の強度を有するものが種々有り、これらを用いると
鍛造用金型を1000℃まで加熱可能となり、鍛造時におけ
る素材の熱放散、温度低下を可及的に防止することがで
き好適である。
25kgf / mm 2 at 1000 ℃ for Ni-base high-temperature high-strength materials
There are various types having the above strength, and when these are used, the forging die can be heated up to 1000 ° C., and the heat dissipation and temperature decrease of the material during forging can be prevented as much as possible, which is preferable.

(実施例) 本発明の適用対象となるNi基超耐熱合金は、例えばIN
−100、Mod.IN−100、TMP−3、TMP−7、Rene95等の微
細結晶超塑性合金ならいずれのものでも適用可能であ
り、これらの合金は超塑性発現温度が1000〜1150℃の間
にある。尚、超塑性発現のための歪速度は10-2〜10-4se
c-1程度である。これらの合金は、現在のところ、数〜
数μm程度の微粒粉末を、熱間等方圧加圧(HIP)によ
り加圧焼結した後、必要に応じて再結晶熱処理が施され
て製造される。
(Example) A Ni-base superalloy to which the present invention is applied is, for example, IN
-100, Mod.IN-100, TMP-3, TMP-7, Rene95, etc. can be applied to any of the fine crystal superplastic alloys, and these alloys have a superplastic onset temperature between 1000 and 1150 ° C. It is in. In addition, the strain rate for superplasticity is 10 -2 to 10 -4 se.
It is about c -1 . These alloys are currently available in a few
A fine powder having a size of about several μm is sintered by pressurizing by hot isostatic pressing (HIP), and then subjected to a recrystallization heat treatment if necessary.

前記Ni基超耐熱合金の素材を被覆する金属としては、
超塑性発現温度範囲(熱間鍛造時の素材温度でもあ
る。)において溶融しない金属、例えばステンレス鋼や
炭素鋼が使用される。該金属材による被覆は、HIP時の
カプセルをそのまま利用してもよい。被覆層の厚さは厚
い程、保温効果は良好であるが、鍛造後の除去(通常、
機械加工により除去される。)に時間を要し、生産性の
低下を招来する。このため、3〜8mm程度に止めておく
のがよい。
As the metal for coating the material of the Ni-base superalloy,
A metal that does not melt in the superplastic expression temperature range (which is also the material temperature during hot forging), for example, stainless steel or carbon steel is used. For coating with the metal material, the capsule at the time of HIP may be used as it is. The thicker the coating layer, the better the heat retaining effect, but the removal after forging (usually,
Removed by machining. ) Takes time, which leads to a decrease in productivity. For this reason, it is better to keep it at about 3 to 8 mm.

鍛造用金型としては、高温における耐酸化性、高強度
を有するものならいずれのものでも適用可能であるが、
IN−100相当組成の鍛造材、MARM200、Nimowal等のNi基
耐熱合金が好適である。これらは大気中で高温加熱して
も酸化せず、かつ1000℃においても、型材として要求さ
れる強度25kgf/mm2以上の強度を有しており、850〜1000
℃での熱間鍛造においても十分適用可能である。因み
に、IN−100鋳造材の温度と強度(0.2%耐力)との関係
を第2図に示す。本材では1000℃においても30kgf/mm2
の強度を有していることが解る。尚、鍛造装置はインダ
クションヒータ内に納められ、金型は誘導加熱によって
鍛造中においても加熱されるのが通例である。
As the forging die, any one having oxidation resistance at high temperature and high strength can be applied,
Forged materials having a composition equivalent to IN-100, Ni-based heat-resistant alloys such as MARM200 and Nimowal are suitable. They do not oxidize even when heated at high temperature in the air, and have a strength of 25 kgf / mm 2 or more required as a mold material even at 1000 ° C., and have a strength of 850 to 1000
It is also applicable to hot forging at ℃. FIG. 2 shows the relationship between the temperature and the strength (0.2% proof stress) of the IN-100 cast material. 30kgf / mm 2 at 1000 ℃
It turns out that it has the intensity | strength of. It is to be noted that the forging device is housed in an induction heater, and the mold is usually heated during forging by induction heating.

次に具体的実施例を掲げて説明する。 Next, a specific embodiment will be described.

(1)下記組成(wt%)のMod.IN−100超塑性Ni基合金
を素材として用いた。
(1) A Mod.IN-100 superplastic Ni-based alloy having the following composition (wt%) was used as a material.

C :0.07%、 Cr:12.4%、 Co:18.5% Mo:3.2 %、 Al: 4.3%、 Ti:5.0 % V :0.8 % B :0.02%、 Zr:0.06% 残部実質的にNi (2)第1図のように、φ80×50mmの素材1をSUS304
製、厚さ5mmの容器2に入れ、容器開口の同材質の蓋体
3を装着し、TIG溶接によって密封し、素材1を被覆し
た。
C: 0.07%, Cr: 12.4%, Co: 18.5% Mo: 3.2%, Al: 4.3%, Ti: 5.0% V: 0.8% B: 0.02%, Zr: 0.06% Remainder Ni (2) As shown in Fig. 1, material 1 of φ80 × 50mm is SUS304
Was placed in a container 2 having a thickness of 5 mm, and a lid 3 of the same material at the opening of the container was attached, and sealed by TIG welding to cover the material 1.

(3)第3図は、本実施例で使用した400Ton超塑性鍛造
装置の要部を示しており、11は鍛造用平金型で、IN−10
0の鋳造材で形成されており、同金型は同材の中間支持
金型12、セラミックス製の断熱盤13を介して、加圧用ラ
ム14および基盤15に取付けられている。そして、これら
の金型11,12回りにはインダクションヒータ16が付設さ
れている。
(3) FIG. 3 shows a main part of a 400Ton superplastic forging apparatus used in the present embodiment, where 11 is a flat die for forging, and IN-10
The mold is attached to a pressurizing ram 14 and a base 15 via an intermediate support mold 12 of the same material and a heat insulating board 13 made of ceramics. An induction heater 16 is provided around the molds 11 and 12.

前記被覆された素材1を加熱炉で1150℃に保持後、速
やかに予め約950℃に加熱保持された金型間にセットし
た。この間10〜20秒を要した。17は同素材である。尚、
18はノックアウトピンであるが、本実施例では使用して
いない。
After holding the coated material 1 at 1150 ° C. in a heating furnace, it was immediately set between molds previously heated and held at about 950 ° C. It took 10 to 20 seconds during this time. 17 is the same material. still,
Reference numeral 18 denotes a knockout pin, which is not used in this embodiment.

(4)直ちに歪速度5×10-3S-1付近のラム速度で目標
圧率50%まで大気中で鍛造した。鍛造に要した時間や約
100秒であり、鍛造終了後の素材温度は1130℃であっ
た。尚、鍛造に際してはガラス系潤滑剤を用いた。
(4) Immediately forged in the atmosphere at a ram speed near 5 × 10 −3 S −1 to a target pressure ratio of 50%. Time and about forging
It was 100 seconds, and the material temperature after the completion of forging was 1130 ° C. Note that a glass-based lubricant was used for forging.

(5)鍛造後の素材断面を第4図に示す。断面マクロ組
織を観察した結果、クラック、ボイド、酸化物生成など
の欠陥は皆無であった。また、鍛造用金型にも酸化や損
傷の発生は認められなかった。
(5) FIG. 4 shows a cross section of the material after forging. As a result of observing the cross-sectional macrostructure, there were no defects such as cracks, voids, and oxide formation. No oxidation or damage was found in the forging die.

(発明の効果) 以上説明した通り、本発明のNi基超耐熱合金の熱間鍛
造方法によれば、素材を金属材で被覆し、かつ鍛造用金
型を耐酸化性の高温高強度材で形成したので、金型の可
及的に高温まで予熱することができ、また素材の被覆と
相まって素材の温度降下を可及的に防止することがで
き、超塑性発現温度域での成形時間の延長化を図ること
ができ、これによってより大形、複雑形状部品の大気中
での熱間鍛造成形が可能である。
(Effects of the Invention) As described above, according to the hot forging method for a Ni-based super heat-resistant alloy of the present invention, the material is coated with a metal material, and the forging die is made of an oxidation-resistant high-temperature high-strength material. Since it is formed, the mold can be preheated to as high a temperature as possible, and together with the coating of the material, the temperature drop of the material can be prevented as much as possible. It is possible to extend the length, thereby making it possible to perform hot forging of a large-sized or complicated-shaped part in the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

第1図は被覆されたNi基超耐熱合金素材の断面図、第2
図は鍛造用金型材(IN−100鋳造材)の温度と強度との
関係を示すグラフ図、第3図は本発明を実施するための
大気中熱間鍛造装置の要部断面図、第4図は実施例に係
る熱間鍛造成形品の断面の金属組織写真である。
FIG. 1 is a cross-sectional view of a coated Ni-base superalloy material, and FIG.
FIG. 3 is a graph showing the relationship between temperature and strength of a forging die material (IN-100 cast material). FIG. 3 is a sectional view of a main part of an atmospheric hot forging device for carrying out the present invention. The figure is a photograph of the metal structure of the cross section of the hot forged product according to the example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超塑性発現温度が1000℃以上のNi基超耐熱
合金素材を超塑性発現温度域において熱間鍛造する方法
において、 素材を鍛造温度以上の融点を有する金属材で被覆し、か
つ鍛造用金型を耐酸化性高温高強度材で形成し、被覆し
た素材を超塑性発現温度に加熱し、高温に加熱した鍛造
用金型によって大気中で熱間鍛造することを特徴とする
Ni基超耐熱合金の熱間鍛造方法。
1. A method for hot forging a Ni-base super heat-resistant alloy material having a superplasticity manifestation temperature of 1000 ° C. or more in a superplasticity manifestation temperature range, comprising coating the material with a metal material having a melting point not less than the forging temperature, and The forging die is made of oxidation-resistant high-temperature, high-strength material, the coated material is heated to the superplastic temperature, and hot forging is performed in the atmosphere by the forging die heated to high temperature.
A hot forging method for Ni-base superalloys.
【請求項2】耐酸化性高温高強度材が1000℃において25
kgf/mm2以上の強度を有するNi基高温高強度材である請
求項(1)のNi基超耐熱合金の熱間鍛造方法。
2. An oxidation-resistant high-temperature high-strength material at 25 ° C.
3. The hot forging method for a Ni-based super heat-resistant alloy according to claim 1, wherein the material is a Ni-based high-temperature high-strength material having a strength of not less than kgf / mm 2 .
JP1313804A 1989-12-02 1989-12-02 Hot forging method for Ni-base superalloys Expired - Lifetime JP2659833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313804A JP2659833B2 (en) 1989-12-02 1989-12-02 Hot forging method for Ni-base superalloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313804A JP2659833B2 (en) 1989-12-02 1989-12-02 Hot forging method for Ni-base superalloys

Publications (2)

Publication Number Publication Date
JPH03174938A JPH03174938A (en) 1991-07-30
JP2659833B2 true JP2659833B2 (en) 1997-09-30

Family

ID=18045720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313804A Expired - Lifetime JP2659833B2 (en) 1989-12-02 1989-12-02 Hot forging method for Ni-base superalloys

Country Status (1)

Country Link
JP (1) JP2659833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337335A (en) * 2016-12-21 2019-10-15 日立金属株式会社 It is hot-forged the manufacturing method of material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots
US8230899B2 (en) * 2010-02-05 2012-07-31 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US10207312B2 (en) 2010-06-14 2019-02-19 Ati Properties Llc Lubrication processes for enhanced forgeability
US8789254B2 (en) 2011-01-17 2014-07-29 Ati Properties, Inc. Modifying hot workability of metal alloys via surface coating
US9539636B2 (en) 2013-03-15 2017-01-10 Ati Properties Llc Articles, systems, and methods for forging alloys
JP6252704B2 (en) * 2015-03-25 2017-12-27 日立金属株式会社 Method for producing Ni-base superalloy
US10131980B2 (en) 2015-03-30 2018-11-20 Hitachi Metals, Ltd. Method of producing Ni-based superalloy
CN105057524A (en) * 2015-07-20 2015-11-18 安徽蓝博旺机械集团精密液压件有限责任公司 Method for forging pump shaft of forklift fuel feed pump
WO2019065543A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for producing hot-forging material
WO2019065542A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for manufacturing hot forging material
CN110434275B (en) * 2019-08-30 2021-06-08 中国航发动力股份有限公司 Forging method of GH4586 high-temperature alloy
CN114737072B (en) * 2022-04-21 2022-09-23 无锡凯斯特铸业有限公司 K417G nickel-based high-temperature alloy refining preparation and forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337335A (en) * 2016-12-21 2019-10-15 日立金属株式会社 It is hot-forged the manufacturing method of material

Also Published As

Publication number Publication date
JPH03174938A (en) 1991-07-30

Similar Documents

Publication Publication Date Title
JP2659833B2 (en) Hot forging method for Ni-base superalloys
JP5532148B2 (en) Die forging method and forged product manufacturing method
US5299353A (en) Turbine blade and process for producing this turbine blade
EP1416062B1 (en) Quasi-Isothermal forging of a nickel-base superalloy
US4077109A (en) Hot working of metal powders
US4482398A (en) Method for refining microstructures of cast titanium articles
US5113583A (en) Integrally bladed rotor fabrication
RU2317174C2 (en) Method for isothermally forging nickel base super-alloys in air
US3671230A (en) Method of making superalloys
US4808249A (en) Method for making an integral titanium alloy article having at least two distinct microstructural regions
JP2008229680A (en) PROCESS FOR PRODUCING MOLDED PRODUCT OF TiAl-BASED ALLOY
US4803880A (en) Hollow article forging process
US20040105774A1 (en) Process for improving the hot workability of a cast superalloy ingot
US3987658A (en) Graphite forging die
JP3227223B2 (en) Constant temperature forging method
RU2753103C1 (en) Method for obtaining complex-shaped products from high-alloy heat-resistant nickel alloys containing more than 30% of strengthening g'-phase
JPH10156473A (en) Hot working method of tial base intermetallic compound
RU2316413C1 (en) Blanks of powdered alloy making method
JP4326110B2 (en) Method for producing Ti-Al intermetallic compound member
JPS5884901A (en) Production of heat resistant superalloy by powder metallurgical method
US4820354A (en) Method for producing a workpiece from a corrosion- and oxidation-resistant Ni/Al/Si/B alloy
RU2752819C1 (en) Method for production of rods with diameter of less than 60 mm from heat-resistant nickel-based alloy vzh175-vi by hot extrusion
US5361477A (en) Controlled dwell extrusion of difficult-to-work alloys
RU2224622C2 (en) Method for making blanks of powders of refractory alloys
JPH03204125A (en) Composite forming method for superplastic metallic plate high in reactivity at high temperature