JP2657575B2 - Manufacturing method of foam metal - Google Patents

Manufacturing method of foam metal

Info

Publication number
JP2657575B2
JP2657575B2 JP2196277A JP19627790A JP2657575B2 JP 2657575 B2 JP2657575 B2 JP 2657575B2 JP 2196277 A JP2196277 A JP 2196277A JP 19627790 A JP19627790 A JP 19627790A JP 2657575 B2 JP2657575 B2 JP 2657575B2
Authority
JP
Japan
Prior art keywords
metal
container
metal powder
mixture
intervening substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2196277A
Other languages
Japanese (ja)
Other versions
JPH0483832A (en
Inventor
俊樹 兜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEIKOSHO KK
Original Assignee
NIPPON SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEIKOSHO KK filed Critical NIPPON SEIKOSHO KK
Priority to JP2196277A priority Critical patent/JP2657575B2/en
Publication of JPH0483832A publication Critical patent/JPH0483832A/en
Application granted granted Critical
Publication of JP2657575B2 publication Critical patent/JP2657575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発泡金属の製造方法に関する。The present invention relates to a method for producing a foamed metal.

〔従来の技術およびその課題〕[Conventional technology and its problems]

従来の発泡金属の製造方法としては、例えば鋳造、電
気メツキ、粉末焼結による方法が知られている。しかし
ながら、これらの方法はいずれもウレタンフオーム等の
発泡樹脂を用いて型取りし、型取り後に樹脂を焼却する
か或いは溶剤を用いて消去させる等の煩雑な製造工程が
含まれる。また、製造方法によつては、製造したポーラ
ス状の発泡金属が、不均質で重量が思い割りには強度に
劣ると共にその気孔率が低い。
As a conventional method for producing a foamed metal, for example, a method using casting, electric plating, or powder sintering is known. However, each of these methods involves a complicated manufacturing process such as molding using a foamed resin such as urethane foam, and burning the resin after molding or erasing the resin using a solvent. Further, depending on the production method, the produced porous foamed metal is inhomogeneous, weighs insignificantly inferior in strength, and has a low porosity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、このような従来の技術的課題に鑑みてなさ
れたものであり、請求項(1)記載の発明の構成は、金
属粉粒体の間に、該金属粉粒体の溶解温度以下の沸点を
もつ介在物質を介在させて混合物となし、該混合物を該
金属粉粒体の溶解温度以上の溶解温度をもつ容器に気密
に収容し、微小重力状態において、該容器を昇温させて
該金属粉粒体及び該容器を溶解させると共に該介在物質
を気化させ、その後溶解金属を冷却固化させる発泡金属
の製造方法である。
The present invention has been made in view of such a conventional technical problem, and the structure of the invention according to claim (1) has a structure in which the temperature of the metal powder is lower than the melting temperature of the metal powder. To form a mixture with an intervening substance having a boiling point of, and the mixture is hermetically housed in a container having a melting temperature equal to or higher than the melting temperature of the metal powder, and in a microgravity state, the temperature of the container is increased. This is a method for producing a foamed metal in which the metal powder and the container are dissolved, the intervening substance is vaporized, and then the molten metal is cooled and solidified.

また、請求項(2)記載の発明の構成は、金属粉粒体
の間に、該金属粉粒体の溶解温度以上の沸点をもつ介在
物質を介在させて混合物となし、該混合物を該介在物質
の気化によつて破壊される容器に気密に収容し、微小重
力状態において、該混合物を昇温させて該金属粉粒体を
溶解させると共に該介在物質を気化させ、その後溶解金
属を冷却固化させる発泡金属の製造方法である。
Further, according to the structure of the invention described in claim (2), an intervening substance having a boiling point equal to or higher than the melting temperature of the metal powder is interposed between the metal powders to form a mixture, and the mixture is formed. The mixture is airtightly housed in a container that is destroyed by the vaporization of the substance, and in a microgravity state, the temperature of the mixture is raised to dissolve the metal particles and vaporize the intervening substance, and then the molten metal is cooled and solidified. This is a method for producing a foam metal to be formed.

〔作用〕[Action]

このような請求項(1)記載の発明によれば、金属粉
粒体及び介在物質からなる混合物を収容した気密な容器
は、例えば落下カプセル、航空機等の微小重力状態を付
与できる装置の加熱装置内に収容する。
According to the invention described in claim (1), the airtight container containing the mixture of the metal powder and the intervening substance is a heating device for a device capable of imparting a microgravity state, such as a falling capsule or an aircraft. Housed within.

そして、微小重力状態を与えて金属粉粒体及び容器を
加熱溶融させる。この容器の溶融破壊によつて内部に圧
力低下を生じるため、金属粉粒体の溶解温度以下の沸点
をもつ介在物質が急速に気化し、体積膨張を起こして溶
解した金属粉粒体を押し広げ、かつ微小重力状態である
ので溶解した金属粉粒体中で一様な泡として存在する。
つまり、溶融した金属粉粒体全体が介在物質の気化膨張
に伴つて膨張する。次いで、溶融した金属粉粒体を微小
重力状態のままで冷却すれば、金属粉粒体がポーラス状
をなす発泡金属体に固化される。
Then, a microgravity state is given to heat and melt the metal powder and the container. Since the pressure drop occurs inside the container due to the melting and destruction of this container, the intervening substance having a boiling point below the melting temperature of the metal particles rapidly evaporates, causing volume expansion and pushing out the melted metal particles. And in a microgravity state, they exist as uniform bubbles in the molten metal powder.
That is, the entire molten metal powder expands along with the vaporization expansion of the intervening substance. Next, if the molten metal particles are cooled in the state of microgravity, the metal particles are solidified into a porous metal foam.

そして、介在物質の介在量又は気化膨張率の選択によ
り、任意の気孔率を有する発泡金属を製造することが可
能である。更に、金属粉粒体の粉粒の径を適当に選択す
ることにより、気孔の径を任意に制御することが可能で
ある。なお、ここでの微小重力状態には、無重力状態を
含むものである。
Then, it is possible to produce a foamed metal having an arbitrary porosity by selecting the amount of the intervening substance or the coefficient of vaporization expansion. Furthermore, the diameter of the pores can be arbitrarily controlled by appropriately selecting the diameter of the metal particles. Note that the microgravity state here includes a zero gravity state.

また、請求項(2)記載の発明によれば、混合物を昇
温させて金属粉粒体を溶解させ、金属粉粒体の溶解と同
時又は溶解後に、金属粉粒体の溶解温度以上の沸点をも
つ介在物質を気化させ、この介在物質の気化によつて容
器を破壊させ、その後溶解金属を冷却固化させる。これ
により、介在物質が体積膨張を起こして溶解した金属粉
粒体を押し広げ、かつ溶解した金属粉粒体中で一様な泡
として存在するようになるので、微小重力状態のままで
溶解金属を冷却固化させれば、ポーラス状をなす発泡金
属体が形成される。これらの各工程は、微小重力状態に
おいて与えるので、溶解した金属粉流体の重力に基づく
移動を生ずることはない。
According to the invention described in claim (2), the mixture is heated to dissolve the metal powder, and the boiling point is equal to or higher than the melting temperature of the metal powder at the same time as or after the dissolution of the metal powder. Is vaporized, the container is destroyed by the vaporization of the intervening substance, and then the molten metal is cooled and solidified. As a result, the intervening substance causes volume expansion and pushes out the melted metal particles, and also exists as uniform bubbles in the melted metal particles. Is cooled and solidified to form a porous metal foam body. Since each of these steps is performed in a state of microgravity, the molten metal powder fluid does not move based on gravity.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1〜3図は、本発明の実施に使用される装置の1例
を示す。図中において符号1は、容器であり、具体的に
は鉛製の有底管体である。この容器1内に、金属粉粒体
2及び介在物質3からなる混合物4を収容してある。金
属粉粒体2は、具体的には容器1と同一の溶解温度をも
つ粉末鉛であり、この金属粉粒体2の間に、金属粉粒体
2の溶解温度以下の温度の沸点をもつ介在物質3を浸透
介在させて混合物4を形成してある。介在物質3として
この実施例にあつては水を採用したが、金属粉粒体2と
化学反応を生じて合金その他の不純物を形成することの
ない物質であればよく、低融点金属の他、各種の有機、
無機物質を用いることができる。
1 to 3 show one example of an apparatus used for carrying out the present invention. In the figure, reference numeral 1 denotes a container, specifically, a bottomed tubular body made of lead. In this container 1, a mixture 4 composed of a metal powder 2 and an intervening substance 3 is accommodated. The metal powder 2 is specifically powdered lead having the same melting temperature as the container 1, and has a boiling point between the metal powder 2 and the temperature equal to or lower than the melting temperature of the metal powder 2. The mixture 4 is formed by intervening the intervening substance 3. Although water was used in this embodiment as the intervening substance 3, any substance which does not form an alloy or other impurities by causing a chemical reaction with the metal powder 2 may be used. Various organic,
Inorganic substances can be used.

このように混合物4を均質に収容した容器1は、開口
部を締具5によつて気密に閉塞し、第2図に示すように
落下カプセル6内に移動不可能に取付ける。落下カプセ
ル6の密閉空間6a内には、第1,2図に示すように断熱材
7の内部に加熱装置であるヒータ8を装備して電気炉を
形成してあり、この断熱材7及びヒータ8は、例えば2
分割されてそれぞれ外側(図中にてX方向)に容易にス
ライド可能な構造とし、介在物質3の気化に伴う容積増
大を阻害しないようになつている。6bは、電源及び制御
器を示す。
The container 1 containing the mixture 4 homogeneously in this manner is hermetically closed at the opening by the fastener 5, and is immovably mounted in the falling capsule 6 as shown in FIG. In the closed space 6a of the falling capsule 6, an electric furnace is formed by installing a heater 8 as a heating device inside a heat insulating material 7 as shown in FIGS. 8 is, for example, 2
It is divided so that it can be easily slid outwardly (in the X direction in the figure), so that the volume increase due to the vaporization of the intervening substance 3 is not hindered. 6b shows a power supply and a controller.

次に、作用について説明する。 Next, the operation will be described.

金属粉粒体2及び介在物質3からなる混合物4を収容
した容器1は、落下カプセル6のヒータ8内に収容し、
予め、金属粉流体2が溶解する温度よりも若干(10℃程
度)低い温度にまで加熱し、その温度を保持させてあ
る。このような落下カプセル6は、第3図に示すように
地表面GLに設置した砂箱9内の砂10から適当高さh(実
際には50m)にまで吊り上げ、その後落下カプセル6を
切り離して自由落下させる。
The container 1 containing the mixture 4 composed of the metal powder 2 and the intervening substance 3 is contained in the heater 8 of the falling capsule 6,
It is previously heated to a temperature slightly lower (about 10 ° C.) than the temperature at which the metal powder fluid 2 dissolves, and the temperature is maintained. Such a falling capsule 6 is lifted to a suitable height h (actually 50 m) from sand 10 in a sand box 9 installed on the ground surface GL as shown in FIG. 3, and then the falling capsule 6 is cut off. Free fall.

