JP2656841B2 - Light converter - Google Patents

Light converter

Info

Publication number
JP2656841B2
JP2656841B2 JP2017132A JP1713290A JP2656841B2 JP 2656841 B2 JP2656841 B2 JP 2656841B2 JP 2017132 A JP2017132 A JP 2017132A JP 1713290 A JP1713290 A JP 1713290A JP 2656841 B2 JP2656841 B2 JP 2656841B2
Authority
JP
Japan
Prior art keywords
light
emitting
atoms
excitation
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017132A
Other languages
Japanese (ja)
Other versions
JPH03221586A (en
Inventor
眞 東方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2017132A priority Critical patent/JP2656841B2/en
Priority to US07/643,183 priority patent/US5227207A/en
Priority to GB9101275A priority patent/GB2242063B/en
Priority to DE19914102190 priority patent/DE4102190A1/en
Priority to FR9100850A priority patent/FR2657619B1/en
Publication of JPH03221586A publication Critical patent/JPH03221586A/en
Application granted granted Critical
Publication of JP2656841B2 publication Critical patent/JP2656841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二量子発光に用いる光変換体に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a light converter for use in two-quantum light emission.

[従来の技術] 放射源からの入射光を吸収励起し、入射光より長い波
長に変換して発光する光変換体としては本発明者による
特開昭62−176044号、米国特許第4719386号に示される
ものが既にある。
[Prior Art] A light converter that absorbs and excites incident light from a radiation source, converts the light to a longer wavelength than the incident light, and emits light is disclosed in Japanese Patent Application Laid-Open No. Sho 62-177604 and US Pat. No. 4,719,386 by the present inventors. There is already what is shown.

この光変換体は一般の蛍光ランプに用いる蛍光体に対
して高い発光効率を持ち得る新たな光変換体として期待
されているものである。
This light converter is expected as a new light converter that can have a higher luminous efficiency than a phosphor used for a general fluorescent lamp.

[発明が解決しようとする課題] ところで光の原子構造(励起準位)内での放出や吸収
(励起)は「Pauliの排他律」という法則により、原則
的にはこの法則に基づいた範囲でしか起こり得ないこと
が分かっており、大略言えば主量子数(n)間で1だけ
の違いのある系列単位でしか光遷移しえない。つまりn
=1,2,3に対応してS,P,D,F…というアルファベットで系
列が示されているが、SとD間や、SとF間では起こり
にくいということがある。
[Problems to be Solved by the Invention] By the way, emission and absorption (excitation) within the atomic structure (excitation level) of light are based on the rule of "Pauli's exclusion rule", and are basically within the range based on this rule. It is known that the light transition can occur only in a sequence unit having a difference of one between the principal quantum numbers (n). That is, n
Although the series is indicated by alphabets such as S, P, D, F... Corresponding to = 1, 2, 3, etc., it may be difficult to occur between S and D or between S and F.

この遷移プロセスをNa原子の例で説明する。 This transition process will be described using an example of a Na atom.

原子状にNa原子が固定化された状態では水銀放電によ
って得られる254nmの紫外光による光励起に対する所望
の二量子発光遷移は第6図に示すようになり、nP→nS又
はnP→nDへは で示す非発光遷移も原理上は考えられるが、気体下のよ
うに互いの衝突機会がないと起こりにくいため、完全に
孤立固定化された状態では確率的に小であり、主に→で
示す発光遷移によりnS又はnDへ移る。しかし第6図によ
り→…で示している他の準位への発光遷移も起こり得る
ので、所望とするnS又はnDへの遷移は必ずしも100%生
起するものではない。
In the state where Na atoms are fixed in an atomic state, the desired two-quantum emission transition for photoexcitation by ultraviolet light of 254 nm obtained by mercury discharge is as shown in FIG. 6, and nP → nS or nP → nD Although non-emission transitions indicated by are conceivable in principle, they are unlikely to occur unless there is a chance to collide with each other, such as under gas, so they are stochastically small in a completely isolated and fixed state, and are mainly indicated by →. The transition to nS or nD occurs due to the light emission transition. However, since a light emission transition to another level indicated by → in FIG. 6 can also occur, the desired transition to nS or nD does not always occur 100%.

従来例ではこの点についての配慮の記載がされておら
ず、最も効率、確率の良い遷移条件が確立されていなか
った。
In the conventional example, no consideration is given to this point, and a transition condition with the highest efficiency and probability has not been established.

本発明は上述の点に鑑みて為されたもので、その目的
とするところは遷移確率を極めて高くして二量子発光が
得られる光変換体を提供するにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a light converter in which a transition probability is extremely high and two quantum luminescence can be obtained.

[課題を解決するための手段] 本発明は放射源からの入射光を吸収励起し、入射光よ
り長い波長に変換して発光するものであって、可視光を
通過する光変換体の母体物質中に、発光原子が原子状態
の発光特性に略似た発光特性を有する状態で個々に独立
し固定された光変換体において、入射光に対応する発光
原子の励起準位と、発光原子を取り巻く、原子1個程度
が包含される程度以上の微細なポーラスの径を、発光原
子が原子状態の発光特性に略似た発光特性を有する状態
に固定化される径となるように形成して略同じエネルギ
レベルにある隣接系列の励起準位とが部分的に重畳する
ように相互にエネルギ準位をシフト若しくはブロード化
したものである。
Means for Solving the Problems The present invention absorbs and excites incident light from a radiation source, converts the light into a longer wavelength than the incident light, and emits light, and is a base material of a light converter that transmits visible light. In the light converter, in which the light-emitting atoms have light emission characteristics substantially similar to the light emission characteristics of the atomic state, individually and fixed, the excitation level of the light-emitting atoms corresponding to the incident light and the light-emitting atoms surrounding the light-emitting atoms The diameter of a fine porous material having a diameter of not less than about one atom is formed so as to have a diameter at which a luminescent atom is fixed to a state having luminescent characteristics substantially similar to luminescent characteristics of an atomic state. The energy levels are shifted or broadened so that the excitation levels of adjacent series at the same energy level partially overlap.

[作用] 而して本発明によれば隣接系列準位間が重畳される
と、遷移確率が零と考えた非発光遷移が重畳のため極め
て大きな確率で起こって容易に遷移することになり、重
畳することのない殆ど原子そのままの励起準位状態の場
合と比べてより高効率に二量子発光が得られることにな
る。つまりnP→nS又はnP←nS、nP→nD又はnP←nDはPaul
icの排他律で許された発光遷移(電子遷移ではない)で
あり、SとD間や、8とF間は禁制関係にて発光遷移は
殆どない。しかるに部分的にもこつの準位が重畳する
と、排他律とは無関係に電子が自由にその間を非発光遷
移し、この確率は高いものである。本発明は、排他律で
発光遷移が出来ない準位間を原子状に、隣接準位を部分
的に重畳させ、この間を非発光遷移させてから、排他律
で許される発光を二次的に起こさせるのである。
[Operation] According to the present invention, when the adjacent series levels are superimposed, the non-light-emitting transition whose transition probability is considered to be zero occurs with a very large probability due to the superimposition and easily transitions. Two-quantum light emission can be obtained with higher efficiency than in the case of the excited state of atoms which are not superimposed almost as they are. That is, nP → nS or nP ← nS, nP → nD or nP ← nD is Paul
This is a light emission transition (not an electronic transition) permitted by the exclusion rule of ic, and there is almost no light emission transition between S and D and between 8 and F due to the forbidden relationship. However, when these levels partially overlap, electrons freely transition between them without light emission irrespective of the exclusion rule, and this probability is high. In the present invention, the atomic level between the levels where light emission transition cannot be performed by the exclusion rule is partially superimposed, and adjacent levels are partially overlapped with each other. Wake it up.

[実施例] 以下本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

まず上述したNa原子そのものの遷移する部分のエネル
ギ準位図は第1図(a)に示すように夫々が殆ど一体の
線で描き得るような飛びの幅が全くないか小の準位であ
る。
First, the energy level diagram of the transition portion of the Na atom itself described above is a level having no or small jump width which can be drawn by an almost integral line as shown in FIG. 1 (a). .

本発明は適度に原子状(完全な原子状態ではなく、ま
た隣接原子、分子と何らかの結合をした化合物又は分子
状態でも勿論なく、極めて弱いファン・デル・ワールス
力程度で相互にわずかの相互作用を持っている程度)に
設計加工することにより、第1図(b)のように隣接原
子、分子との若干のファン・デル・ワールス結合(分子
間引力)を起こさせ、これにより励起エネルギ順位を僅
かだけシフト若しくはブロード化させ、対象とする励起
準位nPと、隣接系列の同等エネルギ励起準位(nSとnD又
はnD)を重畳させるものである。
The present invention has a modest atomic state (not in a perfect atomic state, and also in a compound or a molecular state in which some atoms and molecules are bonded to adjacent atoms, and of course, a slight interaction with each other with a very weak van der Waals force). By designing and processing to the extent that it has, a slight van der Waals bond (intermolecular attraction) between adjacent atoms and molecules occurs as shown in FIG. It is shifted or broadened slightly to superimpose the target excitation level nP and the equivalent energy excitation level (nS and nD or nD) of the adjacent series.

ここで本実施例の光変換体は例えばゾル・ゲル薄膜形
成法をベースにより形成されたものであり、以下ゾル・
ゾル薄膜形成法による光変換体の形成について簡単に説
明する。
Here, the light converter of the present embodiment is formed based on, for example, a sol-gel thin film forming method.
The formation of the light converter by the sol thin film forming method will be briefly described.

まず所望発光原子の金属塩を適量混合した水をアルコ
ールと1:1か、この前後の比率(体積比)で混合し、こ
の混合液に母体物質の基たる基体母体化合物液(実施例
ではテトラエトキシシランを使用。このテトラエトキシ
シランの母体物質となるシリカの基)を等量以上と、発
光原子の塩の基液を適量加える この混合液を常温乃至はやや加温して数時間〜一昼夜
撹拌する。この撹拌工程により、ゾルが形成され、その
ゾルが形成された液を所望の基板(ランプのガラス管の
内面等)に塗布コーティングする。このコーティングさ
れた基板をまず空気中の高温下で一次焼成させる。
First, water in which an appropriate amount of a metal salt of a desired light-emitting atom is mixed is mixed with alcohol at a ratio of 1: 1 or a ratio (volume ratio) around 1: 1. Ethoxysilane is used, and an equivalent amount or more of a silica base which is a parent substance of tetraethoxysilane and an appropriate amount of a base solution of a salt of a luminescent atom are added. The mixed solution is heated at room temperature or slightly to several hours to overnight. Stir. The sol is formed by the stirring process, and the liquid in which the sol is formed is applied and coated on a desired substrate (such as the inner surface of a glass tube of a lamp). The coated substrate is first fired at a high temperature in the air.

この過程で、微小サイズのポーラス(気孔或いは空
孔)を無数に持つアモルファスシリカからなる母体物質
と、ポーラスの中に金属塩が分解し、更に一酸化炭素や
水素中の数100℃〜1000℃の高温下で還元二次焼成させ
る。ここで焼成温度の履歴は発光原子を含むポーラスの
径が、発光原子が原子状態と略同等の状態に固定化され
る径となるように予め設定管理しておくのは勿論であ
る。
In this process, a matrix material composed of amorphous silica having a myriad of micro-sized porous materials (pores or vacancies) and metal salts are decomposed into the porous materials, and several hundred to 1000 ° C. in carbon monoxide and hydrogen. Secondary firing at high temperature. Here, it is needless to say that the calcining temperature history is set and managed in advance so that the diameter of the porous material containing the light-emitting atoms becomes a diameter at which the light-emitting atoms are fixed to a state substantially equivalent to the atomic state.

而して、発光原子のみに還元されて、アモルファスシ
リカの微小ポーラスの中に孤絶して閉じ込められて固定
化された形の膜が形成される。
Thus, the film is reduced to only the light-emitting atoms, and is isolated and confined in the microporous amorphous silica to form a fixed film.

ここで上述の形成プロセスで還元後の焼結温度を所望
のエネルギシフト度に対応した温度に調整する。焼結温
度は発光原子を閉じ込めているポーラスの径dを決める
ものであり、この径dは発光原子と隣接母体物質との相
互作用度、即ちエネルギシフト度を決める。
Here, the sintering temperature after reduction in the above forming process is adjusted to a temperature corresponding to a desired degree of energy shift. The sintering temperature determines the diameter d of the porous material that confines the light-emitting atoms, and the diameter d determines the degree of interaction between the light-emitting atoms and the adjacent host material, that is, the degree of energy shift.

第2図は本実施例の光変換体Xの一部断面図を示して
おり、基板1に焼結された母体物質2内に発光原子3が
孤立的に固定されている。
FIG. 2 is a partial cross-sectional view of the light converter X of the present embodiment, in which light-emitting atoms 3 are isolated and fixed in a base material 2 sintered on a substrate 1.

第3図は発光原子3とポーラス4との生成状態を示す
モデル図であり、第3図(a)にように焼結温度が低い
場合にはポーラス4の径dが大きく、この場合第4図
(a)のようにエネルギシフト及びブロードは極めて小
さい。逆に焼結温度が高すぎると第3図(c)に示すよ
うに縮退し過ぎて径dが小さくなり、隣接母体物質2と
の相互作用(分子間結合力)が強くなり、第4図(c)
のようにエネルギシフト及びブロードが大きくなり過ぎ
る。第3図(b)は焼結温度を適切に調整した場合を示
しており、この場合ポーラス4の径dが適度な径とな
り、エネルギシフト及びブロードも第4図(b)に示す
ように所望或となる。尚第4図(a)〜(c)において
Aは紫外光に対する吸収・励起すべき準位、Bは上記準
位Aと隣接する系列の同等エネルギの準位、Cは基底準
位を夫々示す。ここで例えば準位AをP系列とすれば、
BはS系列又はD系列となる。
FIG. 3 is a model diagram showing the state of formation of the light-emitting atoms 3 and the porous material 4. When the sintering temperature is low as shown in FIG. 3 (a), the diameter d of the porous material 4 is large. The energy shift and the broad are very small as shown in FIG. Conversely, if the sintering temperature is too high, as shown in FIG. 3 (c), the sintering is excessively reduced and the diameter d is reduced, and the interaction (intermolecular bonding force) with the adjacent base substance 2 is increased. (C)
And the energy shift and broadening are too large. FIG. 3 (b) shows a case where the sintering temperature is appropriately adjusted. In this case, the diameter d of the porous material 4 becomes an appropriate diameter, and the energy shift and broadness are also desired as shown in FIG. 4 (b). It will be. 4 (a) to 4 (c), A denotes a level to be absorbed / excited with respect to ultraviolet light, B denotes a level of the same energy of a series adjacent to the level A, and C denotes a ground level. . Here, for example, if level A is a P series,
B is an S sequence or a D sequence.

尚最適な焼結温度の確認と調整の為には第5図に示す
ように予め事前に、焼結炉7で前処理が終了したき供試
材料を焼結することにより供試用光変換体Xを形成し、
この形成過程において可変波長レーザー5と分光計6と
を用いて、焼結温度と蛍光分光の強さの関係を観測し
て、最適な焼結温度を決定すれば良い。例えば色素レー
ザー等で紫外光を入射させると、ポーラス空間の径dが
小さ過ぎる或は大き過ぎるときは初段の励起が不十分の
ため、所望の蛍光発光も不十分であるが、上記径dが適
切な径であれば強い発光となるためこの時の焼結温度を
実際の加工時の焼結温度として調節設定すると良い。
In order to confirm and adjust the optimum sintering temperature, as shown in FIG. 5, the specimen to be subjected to the pre-treatment is preliminarily sintered in the sintering furnace 7 as shown in FIG. Form X,
In this forming process, the optimum sintering temperature may be determined by observing the relationship between the sintering temperature and the intensity of the fluorescence spectrum using the variable wavelength laser 5 and the spectrometer 6. For example, when ultraviolet light is incident on a dye laser or the like, if the diameter d of the porous space is too small or too large, the first-stage excitation is insufficient, and the desired fluorescence emission is also insufficient. If the diameter is appropriate, strong light emission is obtained, so that the sintering temperature at this time is preferably adjusted and set as the sintering temperature during actual processing.

尚ゾル・ゲル薄膜形成方法以外の方法で光変換体を形
成しても良く、これらの形成方法を用いた場合にも上述
と同様に事前の予備実験で最適条件をつかまえておき、
この条件に基づいて実際の加工を行えば良い。
Incidentally, the light converter may be formed by a method other than the sol-gel thin film forming method, and in the case of using these forming methods, the optimum conditions are obtained by preliminary preliminary experiments as described above,
Actual processing may be performed based on this condition.

而してエネルギシフト及びブロード化させることによ
り、励起準位と隣接系列の同等のエネルギ励起準位とを
重畳した光変換体では、遷移確率が零と考えられた非発
光遷移が、重畳のため極めて大きな確率で起きて例え
ば、Na原子を発光原子として用いた場合には第6図に示
すようにnP→nS及びnP→nDと遷移することになって以下
nS→3P→3S又はnD→3P→3Sの高効率な二量子発光が生起
することになる。
Thus, in the optical converter in which the excitation level and the equivalent energy excitation level of the adjacent series are superimposed by the energy shift and broadening, the non-light-emitting transition whose transition probability is considered to be zero is superimposed due to the superposition. Occurs at an extremely high probability. For example, when Na atoms are used as light-emitting atoms, transitions from nP to nS and nP to nD occur as shown in FIG.
High-efficiency two-quantum emission of nS → 3P → 3S or nD → 3P → 3S will occur.

上記エネルギシフトは元々の発光原子自体が励起光と
励起準位がぴったり整合しない場合にも極めて有効に利
用できる。つまりエネルギシフトとブロードとにより励
起準位帯を励起光と略同じエネルギ準位に設定してその
吸収・励起確率を高めることができるのである。このよ
うにすることによって利用し得る発光原子や励起光源の
選択の幅も広がってくることになる。尚エネルギシフト
又はブロードが大きくなり過ぎると、所望のこつの励起
準位だけの重畳でなく、他の励起準位との重畳も出てき
て、それらへの不要な遷移の度合か増え、必ずしも所望
のこ量子発光か高効率に得られなくなる。
The above energy shift can be used very effectively even when the original light emitting atoms themselves do not exactly match the excitation light and the excitation level. In other words, the excitation level band can be set to substantially the same energy level as the excitation light by the energy shift and the broad, and the absorption / excitation probability can be increased. By doing so, the range of available light-emitting atoms and excitation light sources can be broadened. If the energy shift or broadening is too large, not only the desired excitation level is superimposed but also the other excitation levels are superimposed, and the degree of unnecessary transition to them is increased. The quantum luminescence cannot be obtained with high efficiency.

〔発明の効果〕〔The invention's effect〕

本発明は、放射源からの入射光を吸収励起し、入射光
より長い波長に変換して発光するものであって、可視光
を通過する光変換体の母体物質中に、発光原子が原子状
態の発光特性に略似た発光特性を有する状態で個々に独
立し固定された光変換体において、入射光に対応する発
光原子の励起準位と、発光原子を取り巻く、原子1個程
度が包含される程度以上の微細なポーラスの径を、発光
原子が原子状態の発光特性に略似た発光特性を有する状
態に固定化される径となるように形成して略同じエネル
ギレベルにある隣接系列の励起準位とが部分的に重畳す
るように相互にエネルギ準位をシフト若しくはブロード
化したから、遷移確率が零と考えられた非発光遷移が重
畳のため極めて大きな確率で起こって容易に遷移するこ
とになり、重畳することのない殆ど原子のままの励起準
位状態の場合と比べてより高効率に二量子発光が得られ
るという効果がある。
The present invention absorbs and excites incident light from a radiation source, converts the light into a longer wavelength than the incident light, and emits light.In the base material of the light converter that transmits visible light, the light-emitting atoms are in an atomic state. In the individually and individually fixed light converter having emission characteristics substantially similar to the emission characteristics of the above, the excitation level of the emission atoms corresponding to the incident light and about one atom surrounding the emission atoms are included. The diameter of the fine porous material is formed so as to have a diameter at which the light-emitting atoms are fixed to a state having light-emitting characteristics substantially similar to the light-emitting characteristics of the atomic state, and the diameter of the adjacent series having substantially the same energy level is formed. Since the energy level is shifted or broadened so that the excitation level partially overlaps with the excitation level, the non-emission transition whose transition probability is considered to be zero occurs with a very large probability due to the superposition and easily transitions. Will be superimposed There is an effect that higher efficiency in two quantum emitter can be obtained as compared with the case of the excitation level remains almost atomic no of and.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)は本発明の原理を説明するための
Na原子のエネルギ準位説明図、若干エネルギシフト及び
ブロードした原子状Na原子のエネルギ準位説明図、第2
図は本発明の実施例の光変換体の断面図、第3図(a)
〜(c)は同上の焼結温度調整説明用の光変化体の生成
状態モデル図、第4図(a)〜(c)は第3図(a)〜
(c)に対応した同上の固定化した発行原子のエネルギ
シフトモデル図、第5図は同上の焼結温度調整設定説明
図、第6図は水銀放電による紫外光の励起でのNa原子の
放射遷移説明図である。 1は基板、2は母体物質、3は発光原子、Xは光変換体
である。
FIGS. 1A and 1B are diagrams for explaining the principle of the present invention.
Explanatory diagram of energy level of Na atom, energy level diagram of slightly shifted and broadened atomic Na atom, 2nd
FIG. 3 is a cross-sectional view of a light converter according to an embodiment of the present invention, and FIG.
FIGS. 4 (a) to 4 (c) are model diagrams of the generation state of the optical changer for explaining the sintering temperature adjustment, and FIGS. 4 (a) to 4 (c) are FIGS.
FIG. 5 is an energy shift model diagram of the immobilized issuing atoms corresponding to (c), FIG. 5 is an explanatory diagram of the sintering temperature adjustment setting of the above, and FIG. 6 is emission of Na atoms by ultraviolet light excitation by mercury discharge. It is a transition explanatory view. 1 is a substrate, 2 is a base substance, 3 is a light emitting atom, and X is a light converter.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放射源からの入射光を吸収励起し、入射光
より長い波長に変換して発光するものであって、可視光
を通過する光変換体の母体物質中に、発光原子が原子状
態の発光特性に略似た発光特性を有する状態で個々に独
立し固定された光変換体において、入射光に対応する発
光原子の励起準位と、発光原子を取り巻く、原子1個程
度が包含される程度以上の微細なポーラスの径を、発光
原子が原子状態の発光特性に略似た発光特性を有する状
態に固定化される径となるように形成して略同じエネル
ギレベルにある隣接系列の励起準位とが部分的に重畳す
るように相互にエネルギ準位をシフト若しくはブロード
化したことを特徴とする光変換体。
1. A method of absorbing and exciting incident light from a radiation source, converting the light into a longer wavelength than the incident light, and emitting light. In the light converter, which has light emission characteristics substantially similar to the light emission characteristics of the state and is individually and independently fixed, the excitation level of the light emission atoms corresponding to the incident light and about one atom surrounding the light emission atoms are included. An adjacent series that has a microporous diameter greater than or equal to the diameter that is fixed so that the light-emitting atoms have a light-emitting property substantially similar to the light-emitting properties of the atomic state and has substantially the same energy level Characterized in that the energy levels are shifted or broadened so that the excitation levels partially overlap with each other.
JP2017132A 1990-01-26 1990-01-26 Light converter Expired - Fee Related JP2656841B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017132A JP2656841B2 (en) 1990-01-26 1990-01-26 Light converter
US07/643,183 US5227207A (en) 1990-01-26 1991-01-18 Photoconverter
GB9101275A GB2242063B (en) 1990-01-26 1991-01-21 Method for manufacturing photoconverter
DE19914102190 DE4102190A1 (en) 1990-01-26 1991-01-25 METHOD FOR PRODUCING A PHOTO CONVERTER
FR9100850A FR2657619B1 (en) 1990-01-26 1991-01-25 METHOD FOR MANUFACTURING A CONVERTER ELEMENT TRANSFORMING A LIGHT OF A GIVEN WAVELENGTH INTO A DIFFERENT WAVELENGTH LIGHT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132A JP2656841B2 (en) 1990-01-26 1990-01-26 Light converter

Publications (2)

Publication Number Publication Date
JPH03221586A JPH03221586A (en) 1991-09-30
JP2656841B2 true JP2656841B2 (en) 1997-09-24

Family

ID=11935508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132A Expired - Fee Related JP2656841B2 (en) 1990-01-26 1990-01-26 Light converter

Country Status (1)

Country Link
JP (1) JP2656841B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719386A (en) * 1984-11-24 1988-01-12 Matsushita Electric Works, Ltd. Photoconverter and lamp utilizing multi-quantum emission

Also Published As

Publication number Publication date
JPH03221586A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
JP6427721B1 (en) Stacked luminescence collector
JP5952902B2 (en) Luminescent substance particles comprising a coating and lighting unit comprising said luminescent substance
WO2007080541A1 (en) Light emitting device with a eu-comprising phosphor material
JP2005133063A (en) Phosphor containing boron and metal belonging to groups iiia and iiib
JP6675411B2 (en) White phosphor conversion LED with luminous flux output stable with temperature
JP2007513469A (en) Low pressure steam discharge lamp filled with mercury-free gas
JP2012518698A (en) Discharge lamp that emits UV light
CN102034676B (en) Fluorescent lamp
CN1391255A (en) Gas discharge lamp with lower frequency converting luminating body
JP2656841B2 (en) Light converter
JP2013536545A (en) UV-A or UV-B radiation discharge lamp
JP6029926B2 (en) Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
JP2002212553A (en) Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp
TW586134B (en) Electron emissive coating for a thermionic cathode, and arc discharge lamp
US5227207A (en) Photoconverter
JP2005142037A (en) Light emitting apparatus
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
JPWO2018042949A1 (en) Phosphor and light emitting device
JPH083089B2 (en) Method of forming light converter
JP2002298753A (en) Manufacturing method for thin film light emitting element
JP2005132640A (en) Luminous body and its manufacturing method
US7362049B2 (en) Blue-enriched incandescent lamp
JP2006332000A (en) Luminescent ultraviolet rays shielding material, luminescent ultraviolet shielding filter and lamp as well as lighting apparatus
JP2007503501A (en) Gas discharge lamp with down-converting phosphor
JPS62215685A (en) Luminescent material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees