JP2658096B2 - Method for producing silicon oxide particles - Google Patents
Method for producing silicon oxide particlesInfo
- Publication number
- JP2658096B2 JP2658096B2 JP62307200A JP30720087A JP2658096B2 JP 2658096 B2 JP2658096 B2 JP 2658096B2 JP 62307200 A JP62307200 A JP 62307200A JP 30720087 A JP30720087 A JP 30720087A JP 2658096 B2 JP2658096 B2 JP 2658096B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon oxide
- oxide particles
- particles
- electrode
- producing silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
- C01B33/186—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof from or via fluosilicic acid or salts thereof by a wet process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化珪素粒子の製造方法に関し、特に粒径の
そろった濾過剤、充填剤等に使用される酸化珪素微粒子
の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing silicon oxide particles, and more particularly, to a method for producing silicon oxide fine particles used as a filter agent, a filler and the like having a uniform particle size.
[従来の技術] SiO2微粒子は、たとえば濾過剤に使われる他、一部窯
業(セラミックス)の焼結原料にも使用されその粉末と
しての触媒効果を生かした分野およびファインセラミッ
クス分野への応用等幅広い活用が考えられる。SiO2粒子
の作成方法としてはアルコキシド法などがある。[Prior art] SiO2 fine particles are used, for example, as a filtering agent, and also as a raw material for sintering in ceramics (ceramics). It can be used. As a method for producing SiO2 particles, there is an alkoxide method or the like.
一方、SiO2膜の製造方法の一種に、珪弗化水素酸を用
いた析出法が報告されている。(例えば特開昭62−2087
6)この析出法においては、SiO2膜を成膜した後の処理
液は廃液として処理しているが、この廃液中には、珪素
がかなり大量に残っている。On the other hand, a deposition method using hydrosilicofluoric acid has been reported as one of the methods for producing an SiO2 film. (For example, Japanese Patent Application Laid-Open No. 62-2087
6) In this deposition method, the treatment liquid after forming the SiO2 film is treated as a waste liquid, but a considerable amount of silicon remains in the waste liquid.
[発明が解決しようとする問題点] 珪弗化水素酸の二酸化珪素飽和水溶液にホウ酸、アル
ミニウム化合物、カルシウケ化合物、マグネシウム化合
物、バリウム化合物、ニッケル化合物、コバルト化合
物、亜鉛化合物、銅化合物からなる群より選ばれた少な
くとも1種の化合物および/または金属を添加した処理
液に基材を浸漬することで、基材表面に酸化珪素被膜を
くり返し析出させる方法(特開昭62−20876)におい
て、成膜処理が終了した処理液はそのまま廃液となって
いた。しかしこの廃液はまだ大量の珪素を含んでいる。
本発明は上記廃液を利用し酸化珪素粒子を得ることがで
きる。つまり、上記基材表面に二酸化珪素被膜を形成さ
せる方法の処理液の有効に利用する手段を提供するもの
である。[Problems to be Solved by the Invention] A group consisting of boric acid, an aluminum compound, a calcium compound, a magnesium compound, a barium compound, a nickel compound, a cobalt compound, a zinc compound, and a copper compound in a saturated aqueous solution of hydrosilicofluoric acid in silicon dioxide. In a method in which a silicon oxide film is repeatedly deposited on the surface of a substrate by immersing the substrate in a treatment solution to which at least one compound and / or metal selected from the group is added (Japanese Patent Application Laid-Open No. 62-20876). The treatment liquid after the completion of the film treatment was directly used as a waste liquid. However, this effluent still contains a large amount of silicon.
In the present invention, silicon oxide particles can be obtained using the above waste liquid. That is, the present invention provides a means for effectively using the processing solution in the method of forming a silicon dioxide film on the surface of the base material.
[問題点を解決するための手段] 本発明は、珪弗化水素酸を含む水溶液中に電極を挿入
し、該電極に電圧を印加して陽極に二酸化珪素粒子を析
出させ、その後該二酸化珪素粒子を分離する二酸化珪素
粒子の製造方法である。[Means for Solving the Problems] According to the present invention, an electrode is inserted into an aqueous solution containing hydrofluoric acid, and a voltage is applied to the electrode to precipitate silicon dioxide particles on an anode. This is a method for producing silicon dioxide particles for separating particles.
本発明においては二酸化珪素粒子を電解析出させる
が、該電解としては、6V以上の電圧で30mA/cm2以上70mA
/cm2未満の電流密度で行なうことが好ましい。ここで6V
よりも低い電圧では酸化珪素粒子の析出が少なくなりや
すく、又30mA/cm2未満の電流密度では酸化珪素粒子の析
出速度が遅く、70mA/cm2以上の電流密度では粒子が強固
に付着してしまうとなりやすい。In the present invention, silicon dioxide particles are electrolytically deposited, and as the electrolysis, 30 mA / cm 2 or more and 70 mA at a voltage of 6 V or more.
It is preferable to carry out at a current density of less than / cm 2 . Where 6V
Likely less deposition of the silicon oxide particles is at a lower voltage than, also 30 mA / cm in less than 2 current density slow deposition rate of the silicon oxide particles, 70 mA / cm 2 or more current density particles are strongly attached It is easy to get lost.
又上記電界は、数秒ないし20分の間行なわれることが
好ましい。数秒よりも短かいと析出する二酸化珪素粒子
の数が少ないため生産性が悪くなりやすく、又20分より
長いと酸化珪素粒子が電極表面から分離しにくく、また
粒子同志が結合しやすくなる。Preferably, the electric field is applied for several seconds to 20 minutes. If the time is shorter than several seconds, the number of precipitated silicon dioxide particles is small, so that the productivity tends to deteriorate. If the time is longer than 20 minutes, the silicon oxide particles are hardly separated from the electrode surface, and the particles are easily bonded to each other.
該電解を行なう珪弗化水素酸を含む溶液としては、任
意の濃度の珪弗化水素酸を含む溶液が使用できるが、生
産効率上高濃度のものが好ましい。前記電解条件を適用
するには通常1〜3モル/lの濃度が好ましい。1モル/l
よりも薄いと、析出される二酸化珪素粒子が少なくなり
やすく、3モル/lよりもこくなると析出された二酸化珪
素粒子が分離しにくくなりやすい。As the solution containing hydrosilicofluoric acid for the electrolysis, a solution containing hydrofluoric acid of any concentration can be used, but a solution having a high concentration is preferable in terms of production efficiency. In order to apply the above electrolysis conditions, a concentration of usually 1 to 3 mol / l is preferable. 1 mol / l
If it is thinner, the amount of precipitated silicon dioxide particles tends to decrease, and if it is more than 3 mol / l, the precipitated silicon dioxide particles tend to be difficult to separate.
又該珪弗化水素酸を含む溶液は、作業性安全性上70℃
以下とすることが好ましく、生産条件の安定化のために
は恒温とされることが好ましい。The solution containing hydrofluorosilicic acid is 70 ° C for workability and safety.
The temperature is preferably set to the following, and is preferably kept at a constant temperature for stabilizing production conditions.
該陽極の材質は、アルミニウム、銅等任意の材質を使
用することができるが、アルミニウムを用いることが金
属の溶解量も少なく効率良く粒子を得ることができるの
点で好ましい。As the material of the anode, any material such as aluminum and copper can be used. However, it is preferable to use aluminum because the amount of dissolved metal is small and particles can be obtained efficiently.
[実 施 例] 金属アルミニウムを添加することにより酸化珪素被膜
を基材表面に析出させる操作を終了した2mol/lの珪弗化
水素酸水溶液200mlを35℃に保ち、たて40mm、よこ50mm
の厚さ3mmの金属アルミニウム板を、陽極として、また
たて50mm、よこ30mm、厚さ0.5mmの銅板を陰極としてひ
たし定電圧定電流電源をもちいて電流密度が50mA/cm2以
上にならないように電流値を2,2Aに設定し電解を5分間
行なった。電圧は6Vから徐々に上昇し5分後には約18V
となった。その間金属アルミニウム電極(陽極)表面に
酸化珪素粒子が沈着した。沈着した粒子の10,000倍の電
子顕微鏡写真を第1図に示す。第1図から粒子の粒径が
きわめて均一(約100nm)であることがわかる。またESC
AおよびXMAによる分析結果ではSi,O,Fしか検出されなか
った。OとSiのatomic Ratio O/Siは1.78であった。[Example] 200 ml of a 2 mol / l aqueous solution of hydrosilicofluoric acid at which the operation of depositing a silicon oxide film on the substrate surface by adding metallic aluminum was completed was maintained at 35 ° C, and was 40 mm long and 50 mm wide.
Of metallic aluminum plate having a thickness of 3 mm, as an anode, Matatate 50 mm, lateral 30 mm, so that the current density by using a constant-voltage constant-current power supply soaking the copper plate with a thickness of 0.5mm as the cathode is not a 50 mA / cm 2 or more The current value was set to 2.2 A, and electrolysis was performed for 5 minutes. The voltage gradually rises from 6V and after about 5 minutes it is about 18V
It became. Meanwhile, silicon oxide particles were deposited on the surface of the metal aluminum electrode (anode). A 10,000 × electron micrograph of the deposited particles is shown in FIG. From FIG. 1, it can be seen that the particle diameter is extremely uniform (about 100 nm). Also ESC
Only Si, O, and F were detected in the analysis results by A and XMA. The atomic ratio O / Si between O and Si was 1.78.
その後該酸化珪素粒子を金属アルミニウム電極表面か
ら機械的に分離し、粒径約100nmの二酸化珪素微粒子を
得た。該酸化珪素粒子は比較的容易にアルミニウム電極
から分離することができた。Thereafter, the silicon oxide particles were mechanically separated from the surface of the metal aluminum electrode to obtain silicon dioxide fine particles having a particle diameter of about 100 nm. The silicon oxide particles could be relatively easily separated from the aluminum electrode.
[発明の効果] 本発明の方法を用いれば、今まで廃液として処理して
いた液から産業上有効な酸化珪素粒子を得ることができ
る。しかも金属アルミニウム電極の溶解も少量であり、
繰り返し使用が可能である。よって製造コストの低い酸
化珪素粒子を製造することができる。[Effect of the Invention] By using the method of the present invention, industrially effective silicon oxide particles can be obtained from a liquid that has been treated as a waste liquid. Moreover, the dissolution of the metal aluminum electrode is small,
It can be used repeatedly. Therefore, silicon oxide particles with low manufacturing cost can be manufactured.
第1図は、実施例に基づき作成した金属アルミニウム電
極上の酸化珪素粒子の形状を示す電子顕微鏡写真であ
る。FIG. 1 is an electron micrograph showing the shape of silicon oxide particles on a metal aluminum electrode prepared based on an example.
Claims (3)
し、該電極に電圧を印加して陽極に酸化珪素粒子を析出
させ、その後該酸化珪素粒子を分離する酸化珪素粒子の
製造方法。1. Production of silicon oxide particles in which an electrode is inserted into an aqueous solution containing hydrofluoric acid, a voltage is applied to the electrode to deposit silicon oxide particles on an anode, and then the silicon oxide particles are separated. Method.
求の範囲第1項記載の酸化珪素粒子の製造方法。2. The method for producing silicon oxide particles according to claim 1, wherein said anode is an aluminum electrode.
/cm2未満の電流密度の電流を通す特許請求の範囲第1項
又は第2項記載の酸化珪素粒子の製造方法。3. The electrode has a voltage of 30 mA / cm 2 or more and 70 mA at a voltage of 6 V or more.
3. The method for producing silicon oxide particles according to claim 1, wherein a current having a current density of less than / cm 2 is passed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62307200A JP2658096B2 (en) | 1987-12-04 | 1987-12-04 | Method for producing silicon oxide particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62307200A JP2658096B2 (en) | 1987-12-04 | 1987-12-04 | Method for producing silicon oxide particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01148705A JPH01148705A (en) | 1989-06-12 |
JP2658096B2 true JP2658096B2 (en) | 1997-09-30 |
Family
ID=17966244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62307200A Expired - Lifetime JP2658096B2 (en) | 1987-12-04 | 1987-12-04 | Method for producing silicon oxide particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2658096B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106191910A (en) * | 2016-09-19 | 2016-12-07 | 上海应用技术大学 | A kind of it is electrolysed the method that hexafluosilicic acid prepares fluosilicate |
-
1987
- 1987-12-04 JP JP62307200A patent/JP2658096B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106191910A (en) * | 2016-09-19 | 2016-12-07 | 上海应用技术大学 | A kind of it is electrolysed the method that hexafluosilicic acid prepares fluosilicate |
Also Published As
Publication number | Publication date |
---|---|
JPH01148705A (en) | 1989-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2239144A (en) | Permanent magnet | |
Sato | Crystal growth of electrodeposited zinc: an electron diffraction and electron microscopic study | |
JP2761751B2 (en) | Electrode for durable electrolysis and method for producing the same | |
JP4516617B2 (en) | Anode for electrowinning zinc and electrowinning method | |
US20130270121A1 (en) | Method for fabricating copper nanowire with high density twins | |
US3006821A (en) | Manufacture of silver chloride electrodes | |
JP2658096B2 (en) | Method for producing silicon oxide particles | |
GB1175613A (en) | Electrochemical Process for the Surface Treatment of Titanium or Alloys thereof or Niobium or Tantalum | |
US3393091A (en) | Method of producing semiconductor assemblies | |
US20100230287A1 (en) | Porous gold materials and production methods | |
JPH11158691A (en) | Aqueous solution for forming titanium oxide film, and production of titanium oxide film | |
US3600294A (en) | Electrocrystallizer | |
US2616840A (en) | Rhenium plating | |
JP2709172B2 (en) | Manufacturing method of silicon steel sheet with excellent coating appearance | |
US2907703A (en) | Method for the production of cysteine hydrochloride | |
JP2016132813A (en) | Insoluble electrode and method for manufacturing the same | |
US3573177A (en) | Electrochemical methods for production of films and coatings of semiconductors | |
US20050279637A1 (en) | Methods of forming target/backing plate assemblies comprising ruthenium, methods of electrolytically processing ruthenium, and container-shaped physical vapor deposition targets comprising ruthenium | |
JP2001214291A (en) | Method for manufacturing electrolytic copper powder | |
JP3224329B2 (en) | Insoluble metal anode | |
JP6141679B2 (en) | Conductive electrode active material, conductive electrode active material manufacturing method, and magnesium recovery method | |
JPH11229172A (en) | Method and apparatus for producing high-purity copper | |
WO1999066098A1 (en) | Method for preparation of target material for spattering | |
JP3202375B2 (en) | Method for producing potassium dicyanoaurate | |
Bushrod et al. | Stress in anodically formed lead dioxide |