この落下カプセル6の切り離し直後にヒータ8を使用
して金属粉粒体2及び容器1を加熱溶融させ、その後ヒ
ータ8への通電を停止する。この容器1の溶融破壊によ
つて内部に圧力低下を生じるため、金属粉粒体2の溶解
温度以下の温度の沸点をもつ介在物質3が急速に気化
し、体積膨張を起こして溶解した金属粉粒体2を押し広
げ、かつ微小重力状態であるので溶解した金属粉粒体2
中で一様な泡として存在する。つまり、微小重力状態の
中で、溶融した金属粉粒体2が重力に基づいてほとんど
移動することなく、介在物質3の気化膨張に伴つて全体
的に膨張する。この膨張時には、断熱材7及びヒータ8
が、金属粉粒体2全体の膨張を阻害させないように考慮
すると共に、断熱材7の外側の冷気をヒータ8内に導入
されることを促し、溶融した金属粉粒体2を急速に冷却
固化させる。これにより、金属粉粒体2がポーラス状を
なす発泡金属体に形成される。この容器1の形状が成形
型としても機能する。
Immediately after the falling capsule 6 is cut off, the metal powder 2 and the container 1 are heated and melted using the heater 8, and thereafter, the power supply to the heater 8 is stopped. Since the pressure drop occurs inside the container 1 due to the melting and destruction of the container 1, the intervening substance 3 having a boiling point lower than the melting temperature of the metal powder 2 rapidly evaporates, causing the volume expansion and melting of the dissolved metal powder. The metal particles 2 melted because the particles 2 are spread out and in a state of microgravity
Exists as a uniform foam inside. In other words, in the microgravity state, the molten metal powder 2 hardly moves on the basis of gravity and expands as a result of the intervening substance 3 evaporating and expanding. During this expansion, the heat insulating material 7 and the heater 8
However, while taking into account not to hinder the expansion of the entire metal powder 2, it promotes the introduction of cold air outside the heat insulating material 7 into the heater 8, and rapidly cools and solidifies the molten metal powder 2. Let it. As a result, the metal powder 2 is formed into a porous foam metal body. The shape of the container 1 also functions as a mold.

そして、介在物質3の介在量又は気化膨張率の選択に
より、任意の気孔率を有する発泡金属を製造することが
可能である。更に、金属粉粒体2の粉粒の径を適当に選
択することにより気孔の径を任意に制御することが可能
である。
By selecting the amount of the intervening substance 3 or the coefficient of vaporization expansion, it is possible to produce a foamed metal having an arbitrary porosity. Further, the diameter of the pores can be arbitrarily controlled by appropriately selecting the diameter of the metal particles 2.

なお、微小重力環境下にあつては、溶融した金属粉粒
体2は介在物質3との比重の相違に基づく移動をほとん
ど生じないので、容器1を金属粉粒体2よりも溶融温度
の高い物質にて製造し、金属粉粒体2が確実に溶融した
後に容器1を溶融破壊させることもできる。
In a microgravity environment, the molten metal particles 2 hardly move due to the difference in specific gravity from the intervening substance 3, so that the container 1 has a higher melting temperature than the metal particles 2. The container 1 can be made of a substance, and the container 1 can be melted and destroyed after the metal powder 2 is reliably melted.

上記の微小重力状態は、航空機の自由降下によつても
付与させるものであり、また、完全な無重力状態におい
ても同様の作用が得られることは勿論である。
The microgravity state described above is imparted by the free descent of the aircraft, and it goes without saying that the same action can be obtained even in a completely zero gravity state.

第4図にはこの発明の実施に用いる装置の他の例を示
す。この装置にあつては、容器11は後記する介在物質13
の気化によつて容易に破壊される材料(例えばアルミニ
ウム箔、紙)にて製作され、この容器11内に混合物14を
収容してある。この混合物14は、金属粉粒体12の間に、
金属粉粒体12の溶解温度以上の沸点をもつ介在物質13を
浸透介在させて構成されている。
FIG. 4 shows another example of the apparatus used for carrying out the present invention. In this device, the container 11 contains the intervening substance 13 described below.
The container 11 is made of a material (for example, aluminum foil or paper) which is easily destroyed by vaporization. This mixture 14 is formed between the metal particles 12.
An intercalating substance 13 having a boiling point equal to or higher than the melting temperature of the metal powder 12 is penetrated and interposed.

この混合物14を収容した容器11は、上述の装置と同様
に落下カプセル6の密閉空間6aのヒータ8内に収容し、
次いで、微小重力状態を与えて、混合物14を昇温させて
金属粉粒体12を溶解させ、それと同時又はその後に介在
物質13を気化させ、この気化に伴つて容器11を破壊させ
る。なお、容器11が紙製の場合には、密閉空間6a内の空
気を窒素ガスにて置換させ、燃焼を防止することが望ま
しい。かくして、介在物質13が体積膨張を起こして溶解
した金属粉粒体12を押し広げ、かつ微小重力状態である
ので溶解した金属粉粒体12中で一様な泡として存在する
ようになるので、微小重力状態のままで溶解金属を冷却
固化させれば、ポーラス状をなす発泡金属体が形成され
る。
The container 11 containing the mixture 14 is contained in the heater 8 in the closed space 6a of the falling capsule 6 in the same manner as in the above-described apparatus.
Next, a microgravity state is applied to raise the temperature of the mixture 14 to dissolve the metal powder 12, and simultaneously or after that, the intervening substance 13 is vaporized, and the container 11 is destroyed with this vaporization. When the container 11 is made of paper, it is desirable to replace the air in the closed space 6a with nitrogen gas to prevent combustion. Thus, since the intervening substance 13 expands and expands the dissolved metal particles 12 due to volume expansion, and because it is in a state of microgravity, it becomes present as uniform bubbles in the dissolved metal particles 12, When the molten metal is cooled and solidified in the microgravity state, a porous foamed metal body is formed.

〔発明の効果〕〔The invention's effect〕

以上の説明によつて理解されるように、本発明によれ
ば、金属粉粒体と介在物質とを混合し、これを微小重力
状態において加熱溶融させた後冷却するだけで簡単に発
泡金属体を製造できる。すなわち、金属粉粒体と介在物
質とを均質化させ、これに均一な加熱を与えるだけで、
地上で製造する方法に比べて高品質の発泡金属体を簡単
に製造できる。そして、発泡金属体は容易に均質に得ら
れるので、焼結材等よりも軽量かつ高強度で、80〜90%
の高気孔率を得ることも可能であり、焼結材、ハニカム
構造材等に代わる材料として、航空機用部材、自動車用
部材等への使用に好適である。
As will be understood from the above description, according to the present invention, a foamed metal body can be easily obtained simply by mixing a metal powder and an intervening substance, heating and melting the mixture in a microgravity state, and then cooling. Can be manufactured. In other words, just homogenize the metal powder and the intervening substance and give them uniform heating,
A high quality foamed metal body can be easily manufactured as compared with a method of manufacturing on the ground. And since the foamed metal body can be obtained easily and homogeneously, it is lighter and stronger than sintered material, etc., 80-90%
It is also possible to obtain a high porosity, and it is suitable for use in aircraft members, automobile members and the like as a material replacing the sintered material, the honeycomb structure material and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1〜3図は本発明の実施に使用する装置の1例を示
し、第1図は装置の要部を示す断面図、第2図は落下カ
プセルを示す一部断面図、第3図は作用説明図、第4図
は本発明の実施に使用する装置の他の例を示す第1図と
同様の断面図である。 1,11:容器,2,12:金属粉粒体、3,13:介在物質、4,14:混
合物、6:落下カプセル,7:断熱材,8:ヒータ(加熱装
置)。
1 to 3 show an example of an apparatus used for carrying out the present invention, FIG. 1 is a sectional view showing a main part of the apparatus, FIG. 2 is a partial sectional view showing a falling capsule, and FIG. FIG. 4 is a sectional view similar to FIG. 1 showing another example of the device used for carrying out the present invention. 1,11: container, 2,12: metal powder, 3,13: intervening substance, 4,14: mixture, 6: falling capsule, 7: heat insulating material, 8: heater (heating device).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属粉粒体の間に、該金属粉粒体の溶解温
度以下の沸点をもつ介在物質を介在させて混合物とな
し、該混合物を該金属粉粒体の溶解温度以上の溶解温度
をもつ容器に気密に収容し、微小重力状態において、該
容器を昇温させて該金属粉粒体及び該容器を溶解させる
と共に該介在物質を気化させ、その後溶解金属を冷却固
化させることを特徴とする発泡金属の製造方法。
An intermediary substance having a boiling point lower than the melting temperature of the metal powder is interposed between the metal powders to form a mixture, and the mixture is melted at a temperature higher than the melting temperature of the metal powder. It is housed in a container having a temperature in an airtight manner, and in a microgravity state, the container is heated to melt the metal powder and the container and to vaporize the intervening substance, and then to cool and solidify the molten metal. A method for producing a foamed metal.
【請求項2】金属粉粒体の間に、該金属粉粒体の溶解温
度以上の沸点をもつ介在物質を介在させて混合物とな
し、該混合物を該介在物質の気化によつて破壊される容
器に気密に収容し、微小重力状態において、該混合物を
昇温させて該金属粉粒体を溶解させると共に該介在物質
を気化させ、その後溶解金属を冷却固化させることを特
徴とする発泡金属の製造方法。
2. A mixture is formed by interposing an intervening substance having a boiling point equal to or higher than the melting temperature of the metal powder between the metal powders, and the mixture is destroyed by vaporization of the intervening substance. A foamed metal foam, which is housed in a container airtightly, and in a microgravity state, the temperature of the mixture is raised to dissolve the metal powder and vaporize the intervening substance, and then the molten metal is cooled and solidified. Production method.
JP2196277A 1990-07-26 1990-07-26 Manufacturing method of foam metal Expired - Fee Related JP2657575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196277A JP2657575B2 (en) 1990-07-26 1990-07-26 Manufacturing method of foam metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196277A JP2657575B2 (en) 1990-07-26 1990-07-26 Manufacturing method of foam metal

Publications (2)

Publication Number Publication Date
JPH0483832A JPH0483832A (en) 1992-03-17
JP2657575B2 true JP2657575B2 (en) 1997-09-24

Family

ID=16355130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196277A Expired - Fee Related JP2657575B2 (en) 1990-07-26 1990-07-26 Manufacturing method of foam metal

Country Status (1)

Country Link
JP (1) JP2657575B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825858A (en) * 1981-08-10 1983-02-16 Agency Of Ind Science & Technol Production of porous metal

Also Published As

Publication number Publication date
JPH0483832A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US3087807A (en) Method of making foamed metal
EP0583415A4 (en) Method and apparatus for manufacturing porous articles
Goodall et al. Porous metals
US6444007B1 (en) Production of metal foams
EP1755809B1 (en) Method of production of porous metallic materials
JP6412128B2 (en) Formation of metal components
Nakajima Porous metals with directional pores
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
US5213612A (en) Method of forming porous bodies of molybdenum or tungsten
JP5526938B2 (en) Method for producing porous aluminum sintered body
JP2002371327A (en) Method for manufacturing foam metal
EP3110584B1 (en) Forming a composite component
JP4924997B2 (en) Lotus shape porous metal manufacturing equipment
JP2657575B2 (en) Manufacturing method of foam metal
BR102012023361B1 (en) method of obtaining metal foams and metal foams thus obtained
US3523766A (en) Production of cellular metals
US3756303A (en) Method of making foamed metal bodies
JP4074931B2 (en) Silicon spherical body manufacturing method and manufacturing apparatus thereof
JPH0151528B2 (en)
JP2006070286A (en) Porous metallic material and its manufacturing method
Kennedy et al. Foaming of compacted Al-TiH2 powder mixtures
RU2106931C1 (en) Method for producing articles from spongy beryllium
JP2005162609A (en) Method for producing silicon sphere and its production apparatus
JPS5989701A (en) Production of quickly cooled and solidified powder
Kathuria Net shaping via aluminium foaming

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees