JP2659824B2 - Steam electrolyzer - Google Patents

Steam electrolyzer

Info

Publication number
JP2659824B2
JP2659824B2 JP1271238A JP27123889A JP2659824B2 JP 2659824 B2 JP2659824 B2 JP 2659824B2 JP 1271238 A JP1271238 A JP 1271238A JP 27123889 A JP27123889 A JP 27123889A JP 2659824 B2 JP2659824 B2 JP 2659824B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
hydrogen
oxygen
electrode
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1271238A
Other languages
Japanese (ja)
Other versions
JPH03134190A (en
Inventor
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1271238A priority Critical patent/JP2659824B2/en
Publication of JPH03134190A publication Critical patent/JPH03134190A/en
Application granted granted Critical
Publication of JP2659824B2 publication Critical patent/JP2659824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水蒸気を電気分解する水蒸気電解装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a steam electrolysis apparatus for electrolyzing steam.

本発明は炭酸ガス等の電解装置等に適用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to an electrolytic device using carbon dioxide or the like.

[従来の技術] 従来の装置を第2図に示す。第2図において電解セル
20はイットリア安定化ジルコニア(以下YSZという)な
どで作られた円筒形電解質で構成され、その内面に水素
極21として多孔質の白金、またはニッケルを、外面に酸
素極22として多孔質の白金またはペロブスカイト系酸化
物(LaCoO3,LaMnO3,LaCrO3)を具備する。その電解セル
20を約1000℃に加熱して電圧を印加し、水素極21側に水
蒸気を流すと、水素極21で水蒸気が分解し水素と酸素イ
オンとなり、酸素イオンは電解質を通って酸素極22側で
酸素となる。この加熱源として太陽光を用いる場合に
は、直接または間接的に集光された太陽光の輻射により
電解セル20が加熱されていた。
[Prior Art] A conventional apparatus is shown in FIG. Electrolytic cell in FIG.
Reference numeral 20 denotes a cylindrical electrolyte made of yttria-stabilized zirconia (hereinafter, referred to as YSZ) or the like. On its inner surface, porous platinum or nickel is used as a hydrogen electrode 21, and on the outer surface, porous platinum or nickel is used as an oxygen electrode 22. A perovskite-based oxide (LaCoO 3 , LaMnO 3 , LaCrO 3 ) is provided. The electrolytic cell
When 20 is heated to about 1000 ° C. and a voltage is applied, and water vapor is supplied to the hydrogen electrode 21 side, the water vapor is decomposed into hydrogen and oxygen ions at the hydrogen electrode 21, and the oxygen ions pass through the electrolyte and pass through the electrolyte at the oxygen electrode 22 side. It becomes oxygen. In the case of using sunlight as the heating source, the electrolytic cell 20 was heated directly or indirectly by the radiation of the collected sunlight.

水蒸気は、アルゴンキャリアガスとともに、水蒸気入
口12から電解セル20に導かれ、集光太陽光40により、輻
射管34を介して間接的に加熱される。電解セル20の水素
極21と酸素極22には各々負電極23、正電極24から直流電
圧が印加され、水蒸気が電解される。水素極21で発生し
た水素は、アルゴンガス未反応の水蒸気とともに水素チ
ャンバ14をへて水素出口管13から装置外へ排出される。
電解セル20は石英ガラス容器11内に入っており、酸素極
22で発生した酸素は、キャリアガス入口管32から供給さ
れるアルゴンガスで運ばれ、酸素出口管33から排出され
る。
The water vapor is guided from the water vapor inlet 12 to the electrolytic cell 20 together with the argon carrier gas, and is indirectly heated by the condensed sunlight 40 via the radiation tube 34. DC voltage is applied to the hydrogen electrode 21 and the oxygen electrode 22 of the electrolysis cell 20 from the negative electrode 23 and the positive electrode 24, respectively, and the water vapor is electrolyzed. The hydrogen generated at the hydrogen electrode 21 is discharged from the hydrogen outlet pipe 13 to the outside of the apparatus together with the unreacted water vapor of the argon gas through the hydrogen chamber 14.
The electrolytic cell 20 is contained in the quartz glass container 11 and has an oxygen electrode.
The oxygen generated at 22 is carried by the argon gas supplied from the carrier gas inlet tube 32 and discharged from the oxygen outlet tube 33.

[発明が解決しようとする課題] 従来の装置では、電解セル20を直接加熱するため、輻
射率の低い水蒸気は電解セル20からの対流伝熱で加熱さ
れ電解セル20と水蒸気の間に温度差を生じる。また電解
セル20の全長にわたり均一な温度となりにくい。
[Problems to be Solved by the Invention] In the conventional apparatus, since the electrolytic cell 20 is directly heated, steam having a low emissivity is heated by convective heat transfer from the electrolytic cell 20, and the temperature difference between the electrolytic cell 20 and the steam is increased. Is generated. In addition, it is difficult to reach a uniform temperature over the entire length of the electrolytic cell 20.

本発明はこれらの問題を解決する水蒸気電解装置を提
供することを目的とする。
An object of the present invention is to provide a steam electrolysis apparatus that solves these problems.

[課題を解決するための手段] 本発明に係る水蒸気電解装置は集光部と電解セル(2
0)と断熱容器(35)からなる水蒸気電解装置におい
て、 前記集光部は石英ガラス容器(11)に内蔵した多孔質
セラミックス(10)と水蒸気入口管(12)と水素出口管
(13)からなり、 前記電解セル(20)は円筒形電解質で構成され、該電
解セル内面には水素極を、外面には酸素極を具備し、該
電解セルの一端は閉塞し、他端は前記集光部に接続して
多孔質セラミックス(10)を貫通する水素出口管(13)
を内蔵し、 前記断熱容器(35)は断熱材で構成され、電解セル
(20)を内蔵するとともに、キャリアガス入口管(32)
と酸素出口管(33)を具備することを特徴とする。
[Means for Solving the Problems] The steam electrolysis apparatus according to the present invention comprises a condensing unit and an electrolysis cell (2
0) and a heat insulating container (35), wherein the condensing part is formed by a porous ceramic (10) built in a quartz glass container (11), a water vapor inlet pipe (12), and a hydrogen outlet pipe (13). The electrolytic cell (20) is composed of a cylindrical electrolyte, has a hydrogen electrode on the inner surface of the electrolytic cell and an oxygen electrode on the outer surface, and has one end closed and the other end condensed. Hydrogen outlet pipe (13) connected to the part and penetrating the porous ceramics (10)
The heat insulating container (35) is made of a heat insulating material, and has a built-in electrolytic cell (20) and a carrier gas inlet pipe (32).
And an oxygen outlet pipe (33).

そして、集光された太陽光からの輻射光を、輻射率の
高い固体、例えばアルミナやSiC、ジルコニア(輻射率
約0.9)の多孔質セラミックス(空げき率約0.9)に受
け、これを加熱する。この多孔質セラミックスに水蒸気
を通し、効率良く水蒸気を1000℃まで加熱し、断熱材で
断熱された電解セルへ導く。
The radiated light from the condensed sunlight is received by a solid material having a high emissivity, such as alumina, SiC, or porous ceramics (an emissivity of approximately 0.9) such as zirconia (an emissivity of approximately 0.9), and is heated. . Water vapor is passed through this porous ceramic, and the water vapor is efficiently heated to 1000 ° C. and led to an electrolytic cell insulated by a heat insulating material.

[作 用] 輻射率の低い水蒸気などのガス(輻射率=0.5〜0.3)
を直接加熱するのではなく輻射率の高い固体を加熱し、
その後、その熱を気体に伝えて効率を高める。この際固
体は多孔質であり、多孔質を構成する物質の代表径が十
分小さい場合(例えば1mm)には、気体との熱伝達率が
極めて大きくなって、効率よく気体を加熱できる。1000
℃まで加熱された気体は、断熱材で断熱された電解セル
へ導かれ、電解セルを加熱するとともに、電解セルに印
加された電圧により水素と酸素に電解される。
[Action] Gas such as water vapor with low emissivity (emissivity = 0.5 to 0.3)
Instead of directly heating the solids with high emissivity,
Thereafter, the heat is transferred to the gas to increase the efficiency. At this time, the solid is porous, and when the representative diameter of the material constituting the porous material is sufficiently small (for example, 1 mm), the heat transfer coefficient with the gas becomes extremely large, and the gas can be efficiently heated. 1000
The gas heated to ° C. is guided to an electrolysis cell insulated by a heat insulating material, heats the electrolysis cell, and is electrolyzed to hydrogen and oxygen by a voltage applied to the electrolysis cell.

[実施例] 本発明の実施例を第1図に示す。第1図において、石
英ガラス容器11に入った多孔質セラミックス10からなる
集光部に、水蒸気がキャリアガスのアルゴンと一緒に水
蒸気入口管12から供給される。多孔質セラミックス10で
1000℃まで集光太陽光40により、加熱された水蒸気は電
解セル20に供給され、この電解セル20の水素極21に結線
された負電極23と酸素極22に結線された正電極214に直
流電圧を加えると、水蒸気が電解され、水素極27側に水
素が、酸素極22側に酸素が生じる。生じた酸素はキャリ
アガス入口管32から供給されたアルゴンガスにより、酸
素出口管33から外へ排出される。電解セル20は内部の温
度を均一にするためと、熱放散を防ぐため、断熱容器35
でおおわれている。また温度を均一にするため、キャリ
アガス入口管32と酸素出口33に多孔質セラミックス31を
設けることもある。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, water vapor is supplied from a water vapor inlet pipe 12 together with argon as a carrier gas to a condenser portion made of porous ceramics 10 contained in a quartz glass container 11. With porous ceramics 10
Heated water vapor is supplied to the electrolytic cell 20 by the concentrated sunlight 40 up to 1000 ° C., and direct current is applied to the negative electrode 23 connected to the hydrogen electrode 21 and the positive electrode 214 connected to the oxygen electrode 22 of the electrolytic cell 20. When a voltage is applied, water vapor is electrolyzed, and hydrogen is generated on the hydrogen electrode 27 side and oxygen is generated on the oxygen electrode 22 side. The generated oxygen is discharged out of the oxygen outlet pipe 33 by the argon gas supplied from the carrier gas inlet pipe 32. The electrolytic cell 20 is provided with an insulated container 35 to make the internal temperature uniform and to prevent heat dissipation.
It is covered with. Further, in order to make the temperature uniform, a porous ceramic 31 may be provided in the carrier gas inlet tube 32 and the oxygen outlet 33 in some cases.

上記のように本発明装置は固体電解質を用いた800〜1
000℃で作動する高温水蒸気電解装置で、集光した太陽
光を加熱源とするもので (1) 集光した太陽熱を多孔質セラミックスに照射し
て加熱し、このセラミックス内を流れる水蒸気を加熱す
る。
As described above, the device of the present invention uses a solid electrolyte of 800 to 1
A high-temperature steam electrolyzer operating at 000 ° C, using concentrated sunlight as a heating source. (1) Heats the porous ceramic by irradiating the concentrated solar heat to the porous ceramic and heating the steam flowing in the ceramic. .

(2) 水蒸気を電解するセルを断熱材で断熱し均一な
温度とする。
(2) The cell for electrolyzing the water vapor is insulated with a heat insulating material to have a uniform temperature.

[発明の効果] 本発明は前述のように構成されているので以下に記載
する効果を奏する。
[Effects of the Invention] The present invention is configured as described above, and has the following effects.

(1) 集光した太陽光を一度輻射率の高い多孔質セラ
ミックスで受け、これから水蒸気に熱を伝えることによ
り、小さい容積の多孔質セラミックスに水蒸気を通すだ
けで効率よく水蒸気を加熱することができる。
(1) Condensed sunlight is once received by porous ceramics with high emissivity, and then heat is transmitted to the water vapor, so that water vapor can be efficiently heated simply by passing the water vapor through a small volume of porous ceramics. .

(2) 断熱材で断熱した電解セルを加熱した水蒸気で
加熱することにより、セル全体にわたり均一な温度分布
が得られ、効率の良い水蒸気電解ができる。
(2) By heating the electrolytic cell insulated by the heat insulating material with the heated steam, a uniform temperature distribution is obtained over the entire cell, and efficient steam electrolysis can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す図、第2図は従来の
装置を示す図である。 10……多孔質セラミックス、11……石英ガラス容器、12
……水蒸気入口管、13……水素出口管、14……水素チャ
ンバ、20……電解セル、21……水素極、22……酸素極、
23……負電極、24……正電極、31……多孔質セラミック
ス、32……キャリアガス入口管、33……酸素出口管、34
……輻射管、35……断熱容器、40……集光太陽光
FIG. 1 is a view showing a first embodiment of the present invention, and FIG. 2 is a view showing a conventional apparatus. 10: Porous ceramic, 11: Quartz glass container, 12
... steam inlet tube, 13 ... hydrogen outlet tube, 14 ... hydrogen chamber, 20 ... electrolytic cell, 21 ... hydrogen electrode, 22 ... oxygen electrode,
23 ... Negative electrode, 24 ... Positive electrode, 31 ... Porous ceramic, 32 ... Carrier gas inlet tube, 33 ... Oxygen outlet tube, 34
…… Radiation tube, 35 …… Insulated container, 40 …… Concentrated sunlight

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】集光部と電解セル(20)と断熱容器(35)
からなる水蒸気電解装置において、 前記集光部は石英ガラス容器(11)に内蔵した多孔質セ
ラミックス(10)と水蒸気入口管(12)と水素出口管
(13)からなり、 前記電解セル(20)は円筒形電解質で構成され、該電解
セル内面には水素極を、外面には酸素極を具備し、該電
解セルの一端は閉塞し、他端は前記集光部に接続して多
孔質セラミックス(10)を貫通する水素出口管(13)を
内蔵し、 前記断熱容器(35)は断熱材で構成され、電解セル(2
0)を内蔵するとともに、キャリアガス入口管(32)と
酸素出口管(33)を具備することを特徴とする水蒸気電
解装置。
1. A light collector, an electrolytic cell (20), and a heat insulating container (35).
Wherein the condensing part comprises a porous ceramic (10) built in a quartz glass container (11), a steam inlet pipe (12), and a hydrogen outlet pipe (13), and the electrolysis cell (20) Is composed of a cylindrical electrolyte, a hydrogen electrode is provided on the inner surface of the electrolytic cell, and an oxygen electrode is provided on the outer surface.One end of the electrolytic cell is closed, and the other end is connected to the condensing part to form a porous ceramic. A hydrogen outlet pipe (13) penetrating through (10) is built in, and the heat insulating container (35) is made of a heat insulating material, and the electrolytic cell (2
0) and a carrier gas inlet pipe (32) and an oxygen outlet pipe (33).
JP1271238A 1989-10-18 1989-10-18 Steam electrolyzer Expired - Fee Related JP2659824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271238A JP2659824B2 (en) 1989-10-18 1989-10-18 Steam electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271238A JP2659824B2 (en) 1989-10-18 1989-10-18 Steam electrolyzer

Publications (2)

Publication Number Publication Date
JPH03134190A JPH03134190A (en) 1991-06-07
JP2659824B2 true JP2659824B2 (en) 1997-09-30

Family

ID=17497281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271238A Expired - Fee Related JP2659824B2 (en) 1989-10-18 1989-10-18 Steam electrolyzer

Country Status (1)

Country Link
JP (1) JP2659824B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69229839T2 (en) * 1991-01-29 2000-02-10 Mitsubishi Heavy Ind Ltd Method of producing methanol using the heat of a nuclear power plant
JP4630837B2 (en) * 2006-03-27 2011-02-09 株式会社東芝 High temperature steam electrolysis apparatus and electrolysis method thereof

Also Published As

Publication number Publication date
JPH03134190A (en) 1991-06-07

Similar Documents

Publication Publication Date Title
AU2011313800B2 (en) Photoelectrochemical cell and method for the solar-driven decomposition of a starting material
Arashi et al. Hydrogen production from high-temperature steam electrolysis using solar energy
US20060141346A1 (en) Solid electrolyte thermoelectrochemical system
JPS6340848Y2 (en)
Farmer et al. Destruction of Chlorinated Organics by Cobalt (III)‐Mediated Electrochemical Oxidation
KR920008993A (en) Manufacturing method of solid oxide electrochemical cell
JP2014512160A (en) Emitters for thermophotovoltaic systems and thermophotovoltaic systems comprising at least one such emitter
Wu et al. Plasma enabled non-thermal phosphorization for nickel phosphide hydrogen evolution catalysts
JP2659824B2 (en) Steam electrolyzer
CN110324918A (en) A kind of electrothermal high temperature electrode system
JP3637039B2 (en) Hydrogen gas generation method and hydrogen gas generator
JP5066319B2 (en) Electrochemical converter
JP2755811B2 (en) Steam electrolyzer
JPH059769A (en) Hydrogen producing device using solar energy
Ogumi et al. Electrodeposition of thin yttria‐stabilized zirconia layers using glow‐discharge plasma
Bilal et al. Thermo-electrochemical reduction of sulfate to sulfide using a graphite cathode
CN210444498U (en) Electric heating type high-temperature electrode system
CN113871650A (en) Fuel preparation device and application thereof
JPS6319574U (en)
RU144526U1 (en) FUEL CELL BASED ON MODIFIED POLYANILINE
JPS55136101A (en) Solid electrolyte oxygen pump
US3296030A (en) Fuel cell with stabilized zirconia electrolyte and nickel-silver alloy anode
CN216288533U (en) Fuel preparation device
JPS63303089A (en) Multitude type steam electrolyzing device
KR20040005672A (en) Molten hydride fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees