JP2656109B2 - Triazine compound and method for producing the same - Google Patents

Triazine compound and method for producing the same

Info

Publication number
JP2656109B2
JP2656109B2 JP8980189A JP8980189A JP2656109B2 JP 2656109 B2 JP2656109 B2 JP 2656109B2 JP 8980189 A JP8980189 A JP 8980189A JP 8980189 A JP8980189 A JP 8980189A JP 2656109 B2 JP2656109 B2 JP 2656109B2
Authority
JP
Japan
Prior art keywords
general formula
refractive index
compound represented
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8980189A
Other languages
Japanese (ja)
Other versions
JPH02268170A (en
Inventor
正弘 天野
信吾 松岡
泰次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8980189A priority Critical patent/JP2656109B2/en
Publication of JPH02268170A publication Critical patent/JPH02268170A/en
Application granted granted Critical
Publication of JP2656109B2 publication Critical patent/JP2656109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に光学材料を与える単量体として有用で
あり、その他、塗料、インク、接着剤、ゴムの加硫剤、
感光性樹脂、架橋剤等に有用な新規トリアジン化合物及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is particularly useful as a monomer for providing an optical material, and in addition, paints, inks, adhesives, rubber vulcanizing agents,
The present invention relates to a novel triazine compound useful as a photosensitive resin, a crosslinking agent, and the like, and a method for producing the same.

〔従来の技術〕 現在、広く用いられている光学材料としては、ジエチ
レングリコールビルアリルカーボネートを注型重合させ
た樹脂がある。しかし、この樹脂は屈折率(n0)が1.50
であり、無機レンズに比べて小さく、無機レンズと同等
の光学特性を得るためには、レンズの中心厚、コバ厚及
び曲率を大きくする必要があり、全体的に肉厚になるこ
とが避けられない。
[Prior Art] Currently, as an optical material widely used, there is a resin obtained by casting polymerization of diethylene glycol virallyl carbonate. However, this resin has a refractive index (n 0 ) of 1.50
In order to obtain optical characteristics that are smaller than inorganic lenses and equivalent to those of inorganic lenses, it is necessary to increase the center thickness, edge thickness, and curvature of the lens, and it is possible to avoid overall wall thickness. Absent.

この欠点を改良した高屈折率樹脂も種々提案されてい
る。例えば、ポリカーボネート、ポリスルホン系の高屈
折率樹脂が提案されている。これらの樹脂は屈折率が約
1.60と高いものの、光透過率が低く、光学的均質性に欠
け、また着色するなどの問題がある。
Various high-refractive-index resins that have improved this disadvantage have been proposed. For example, polycarbonate and polysulfone-based high refractive index resins have been proposed. These resins have a refractive index of about
Although it is as high as 1.60, it has problems such as low light transmittance, lack of optical homogeneity, and coloring.

このため架橋性の高屈折率樹脂が種々提案されてい
る。例えば、特開昭61−28901号公報などにフェニル基
をハロゲン原子で置換したフェニルメタクリレートなど
ハロゲン原子を多数含んだ樹脂が提案されている。しか
し、これらの樹脂は比重が大きくなり、耐候性も劣る。
For this reason, various crosslinkable high refractive index resins have been proposed. For example, Japanese Patent Application Laid-Open No. 61-28901 discloses a resin containing many halogen atoms such as phenyl methacrylate in which a phenyl group is substituted with a halogen atom. However, these resins have high specific gravity and poor weather resistance.

また、特開昭60−197711号公報などにα−ナフチルメ
タクリレートを主成分とする高屈折率樹脂用組成物が提
案されている。これから得られる樹脂は高屈折率を有す
るものの、ナフチル基を有するために、耐候性が劣って
いる。
JP-A-60-197711 proposes a composition for a high refractive index resin containing α-naphthyl methacrylate as a main component. Although the resin obtained therefrom has a high refractive index, it has poor weather resistance due to having a naphthyl group.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

以上のような先行技術の下で、特に光学材料に好適に
使用し得る樹脂、即ち高屈折率、良好な透明性、耐候性
及び比重が小さいなどの諸性質のバランスのとれた樹脂
が強く望まれている。
Under the above-mentioned prior art, a resin that can be suitably used particularly for an optical material, that is, a resin in which various properties such as high refractive index, good transparency, weather resistance and low specific gravity are balanced is strongly desired. It is rare.

従って本発明が解決しようとする課題は、高屈折率で
比重が小さく、透明性、硬度、耐候性等に優れた樹脂を
与える単量体を提供することである。
Accordingly, an object of the present invention is to provide a monomer which gives a resin having a high refractive index, a small specific gravity, and excellent transparency, hardness, weather resistance and the like.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは上記の課題を解決するために鋭意研究を
重ねた結果、下記一般式で示されるトリアジン化合物を
重合して得た重合体が上記の諸性質を具備した優れた樹
脂であることを見い出し本発明を完成するに至った。
The present inventors have conducted intensive studies to solve the above problems, and as a result, a polymer obtained by polymerizing a triazine compound represented by the following general formula is an excellent resin having the above properties. To complete the present invention.

即ち、本発明は、 下記式〔I〕 で示されるトリアジン化合物である。That is, the present invention relates to the following formula [I] Is a triazine compound represented by the formula:

前記一般式〔I〕中、R1、R2、R3、R4及びR5で示され
るアルキル基としては、炭素数に特に制限されないが、
重合して得られる樹脂の屈折率の点から炭素数は1〜5
であることが好ましい。例えば、メチル基、エチル基、
n−プロピル基、i−プロピル基、n−ブチル基、t−
ブチル基等を挙げることができる。
In the general formula (I), the alkyl group represented by R 1 , R 2 , R 3 , R 4 and R 5 is not particularly limited to the number of carbon atoms,
The number of carbon atoms is 1 to 5 in view of the refractive index of the resin obtained by polymerization.
It is preferred that For example, a methyl group, an ethyl group,
n-propyl group, i-propyl group, n-butyl group, t-
A butyl group and the like can be mentioned.

また、R1、R2及びR3で示されるアリール基としては炭
素数に特に制限されるものではないが、一般には炭素数
6〜10の範囲であることが好ましい。具体的には、フェ
ニル基、トリル基、キシリル基、ベンジル基、ナフチル
基等が挙げられる。
The aryl group represented by R 1 , R 2 and R 3 is not particularly limited in the number of carbon atoms, but generally preferably has 6 to 10 carbon atoms. Specific examples include a phenyl group, a tolyl group, a xylyl group, a benzyl group, and a naphthyl group.

さらに、前記一般式〔I〕中、X1及びX2で示されるア
ルキルチオ基としては、炭素数に特に制限されないが、
屈折率の点から炭素数は1〜5であることが好ましい。
例えば、メチルチオ基、エチルチオ基、プロピルチオ基
等を挙げることができる。
Further, in the general formula (I), the alkylthio group represented by X 1 and X 2 is not particularly limited to the number of carbon atoms,
The number of carbon atoms is preferably 1 to 5 from the viewpoint of the refractive index.
For example, a methylthio group, an ethylthio group, a propylthio group and the like can be mentioned.

本発明の前記一般式〔I〕中、X1及びX2で示されるハ
ロゲン原子は塩素、臭素及びヨウ素の各ハロゲン原子で
あり、得られる樹脂の耐候性の点から塩素原子及び臭素
原子が好ましい。本発明のトリアジン化合物中に含まれ
るハロゲン原子の数は、高屈折率で低比重の樹脂を得る
ためには0〜3の範囲であることが好ましい。
In the general formula (I) of the present invention, the halogen atoms represented by X 1 and X 2 are chlorine, bromine and iodine halogen atoms, and chlorine and bromine atoms are preferred from the viewpoint of the weather resistance of the obtained resin. . The number of halogen atoms contained in the triazine compound of the present invention is preferably in the range of 0 to 3 in order to obtain a resin having a high refractive index and a low specific gravity.

前記一般式〔I〕中のmは0以上の整数であれば良い
が、mが大きくなりすぎると屈折率を低下させる為、m
は0又は1が好ましい。
M in the general formula [I] may be an integer of 0 or more, but if m is too large, the refractive index is lowered.
Is preferably 0 or 1.

又前記一般式〔I〕において、nが大きい程一分子当
りのイオウ原子の含有率が増加し、重合して得られる樹
脂の屈折率が増大する。しかしながら、nは大きくしす
ぎると一般式〔I〕の化合物の不飽和単量体との相溶性
及び耐熱性がそこなわれるといった問題が生じてくる。
このためnは0から4特に0から2を選択することが好
ましい。
In the general formula [I], as the value of n increases, the content of sulfur atoms per molecule increases, and the refractive index of the resin obtained by polymerization increases. However, when n is too large, there arises a problem that the compatibility of the compound of the general formula [I] with the unsaturated monomer and the heat resistance are impaired.
Therefore, it is preferable that n is selected from 0 to 4, particularly 0 to 2.

更に前記一般式〔I〕中のR6は屈折率の点から が好ましい。Further, R 6 in the general formula (I) is from the viewpoint of the refractive index. Is preferred.

本発明の前記一般式〔I〕で示されるトリアジン化合
物の構造は次の手段によって確認することができる。
The structure of the triazine compound represented by the general formula [I] of the present invention can be confirmed by the following means.

(イ)赤外吸収スペクトル(IR)を測定することによ
り、3150〜2800cm-1付近にC−H結合に基づく吸収、16
50〜1600cm-1付近に末端の不飽和炭化水素基に基づく吸
収、更にR6の場合は1665cm-1付近にチオエステル結合に基づくカル
ボニル基の強い吸収を観察することができる。
(A) By measuring the infrared absorption spectrum (IR), the absorption based on the C—H bond around 3150 to 2800 cm −1 ,
In the vicinity of 50 to 1600 cm -1, absorption based on the terminal unsaturated hydrocarbon group, and further R 6 In the case of 1 , a strong absorption of a carbonyl group based on a thioester bond can be observed around 1665 cm -1 .

(ロ)1H−核磁気共鳴スペクトル(1H−NMR)を測定す
ることにより前記一般式〔I〕で示される本発明の化合
物中に存在する水素原子の結合様式を知ることができ
る。前記一般式〔I〕で示される化合物の1H−NMR
(δ、ppm;テトラメチルシラン基準、重クロロホルム溶
媒)の代表例として、2,4,6−トリス(m−エテニルベ
ンジルチオ)トリアジンについて1H−NMRを第2図に示
す。その解析結果を示すと次の通りである。
(B) 1 H- can know the binding mode of the nuclear magnetic resonance spectrum (1 H-NMR) hydrogen atoms present in the compounds of the present invention represented by the general formula (I) by measuring. 1 H-NMR of the compound represented by the general formula (I)
FIG. 2 shows 1 H-NMR of 2,4,6-tris (m-ethenylbenzylthio) triazine as a representative example of (δ, ppm; tetramethylsilane reference, deuterated chloroform solvent). The analysis results are as follows.

すなわち、4.2ppmにプロトン2個分に相当する一重線
が認められ、ベンジル基のメチレン鎖(c)によるもの
と帰属できる。5.0〜5.8ppmにプロトン2個分に相当す
る四重線が認められ、エテニル基のメチレン(a)によ
るものと帰属できる。また、6.4〜7.0ppmにプロトン1
個分に相当する四重線が認められ、エテニル基のメチン
(b)によるものと帰属できる。又、7.0〜7.5ppmにプ
ロトン4個分に相当する多重線が認められフェニル基に
置換したプロトン(d)、(e)、(f)、(g)によ
るものと帰属できる。
That is, a singlet corresponding to two protons was observed at 4.2 ppm, which can be attributed to the methylene chain (c) of the benzyl group. A quartet corresponding to two protons is observed at 5.0 to 5.8 ppm, which can be attributed to the ethenyl group due to methylene (a). In addition, protons 1 to 6.4 to 7.0 ppm
A quartet corresponding to the individual is observed, which can be attributed to the ethenyl group due to methine (b). In addition, multiple lines corresponding to four protons were observed at 7.0 to 7.5 ppm, which can be attributed to protons (d), (e), (f), and (g) substituted with a phenyl group.

(ハ)元素分析によって炭素、水素、窒素、イオウ、及
びハロゲンの各重量%を求め、さらに認知された各元素
の重量%の和を100から減じることによって酸素の重量
%を算出することができ、従って該化合物の組成式を決
定することができる。
(C) The weight percent of oxygen can be calculated by determining the weight percent of each of carbon, hydrogen, nitrogen, sulfur, and halogen by elemental analysis, and subtracting the sum of the recognized weight percents of each element from 100. Therefore, the composition formula of the compound can be determined.

本発明の前記一般式〔I〕で示される化合物の製造方
法は特に限定されるものではない。具体例は後述する実
施例に詳述するが代表的な製造方法を記述すれば以下の
様になる。
The method for producing the compound represented by the general formula [I] of the present invention is not particularly limited. A specific example will be described in detail in Examples below, but if a typical manufacturing method is described, it is as follows.

(i)一般式〔II〕 で示される化合物と 一般式〔III〕 で示される化合物とを反応させる方法。(I) General formula [II] And a compound represented by the general formula [III] A method of reacting with a compound represented by the formula:

(ii)一般式(IV) で示される化合物と、 一般式〔V〕 で示される化合物とを反応させる方法。(Ii) General formula (IV) And a compound represented by the general formula [V] A method of reacting with a compound represented by the formula:

(iii)一般式〔VI〕 で示される化合物と 一般式〔VII〕 で示される化合物とをエステル化反応させる方法。(Iii) General formula [VI] And a compound represented by the general formula [VII] A method of subjecting a compound represented by the formula to an esterification reaction.

上記(i)、(ii)及び(iii)によって前記一般式
〔I〕で示されるトリアジン化合物を得ることができ
る。
The triazine compound represented by the general formula [I] can be obtained by the above (i), (ii) and (iii).

原料となる前記一般式〔II〕、〔III〕、〔IV〕、
〔V〕、〔VI〕及び〔VII〕で示される化合物は、如何
なる方法で得られたものでも使用できる。
The general formulas (II), (III), (IV),
As the compounds represented by [V], [VI] and [VII], those obtained by any method can be used.

前記一般式〔I〕で示される化合物を得る反応の具体
例を例示すれば以下の通りである。
Specific examples of the reaction for obtaining the compound represented by the general formula [I] are as follows.

(a) 一般式〔II〕で示される化合物と一般式〔II
I〕で示される化合物を反応させる方法及び一般式〔I
V〕で示される化合物と一般式〔V〕で示される化合物
を反応させる方法。これらの方法は反応系から脱ハロゲ
ン化水素又は脱ハロゲン化アルカリ金属させる方法であ
る。
(A) a compound represented by the general formula [II] and a compound represented by the general formula [II
A method of reacting a compound represented by the formula (I)
A method of reacting a compound represented by the general formula [V] with a compound represented by the general formula [V]. These methods are methods for dehydrohalogenating or dehalogenating alkali metal from the reaction system.

原料である前記一般式〔III〕及び〔IV〕中、X3及びX
4で示されるハロゲン原子としては、塩素原子又は臭素
原子が好適に採用される。また、前記一般式〔II〕、
〔III〕、〔IV〕及び〔V〕中、n1+n2=nであり、ま
たn3+n4=nである。
X 3 and X in the general formulas (III) and (IV) that are the raw materials
As the halogen atom represented by 4 , a chlorine atom or a bromine atom is suitably employed. Further, the general formula (II),
In [III], [IV] and [V], n1 + n2 = n and n3 + n4 = n.

両化合物の仕込みモル比は必要に応じて適宜決定すれ
ば良いが、通常等モル使用するのが一般的である。又、
該反応において、M1及びM2が水素原子の場合には、一般
にハロゲン化水素を反応系から除く為、反応系内にハロ
ゲン化水素捕捉剤として塩基を共存させることが好まし
い。該ハロゲン化水素捕捉剤としての塩基は特に限定さ
れず公知のものを使用することができる。一般に好適に
使用される塩基として、トリメチルアミン、トリエチル
アミン等のトリアルキルアミン、ピリジン、テトラメチ
ル尿素等があげられる。また、炭酸アルカリ金属、水酸
化アルカリ金属等のアルカリ金属化合物を反応系内で反
応させ、チオラートとし脱ハロゲン化アルカリ金属させ
ても差しつかえない。
The molar ratio of both compounds to be charged may be appropriately determined as needed, but it is common to use equimolar amounts. or,
In the reaction, when M 1 and M 2 are hydrogen atoms, it is preferable to coexist a base as a hydrogen halide scavenger in the reaction system in order to generally remove hydrogen halide from the reaction system. The base as the hydrogen halide scavenger is not particularly limited, and a known base can be used. In general, bases that are preferably used include trialkylamines such as trimethylamine and triethylamine, pyridine, tetramethylurea and the like. Further, an alkali metal compound such as an alkali metal carbonate or an alkali metal hydroxide may be reacted in the reaction system to be converted into a thiolate to be dehalogenated.

前記反応に際しては一般に、有機溶媒を用いるのが好
ましい。該溶媒として好適に使用されるものを例示すれ
ば、エタノール、イソプロピルアルコール等のアルコー
ル類及びN,N′−ジメチルホルムアミド、N,N′−ジメチ
ルアセトアミド等のN,N′−ジアルキルアミド類等があ
げられる。
In the reaction, it is generally preferable to use an organic solvent. Examples of the solvent preferably used include alcohols such as ethanol and isopropyl alcohol, and N, N'-dimethylformamide and N, N'-dialkylamides such as N, N'-dimethylacetamide. can give.

前記反応における温度は、原料の種類、溶媒の種類に
よって異なるが、一般には0℃〜溶媒を還流させる温度
が好ましい。反応時間も原料の種類によって異なるが、
通常5分から40時間、好ましくは30分から24時間の範囲
から選べば十分である。また反応中においては撹拌を行
うのが好ましい。
The temperature in the reaction varies depending on the type of the raw material and the type of the solvent, but is generally preferably from 0 ° C to a temperature at which the solvent is refluxed. The reaction time also depends on the type of raw material,
It is sufficient to select from a range of usually 5 minutes to 40 hours, preferably 30 minutes to 24 hours. It is preferable to carry out stirring during the reaction.

反応系から目的生成物、すなわち前記一般式〔I〕で
示される化合物を単離精製する方法は特に限定されず、
公知の方法が採用できる。
The method for isolating and purifying the desired product from the reaction system, that is, the compound represented by the general formula [I], is not particularly limited.
A known method can be adopted.

(b) 一般式(VI)で示される化合物と一般式〔VI
I〕で示される化合物とをエステル化反応させる方法。
すなわち一般式〔VII〕のX5が水酸基の場合は脱水反
応、X5が塩素原子の場合は脱塩化水素反応、X5がアルコ
キシ基の場合は脱アルコール反応させる方法である。反
応条件は各方法によって異なり、脱水反応の場合には化
合物のどちらか一方を過剰に使用し、触媒として酸を用
いるのが好ましい。該触媒としては、硫酸、塩酸等の鉱
酸、芳香族スルホン酸等の有機酸、あるいは、フッ化ホ
ウ素エーテラート等のルイス酸が挙げられる。また、該
反応は平衡反応である為、副生する水を取り除くことが
好ましい。水を取り除く方法は特に限定されず、公知の
方法が採用される。反応温度、反応時間は原料の種類、
溶媒の種類によって異なり、一般には、溶媒を還流させ
る温度で、30分〜24時間が好ましい。反応系から目的
物、すなわち前記一般式〔I〕で示される化合物を単離
精製する方法は特に限定されず公知の方法が採用でき
る。
(B) a compound represented by the general formula (VI) and a compound represented by the general formula [VI
A method of subjecting the compound represented by I] to an esterification reaction.
That is, when X 5 in the general formula [VII] is a hydroxyl group, a dehydration reaction is performed, when X 5 is a chlorine atom, a dehydrochlorination reaction, and when X 5 is an alkoxy group, a dealcoholation reaction is performed. The reaction conditions vary depending on the method. In the case of a dehydration reaction, it is preferable to use one of the compounds in excess and use an acid as a catalyst. Examples of the catalyst include mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as aromatic sulfonic acid, and Lewis acids such as boron fluoride etherate. Since the reaction is an equilibrium reaction, it is preferable to remove by-produced water. The method for removing water is not particularly limited, and a known method is employed. The reaction temperature and reaction time are
Depending on the type of solvent, it is generally preferred that the solvent be refluxed at a temperature of 30 minutes to 24 hours. The method for isolating and purifying the target substance from the reaction system, that is, the compound represented by the general formula [I], is not particularly limited, and a known method can be employed.

又、脱塩化水素反応の場合は、化合物は等モル使用
し、副生する塩化水素を反応系から除く為、反応系内に
塩化水素捕捉剤として塩基を共存させることが好まし
い。
In the case of a dehydrochlorination reaction, the compound is used in an equimolar amount, and it is preferable to use a base as a hydrogen chloride scavenger in the reaction system in order to remove by-produced hydrogen chloride from the reaction system.

該塩化水素捕捉剤としての塩基は特に限定されず公知
のものを使用することができる。一般に好適に使用され
る塩基としてトリメチルアミン、トリエチルアミン等の
トリアルキルアミン、ピリジン、テトラメチル尿素、炭
酸ナトリウム等があげられる。該反応は有機溶媒を用い
るのが好ましい。
The base as the hydrogen chloride scavenger is not particularly limited, and a known base can be used. Generally used bases include trialkylamines such as trimethylamine and triethylamine, pyridine, tetramethylurea, sodium carbonate and the like. The reaction preferably uses an organic solvent.

反応温度、反応時間は原料の種類、溶媒の種類によっ
て異なり、一般には−20〜100℃で5分〜12時間が好ま
しい。反応系から目的生成物すなわち前記一般式〔I〕
で示される化合物を単離精製する方法は特に限定されず
公知の方法が採用できる。
The reaction temperature and the reaction time vary depending on the type of the raw material and the type of the solvent, and generally, it is preferably at −20 to 100 ° C. for 5 minutes to 12 hours. From the reaction system, the desired product, that is, the above-mentioned general formula (I)
The method for isolating and purifying the compound represented by is not particularly limited, and a known method can be employed.

脱アルコール反応の場合は、化合物のどちらか一方を
過剰に使用し、触媒として酸又は塩基を用いるのが好ま
しい。該酸触媒としては硫酸、p−トルエンスルホン酸
等があげられ、塩基触媒としてはカリウム−t−ブトキ
シド等のカリウムアルコキシド等があげられる。
In the case of a dealcoholization reaction, it is preferable to use one of the compounds in excess and use an acid or a base as a catalyst. Examples of the acid catalyst include sulfuric acid and p-toluenesulfonic acid, and examples of the basic catalyst include potassium alkoxide such as potassium-t-butoxide.

また、該反応は平衡反応である為、副生するアルコー
ルを反応系外に取り除くのが好ましい。前記反応は、一
般に無溶媒で行われるが、原料が固体である場合は、副
生するアルコールよりも沸点の高い溶媒を用いるのが好
ましい。
Further, since the reaction is an equilibrium reaction, it is preferable to remove by-product alcohol out of the reaction system. The reaction is generally carried out without solvent, but when the raw material is a solid, it is preferable to use a solvent having a higher boiling point than the by-produced alcohol.

反応温度、反応時間は原料の種類、副生するアルコー
ルの種類によって異なるが、一般にはアルコールが留出
する温度で30分〜24時間が好ましい。反応系から目的
物、すなわち前記一般式〔I〕で示される化合物を単離
精製する方法は特に限定されず公知の方法が採用でき
る。
The reaction temperature and the reaction time vary depending on the type of the raw material and the type of the by-produced alcohol. Generally, the temperature at which the alcohol is distilled off is preferably 30 minutes to 24 hours. The method for isolating and purifying the target substance from the reaction system, that is, the compound represented by the general formula [I], is not particularly limited, and a known method can be employed.

本発明の前記一般式〔I〕で示される化合物は高屈折
率で比重が小さく、透明性、硬度、耐候性等に優れた樹
脂を与える単量体として有用である。
The compound represented by the above general formula [I] of the present invention is useful as a monomer which gives a resin having a high refractive index, a small specific gravity, and excellent transparency, hardness, weather resistance and the like.

本発明のトリアジン化合物を用いて光学材料とりわけ
レンズ材料を得る際、前記一般式〔I〕で示される化合
物が1官能性であるとき、ラジカル共重合可能な多官能
性不飽和単量体と共重合するのが好ましい。該多官能性
不飽和単量体の例を挙げると次のとおりである。尚、ア
クリレート及びメタクリレートを総称して(メタ)アク
リレートと記す。エチレングリコール(メタ)アクリレ
ート、トリエチレングリコールジ(メタ)アクリレー
ト、チオグリコールジ(メタ)アクリレート等のジ(メ
タ)アクリレート;ジビニルベンゼン、2,5−ジビニル
ピリジン等が挙げられる。高屈折率の重合体を得る観点
からその単独重合体の屈折率が1.55以上の多官能性不飽
和単量体を用いるのが良好である。具体的には、ビスフ
ェノールA、ビスフェノールS、2,2′,6,6′−テトラ
クロロビスフェノールA、2,2′,6,6′−テトラクロロ
ビスフェノールS、2,2′,6,6′−テトラブロモビスフ
ェノールA若しくは2,2′,6,6′−テトラブロモビスフ
ェノールS等のビスフェノール類のビスβ−メタリルカ
ーボネート、ジアクリレート又はジメタクリレート;テ
トラクロロフタル酸ビスヒドロキシエチルエステル、テ
トラクロロイソフタル酸ビスヒドロキシエチルエステ
ル、テトラクロロテレフタル酸ビスヒドロキシエチルエ
ステル、テトラブロモフタル酸ビスヒドロキシエチルエ
ステル若しくはテトラブロモテレフタル酸ビスヒドロキ
シエチルエステル等のビスβ−メタリルカーボネート、
ジアクリレート又はジメタクリレート;ジビニルベンゼ
ン、2,5ジビニルピリジン等が挙げられる。
When an optical material, particularly a lens material, is obtained using the triazine compound of the present invention, when the compound represented by the general formula (I) is monofunctional, it is co-polymerized with a radically copolymerizable polyfunctional unsaturated monomer. Polymerization is preferred. Examples of the polyfunctional unsaturated monomer are as follows. In addition, acrylate and methacrylate are collectively referred to as (meth) acrylate. Di (meth) acrylates such as ethylene glycol (meth) acrylate, triethylene glycol di (meth) acrylate, and thioglycol di (meth) acrylate; divinylbenzene, 2,5-divinylpyridine, and the like. From the viewpoint of obtaining a polymer having a high refractive index, it is preferable to use a polyfunctional unsaturated monomer having a homopolymer having a refractive index of 1.55 or more. Specifically, bisphenol A, bisphenol S, 2,2 ', 6,6'-tetrachlorobisphenol A, 2,2', 6,6'-tetrachlorobisphenol S, 2,2 ', 6,6' Bis-β-methallyl carbonate, diacrylate or dimethacrylate of bisphenols such as tetrabromobisphenol A or 2,2 ′, 6,6′-tetrabromobisphenol S; bishydroxyethyl tetrachlorophthalate, tetrachloroisophthalate Bis-β-methallyl carbonate such as acid bishydroxyethyl ester, tetrachloroterephthalic acid bishydroxyethyl ester, tetrabromophthalic acid bishydroxyethyl ester or tetrabromoterephthalic acid bishydroxyethyl ester;
Diacrylate or dimethacrylate; divinylbenzene, 2,5 divinylpyridine and the like.

更に重合体の比重を小さくする観点から上記の多官能
性不飽和単量体の中でビスフェノールA若しくはビスフ
ェノールSのビスβ−メタリルカーボネート、ジアクリ
レート又はジメタクリレート;ジビニルベンゼン;2,5−
ジビニルピリジン及びこれらの混合物が特に有用であ
る。
From the viewpoint of further reducing the specific gravity of the polymer, bisβ-methallyl carbonate, diacrylate or dimethacrylate of bisphenol A or bisphenol S among the above-mentioned polyfunctional unsaturated monomers; divinylbenzene; 2,5-
Divinylpyridine and mixtures thereof are particularly useful.

一方、前記の多官能性不飽和単量体と共にラジカル共
重合可能な1官能性不飽和単量体を使用してもさしつか
えない。1官能性不飽和単量体は、高屈折率の重合体を
得る観点からその単独重合体の屈折率が1.55以上の単量
体を用いるのが良好である。
On the other hand, a monofunctional unsaturated monomer capable of radical copolymerization may be used together with the polyfunctional unsaturated monomer. As the monofunctional unsaturated monomer, a monomer having a homopolymer having a refractive index of 1.55 or more is preferably used from the viewpoint of obtaining a polymer having a high refractive index.

具体的には下記のとおりである。フェニル(メタ)ア
クリレート、モノクロロフェニル(メタ)アクリレー
ト、ジクロロフェニル(メタ)アクリレート、トリクロ
ロフェニル(メタ)アクリレート、モノブロモフェニル
(メタ)アクリレート、ジブロモフェニル(メタ)アク
リレート、トリブロモフェニル(メタ)アクリレート、
ペンタブロモフェニル(メタ)アクリレート、モノクロ
ロフェノキシエチル(メタ)アクリレート、ジクロロフ
ェノキシエチル(メタ)アクリレート、トリクロロフェ
ノキシエチル(メタ)アクリレート、モノブロモフェノ
キシエチル(メタ)アクリレート、ジブロモフェノキシ
エチル(メタ)アクリレート、トリブロモフェノキシエ
チル(メタ)アクリレート、ペンタブロモフェノキシエ
チル(メタ)アクリレート、スチレン、クロロスチレ
ン、ジクロロスチレン、ブロモスチレン、ジブロモスチ
レン、ヨードスチレン、メチルスチレン、メトキシスチ
レン、2−ビニルチオフェン、ビニルナフタレン、N−
ビニルカルバゾール、ベンジル(メタ)アクリレート、
エチルビニルベンゼン等が挙げられる。
The details are as follows. Phenyl (meth) acrylate, monochlorophenyl (meth) acrylate, dichlorophenyl (meth) acrylate, trichlorophenyl (meth) acrylate, monobromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, tribromophenyl (meth) acrylate,
Pentabromophenyl (meth) acrylate, monochlorophenoxyethyl (meth) acrylate, dichlorophenoxyethyl (meth) acrylate, trichlorophenoxyethyl (meth) acrylate, monobromophenoxyethyl (meth) acrylate, dibromophenoxyethyl (meth) acrylate, tri Bromophenoxyethyl (meth) acrylate, pentabromophenoxyethyl (meth) acrylate, styrene, chlorostyrene, dichlorostyrene, bromostyrene, dibromostyrene, iodostyrene, methylstyrene, methoxystyrene, 2-vinylthiophene, vinylnaphthalene, N-
Vinyl carbazole, benzyl (meth) acrylate,
Ethyl vinylbenzene and the like can be mentioned.

更に重合体の比重を小さくする観点から上記の1官能
性不飽和単量体の中でフェニル(メタ)アクリレート、
スチレン、メチルスチレン、メトキシスチレン、ビニル
ナフタレン、ベンジル(メタ)アクリレート、エチルビ
ニルベンゼン及びこれらの混合物が特に有用である。
From the viewpoint of further reducing the specific gravity of the polymer, phenyl (meth) acrylate among the above monofunctional unsaturated monomers,
Styrene, methyl styrene, methoxy styrene, vinyl naphthalene, benzyl (meth) acrylate, ethyl vinyl benzene and mixtures thereof are particularly useful.

本発明において光学材料とりわけレンズ材料を得る
際、その単量体の組成比は前記一般式〔I〕で示される
化合物が1官能性化合物のときは全単量体中に占める割
合が30〜90重量%、特に40〜80重量%の範囲で使用する
のが好ましく、多官能性化合物のときは全単量体中に占
める割合が10〜100重量%、特に40〜100重量%の範囲で
使用するのが好ましい。
When an optical material, particularly a lens material, is obtained in the present invention, when the compound represented by the general formula [I] is a monofunctional compound, the proportion of the monomer in the monomer is 30 to 90. It is preferably used in the range of 40 to 80% by weight, and in the case of a polyfunctional compound, it is used in the range of 10 to 100% by weight, particularly 40 to 100% by weight in the total monomer. Is preferred.

一方、ラジカル共重合可能な多官能性不飽和単量体の
使用量は、前記一般式〔I〕で示される化合物が1官能
性化合物のときは、全単量体中に占める割合で10〜70重
量%、特に20〜60重量%が好ましく、多官能性化合物の
ときは全単量体中に占める割合で0〜90重量%、特に0
〜60重量%の範囲で好ましい。
On the other hand, when the compound represented by the general formula (I) is a monofunctional compound, the amount of the radically copolymerizable polyfunctional unsaturated monomer used is 10 to 10% of the total monomer. It is preferably 70% by weight, especially 20 to 60% by weight, and in the case of a polyfunctional compound, it is 0 to 90% by weight, particularly 0 to 90% by weight in the total monomers.
It is preferable in the range of 6060% by weight.

更に、ラジカル共重合可能な1官能性不飽和単量体の
使用量は、前記一般式〔I〕で示される化合物が1官能
性化合物のときは、全量体中に占める割合で0〜40重量
%、特に0〜20重量%の範囲が好ましく、多官能性化合
物のときは全単量体中に占める割合で0〜90重量%、特
に0〜60重量%の範囲が好ましい。
Furthermore, the amount of the monofunctional unsaturated monomer capable of being radically copolymerized is 0 to 40% by weight in the total monomer when the compound represented by the general formula [I] is a monofunctional compound. %, Preferably 0 to 20% by weight, and in the case of a polyfunctional compound, it is preferably 0 to 90% by weight, particularly preferably 0 to 60% by weight based on the total monomers.

前記一般式〔I〕で示される化合物の使用量が40重量
%未満になると本発明の目的である高屈折率な重合体が
得られにくい。
When the amount of the compound represented by the general formula [I] is less than 40% by weight, it is difficult to obtain a polymer having a high refractive index, which is the object of the present invention.

一方、多官能性成分の使用量が少ないと、架橋が十分
に進まないために耐衝撃性、耐熱性が低下しやすいとい
う傾向がみられる。
On the other hand, when the amount of the polyfunctional component used is small, the cross-linking does not proceed sufficiently, so that the impact resistance and the heat resistance tend to be reduced.

前記の単量体組成物を用いて高屈折率樹脂を得る重合
方法は、特に限定的でなく、公知の注型重合方法を採用
できる。重合開始手段は、種々の過酸化物やアゾ化合物
等のラジカル重合開始剤の使用、又は紫外線、α線、β
線、γ線等の照射或いは両者の併用によって行うことが
できる。代表的な重合方法を例示すると、エラストマー
ガスケットまたはスペーサーで保持されているモールド
間に、ラジカル重合開始剤を含む前記の単量体組成物を
注入し、空気炉中で硬化させた後、取出せばよい。
The polymerization method for obtaining a high refractive index resin using the above monomer composition is not particularly limited, and a known casting polymerization method can be employed. Polymerization initiation means, use of various radical polymerization initiators such as peroxides and azo compounds, or ultraviolet, α-ray, β
Irradiation with gamma rays, gamma rays or the like or a combination of both can be performed. To illustrate a typical polymerization method, between the mold held by an elastomer gasket or a spacer, the monomer composition containing a radical polymerization initiator is injected, cured in an air furnace, and then removed. Good.

ラジカル重合開始剤としては、特に限定されず、公知
のものが使用できるが、代表的なものを例示すると、ベ
ンゾイルパーオキサイド、p−クロロベンゾイルパーオ
キサイド、デカノイルパーオキサイド、ラウロイルパー
オキサイド、アセチルパーオキサイド等のジアシルパー
オキサイド;t−ブチルパーオキシ−2−エチルヘキサネ
ート、t−ブチルパーオキシネオデカネート、クミルパ
ーオキシネオデカネート、t−ブチルパーオキシベンゾ
エート等のパーオキシエステル;ジイソプロピルパーオ
キシジカーボネート、ジ−2−エチルヘキシルパーオキ
シジカーボネート、ジ−sec−ブチルパーオキシジカー
ボネート等のパーカーボネート;アゾビスイソブチロニ
トリル等のアゾ化合物である。該ラジカル重合開始剤の
使用量は、重合条件や開始剤の種類、前記の単量体組成
物の組成によって異なり、一概に限定はできないが、一
般には、単量体組成物100重量部に対して0.01〜10重量
部、好ましくは0.01〜5重量部の範囲で用いるのが好適
である。
The radical polymerization initiator is not particularly limited and known ones can be used. Typical examples thereof include benzoyl peroxide, p-chlorobenzoyl peroxide, decanoyl peroxide, lauroyl peroxide, and acetyl peroxide. Diacyl peroxide such as oxide; peroxyester such as t-butylperoxy-2-ethylhexanate, t-butylperoxyneodecanate, cumylperoxyneodecanate and t-butylperoxybenzoate; diisopropylperoxy Percarbonates such as dicarbonate, di-2-ethylhexylperoxydicarbonate and di-sec-butylperoxydicarbonate; and azo compounds such as azobisisobutyronitrile. The amount of the radical polymerization initiator used varies depending on the polymerization conditions and the type of the initiator, the composition of the monomer composition, and cannot be unconditionally limited, but generally, based on 100 parts by weight of the monomer composition. It is preferably used in the range of 0.01 to 10 parts by weight, preferably 0.01 to 5 parts by weight.

重合条件のうち、特に温度に得られる高屈折率樹脂の
性状に影響を与える。この温度条件は、開始剤の種類と
量や単量体組成物の種類によって影響を受けるので、一
概に限定できないが、一般的に比較的低温下で重合を開
始し、ゆっくりと温度をあげて行き、重合終了時に高温
下に硬化させる所謂テーパ型の2段重合を行うのが好適
である。重合時間も温度と同様に各種の要因によって異
なるので、予めこれらの条件に応じた最適の時間を決定
するのが好適であるが、一般に2〜40時間で重合が完結
するように条件を選ぶのが好ましい。
Among the polymerization conditions, it particularly affects the properties of the high refractive index resin obtained at the temperature. Since this temperature condition is affected by the type and amount of the initiator and the type of the monomer composition, it cannot be unconditionally limited, but generally, the polymerization is started at a relatively low temperature and the temperature is slowly increased. It is preferable to perform a so-called tapered two-stage polymerization in which the polymerization is performed at a high temperature when the polymerization is completed. Since the polymerization time also varies depending on various factors like the temperature, it is preferable to determine an optimum time in advance according to these conditions, but in general, the conditions are selected so that the polymerization is completed in 2 to 40 hours. Is preferred.

勿論、前記重合に際し、離型剤、紫外線吸収剤、酸化
防止剤、着色防止剤、帯電防止剤、ケイ光染料、染料、
顔料等の各種安定剤、添加剤は必要に応じて選択して使
用することが出来る。
Of course, upon the polymerization, a release agent, an ultraviolet absorber, an antioxidant, a coloring inhibitor, an antistatic agent, a fluorescent dye, a dye,
Various stabilizers and additives such as pigments can be selected and used as needed.

さらに、上記の方法で得られる高屈折率樹脂は、その
用途に応じて以下のような処理を施すことも出来る。即
ち、分散染料などの染料を用いる染色、シランカップリ
ング剤やケイ素、ジルコニア、アンチモン、アルミニウ
ム等の酸化物のゾルを主成分とするハードコート剤や、
有機高分子体を主成分とするハードコート剤によるハー
ドコーティング処理や、SiO2、TiO2、ZrO等の金属酸化
物の薄膜の蒸着や有機高分子体の薄膜の塗布等による反
射防止処理、帯電防止処理等の加工及び2次処理を施す
ことも可能である。
Further, the high-refractive-index resin obtained by the above method can be subjected to the following treatment depending on its use. That is, dyeing using a dye such as a disperse dye, a silane coupling agent or silicon, zirconia, antimony, a hard coat agent mainly containing an oxide sol such as aluminum,
Anti-reflection treatment and charging by hard coating with a hard coating agent containing an organic polymer as a main component, deposition of a thin film of metal oxide such as SiO 2 , TiO 2 , ZrO, or coating of a thin film of an organic polymer Processing such as prevention processing and secondary processing can also be performed.

〔効果〕〔effect〕

本発明のトリアジン化合物は高屈折率で比重が小さ
く、透明性、硬度、耐候性等に優れた樹脂を与える単量
体として有用である。該化合物と不飽和単量体との共重
合により得られる共重合体である高屈折率樹脂は、有機
ガラスとして有用であり、例えば、メガネレンズ、光学
機器レンズ等の光学レンズとして最適であり、プリズ
ム;光ディスク基板;光ファイバー等の用途に好適に使
用することができる。
The triazine compound of the present invention has a high refractive index and a small specific gravity, and is useful as a monomer that gives a resin excellent in transparency, hardness, weather resistance and the like. The high-refractive index resin, which is a copolymer obtained by copolymerization of the compound and the unsaturated monomer, is useful as an organic glass, for example, an eyeglass lens, and is most suitable as an optical lens such as an optical instrument lens, It can be suitably used for applications such as prisms, optical disk substrates, and optical fibers.

〔実施例〕〔Example〕

以下、本発明を具体的に説明するために、実施例を挙
げて説明するが、本発明はこれらの実施例に限定される
ものではない。
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

尚、実施例において得られたトリアジン化合物及び高
屈折率樹脂は、下記の試験法によって諸物性を測定し
た。
Various properties of the triazine compound and the high refractive index resin obtained in the examples were measured by the following test methods.

(1) 屈折率 アッベの屈折計を用いて20℃における屈折率を測定し
た。接触液には、ブロモナフタリンを使用した。
(1) Refractive index The refractive index at 20 ° C. was measured using an Abbe refractometer. Bromonaphthalene was used as the contact liquid.

尚、トリアジン化合物が常温で固体である場合、その
屈折率は液状の不飽和単量体に溶解し外挿法により求め
た。
When the triazine compound is solid at room temperature, its refractive index was determined by dissolving in a liquid unsaturated monomer and extrapolating.

(2) 硬度 ロックウェル硬度計を用い、厚さ2mmの試験片につい
てL−スケールでの値を測定した。
(2) Hardness Using a Rockwell hardness tester, the value on the L-scale was measured for a test piece having a thickness of 2 mm.

(3) 外観 目視により測定した。(3) Appearance It was measured visually.

(4) 耐候性 スガ試験機(株)製ロングライフキセノンフェードメ
ーター(FAC−25AX−HC型)中に試料を設置し、100時間
キセノン光を露光した後、試料の着色の程度を目視で観
察し、ポリスチレンに比べ着色の程度の低いものを○、
同等のものを△、高いものを×で評価した。
(4) Weather resistance The sample was placed in a long life xenon fade meter (FAC-25AX-HC type) manufactured by Suga Test Instruments Co., Ltd., and after being exposed to xenon light for 100 hours, the degree of coloring of the sample was visually observed. ○, those that are less colored than polystyrene,
The equivalent was evaluated as Δ, and the higher was evaluated as ×.

尚以下の実施例で使用した不飽和単量体は下記の記号
で表した。但し〔 〕内は単独重合体の屈折率である。
The unsaturated monomers used in the following examples are represented by the following symbols. Here, [] indicates the refractive index of the homopolymer.

St:スチレン 1.590 ClSt:クロロスチレン(o体、m体の混合物)1.610 DVB:ジビニルベンゼン 1.615 PhMA:フェニルメタクリレート 1.571 BzMA:ベンジルメタクリレート 1.568 ClBzMA:モノクロロベンジルメタクリレート(o体m体
混合物)1.582 実施例1 2,4,6−トリス(m−エテニルベンジルチオ)−トリア
ジンの製造 S−トリアジン−2,4,6−トリチオール17.7g(0.1mo
l)をN,N′−ジメチルホルムアミド150mlに溶解し、m
−クロロメチルスチレン47.3g(0.31mol)を加え水浴中
に設置した。次いで炭酸カリウム42.8g(0.31mol)を徐
々に添加した。1時間撹拌した後、該反応混合物を水30
0mlにあけた。300mlのクロロホルムで抽出した後、クロ
ロホルム層を2N−塩酸50mlで1回洗浄し、次いで、水50
mlで2回洗浄した。クロロホルム層を無水硫酸マグネシ
ウムで乾燥し、クロロホルムを減圧下で留去した後、残
渣をシリカゲルクロマトグラフィーによって精製し、無
色粘稠液体28.5gを得た。
St: Styrene 1.590 ClSt: Chlorostyrene (mixture of o-form and m-form) 1.610 DVB: divinylbenzene 1.615 PhMA: phenyl methacrylate 1.571 BzMA: benzyl methacrylate 1.568 ClBzMA: monochlorobenzyl methacrylate (mixture of o-form and m-form) 1.582 Example 12 Preparation of 4,4,6-tris (m-ethenylbenzylthio) -triazine 17.7 g of S-triazine-2,4,6-trithiol (0.1 mol
l) was dissolved in 150 ml of N, N'-dimethylformamide,
-Chloromethylstyrene (47.3 g, 0.31 mol) was added and placed in a water bath. Then, 42.8 g (0.31 mol) of potassium carbonate was gradually added. After stirring for 1 hour, the reaction mixture was
Dried to 0ml. After extraction with 300 ml of chloroform, the chloroform layer was washed once with 50 ml of 2N hydrochloric acid, and then washed with 50 ml of water.
Washed twice with ml. After the chloroform layer was dried over anhydrous magnesium sulfate and chloroform was distilled off under reduced pressure, the residue was purified by silica gel chromatography to obtain 28.5 g of a colorless viscous liquid.

このものの赤外スペクトル(島津製作所製IRスペクト
ロホトメーターIR−440使用)を測定した結果は第1図
に示すとおりであり、3150〜2800cm-1にC−H結合に基
づく吸収、1630cm-1に末端の不飽和炭化水素基に基づく
吸収を示した。
Infrared spectra (Shimadzu IR spectrometer photo meter IR-440 used) result of measurement of this compound is as shown in FIG. 1, absorption based on C-H bond in 3150~2800Cm -1, the 1630 cm -1 The absorption based on the terminal unsaturated hydrocarbon group was shown.

その元素分析値はC68.50%、H5.17%、N8.00%、S18.
33%であって組成式C10H9NSに対する計算値C68.53%、H
5.18%、N7.99%、S18.30%に良く一致した。
Its elemental analysis values were C68.50%, H5.17%, N8.00%, S18.
33% by calcd C68.53% for formula C 10 H 9 NS, H
5.18%, N7.99%, and S18.30% agreed well.

また1H−NMR(JOEL社JNM−PMX60SI NMR−スペクトロ
メーター(δ、ppm;テトラメチルシラン基準、重クロロ
ホルム溶媒)の測定結果を第2図に示した。その解析結
果を示すと次の通りである。
The measurement results of 1 H-NMR (JOEL JNM-PMX60SI NMR-spectrometer (δ, ppm; based on tetramethylsilane, deuterated chloroform solvent) are shown in Fig. 2. The analysis results are as follows. is there.

すなわち、4.2ppmにプロトン2個分に相当する一重線
が認められベンジル基のメチレン(c)によるものと帰
属できる。5.0〜5.8ppmにプロトン2個分に相当する四
重線が認められエテニル基のメチレン(a)によるもの
と帰属できる。又、6.4〜7.0ppmにプロトン1個分に相
当する四重線が認められエテニル基のメチン(b)によ
るものと帰属できる、7.0〜7.5ppmにプロトン4個分に
相当する多重線が認められフェニル基に置換したプロト
ン(d)、(e)、(f)、(g)によるものと帰属で
きる。
That is, a singlet corresponding to two protons was observed at 4.2 ppm, which can be attributed to the benzyl group due to methylene (c). A quartet corresponding to two protons is observed at 5.0 to 5.8 ppm, which can be attributed to the ethenyl group due to methylene (a). In addition, a quartet corresponding to one proton is recognized at 6.4 to 7.0 ppm, which can be attributed to that of ethenyl group methine (b). A multiplet corresponding to four protons is recognized at 7.0 to 7.5 ppm. It can be attributed to the protons (d), (e), (f) and (g) substituted on the phenyl group.

上記の結果から生成物2,4,6−トリス(m−エテニル
ベンジルチオ)−トリアジンであることが明らかになっ
た。
The above results revealed that the product was 2,4,6-tris (m-ethenylbenzylthio) -triazine.

収率はS′−トリアジン−2,4,6−トリチオールに対
して54.3%(0.0543mol)であった。
The yield was 54.3% (0.0543 mol) based on S'-triazine-2,4,6-trithiol.

更に屈折率を外挿法により求めたところ▲n20 D▼1.6
53であった。
Further, when the refractive index was determined by extrapolation method, ▲ n 20 D ▼ 1.6
53.

実施例2 2,4,6−トリス(メタクリロイルチオ)−トリアジンの
製造 S−トリアジン−2,4,6−トリチオール17.7g(0.1mo
l)をクロロホルム150ml、ピリジン26.1g(0.33mol)を
加え、氷水中に設置した。次いでメタクリル酸クロライ
ド34.5g(0.33mol)を徐々に添加した。1時間撹拌した
後、室温にもどし、更に1時間撹拌した。該反応混合物
を水200mlにあけ、クロロホルム150mlを加えた。クロロ
ホルム層を2N−水酸化ナトリウム水溶液50mlで1回洗浄
し、次いで、水50mlで2回洗浄した。クロロホルム層を
無水硫酸マグネシウムで乾燥し、クロロホルムを減圧下
で留去した後、残渣をシリカゲルクロマトグラフィーに
よって精製し、無色粘稠液体16.2gを得た。
Example 2 Production of 2,4,6-tris (methacryloylthio) -triazine 17.7 g of S-triazine-2,4,6-trithiol (0.1 mol
l) was added to 150 ml of chloroform and 26.1 g (0.33 mol) of pyridine, and placed in ice water. Then, 34.5 g (0.33 mol) of methacrylic acid chloride was gradually added. After stirring for 1 hour, the mixture was returned to room temperature and further stirred for 1 hour. The reaction mixture was poured into 200 ml of water, and 150 ml of chloroform was added. The chloroform layer was washed once with 50 ml of a 2N aqueous sodium hydroxide solution and then twice with 50 ml of water. After the chloroform layer was dried over anhydrous magnesium sulfate and chloroform was distilled off under reduced pressure, the residue was purified by silica gel chromatography to obtain 16.2 g of a colorless viscous liquid.

このものの赤外スペクトルを測定したところ、3150〜
2800cm-1にC−H結合に基づく吸収、1670cm-1に強いカ
ルボニル基に基づく吸収、1640cm-1に末端の不飽和炭化
水素基に基づく吸収が認められた。
When the infrared spectrum of this product was measured,
2800 cm -1 to based on C-H bond absorption, absorption based on strong carbonyl group 1670 cm -1, absorption based on the unsaturated hydrocarbon group of the terminal to 1640 cm -1 was observed.

その元素分析値はC47.25%、H3.97%、N11.03%、S2
5.22%であって組成式C5H5ONSに対する計算値C47.23
%、H3.96%、N11.01%、S25.22%に良く一致した。
Its elemental analysis values were C47.25%, H3.97%, N11.03%, S2
Calcd for formula C 5 H 5 ONS a 5.22% C47.23
%, H3.96%, N11.01% and S25.22%.

また1H−NMR(δ、ppm;テトラメチルシラン基準、重
クロロホルム溶媒)の測定をしたところ1.9ppmにプロト
ン3個分に相当する結合定数2H2の二重線が認められ、
メタクリロイル基のメチル基によるものと帰属できる。
When 1 H-NMR (δ, ppm; based on tetramethylsilane, deuterated chloroform solvent) was measured, a doublet having a binding constant of 2H 2 corresponding to three protons was found at 1.9 ppm,
This can be attributed to the methyl group of the methacryloyl group.

5.6〜6.1ppmにプロトン2個分に相当する2本の多重
線が認められ、メタクリロイル基のメチレンによるもの
と帰属できる。
Two multiple lines corresponding to two protons were observed at 5.6 to 6.1 ppm, which can be attributed to the methacryloyl group due to methylene.

上記の結果から生成物が2,4,6−トリス(メタクリロ
イルチオ)−トリアジンであることが明らかになった。
The above results revealed that the product was 2,4,6-tris (methacryloylthio) -triazine.

収率はS−トリアジン−2,4,6−トリチオールに対し
て42.5%(0.0425mol)であった。
The yield was 42.5% (0.0425 mol) based on S-triazine-2,4,6-trithiol.

更に屈折率を外挿法により求めたところ▲n20 D▼1.6
23であった。
Further, when the refractive index was determined by extrapolation method, ▲ n 20 D ▼ 1.6
23.

実施例3 2,4,6−トリス(p−エテニルベンジルチオ)−トリア
ジンの製造 2,4,6−トリブロモトリアジン318g(0.1mol)をN,N′
−ジメチルアセトアミド150mlに溶解し、p−メルカプ
トメチルスチレン46.5g(0.31mol)と重合禁止剤として
t−ブチルカテコール1.0gを加えた。還流させて、3時
間反応させた後、該反応混合物を水300mlにあけた。300
mlのクロロホルムで抽出した後、クロロホルム層を2N−
水酸化ナトリウム水溶液50mlで1回洗浄し、次いで水50
mlで2回洗浄した。
Example 3 Preparation of 2,4,6-tris (p-ethenylbenzylthio) -triazine 318 g (0.1 mol) of 2,4,6-tribromotriazine was added to N, N '.
In 150 ml of dimethylacetamide, 46.5 g (0.31 mol) of p-mercaptomethylstyrene and 1.0 g of t-butylcatechol as a polymerization inhibitor were added. After reacting at reflux for 3 hours, the reaction mixture was poured into 300 ml of water. 300
After extraction with ml of chloroform, the chloroform layer was extracted with 2N-
Wash once with 50 ml of aqueous sodium hydroxide solution and then add 50 ml of water.
Washed twice with ml.

クロロホルム層を無水硫酸マグネシウムで乾燥し、ク
ロロホルムを減圧下で留去した後、残渣をシリカゲルカ
ラムクロマトグラフィーによって精製し、無色固体14.3
gを得た。
After the chloroform layer was dried over anhydrous magnesium sulfate and chloroform was distilled off under reduced pressure, the residue was purified by silica gel column chromatography to give a colorless solid 14.3.
g was obtained.

このものの赤外スペクトルを測定したところ、3150〜
2900cm-1にC−H結合に基づく吸収、1640cm-1に末端の
不飽和炭化水素基に基づく吸収を示した。
When the infrared spectrum of this product was measured,
Absorption at 2900 cm -1 was due to C--H bonds, and absorption at 1640 cm -1 was due to an unsaturated hydrocarbon group at the end.

その元素分析値はC68.51%、H5.15%、N8.01%、S18.
33%であって組成式C10H9NSに対する計算値C68.53%、H
5.18%、N7.99%、S18.30%に良く一致した。
Its elemental analysis values were C68.51%, H5.15%, N8.01%, S18.
33% by calcd C68.53% for formula C 10 H 9 NS, H
5.18%, N7.99%, and S18.30% agreed well.

また1H−NMR(δ、ppm;テトラメチルシラン基準、重
クロロホルム溶媒)の測定をしたところ、4.3ppmにプロ
トン2個分に相当する一重線が認められベンジル基のメ
チレン鎖によるものと帰属できる。5.0〜5.8ppmにプロ
トン2個分に相当する四重線が認められエテニル基のメ
チレンによるものと帰属できる。又6.4〜7.0ppmにプロ
トン1個分に相当する四重線が認められエテニル基のメ
チンによるものと帰属できる、7.2ppmにプロトン4個分
に相当する一重線が認められフェニル基に置換したプロ
トンによるものと帰属できる。
When 1 H-NMR (δ, ppm; tetramethylsilane standard, deuterated chloroform solvent) was measured, a singlet corresponding to two protons was observed at 4.3 ppm, which could be attributed to that due to the methylene chain of the benzyl group. . A quartet corresponding to two protons is observed at 5.0 to 5.8 ppm, which can be attributed to the ethenyl group due to methylene. In addition, a quartet corresponding to one proton was recognized at 6.4 to 7.0 ppm, which can be attributed to the methine of the ethenyl group, and a singlet corresponding to four protons was recognized at 7.2 ppm, and the proton substituted with a phenyl group Can be attributed to

上記の結果から生成物2,4,6−トリス(p−エテニル
ベンジルチオ)−トリアジンであることが明らかになっ
た。
The above results revealed that the product was 2,4,6-tris (p-ethenylbenzylthio) -triazine.

収率は2,4,6−トリブロモトリアジンに対して27.2%
(0.0272mol)であった。
The yield is 27.2% based on 2,4,6-tribromotriazine.
(0.0272 mol).

更に屈折率を外挿法により求めたところ▲n20 D▼1.6
55であった。
Further, when the refractive index was determined by extrapolation method, ▲ n 20 D ▼ 1.6
55.

実施例4 実施例1〜3において詳細に記述したのと同様な方法
により、第1表に記載したトリアジン化合物を合成し
た。尚第1表には合成したトリアジン化合物の性状、元
素分析結果及び屈折率も併せて記した。
Example 4 The triazine compounds described in Table 1 were synthesized in the same manner as described in detail in Examples 1 to 3. Table 1 also shows the properties of the synthesized triazine compound, the results of elemental analysis, and the refractive index.

尚CH2=CH−を と略す。Note that CH 2 = CH- Abbreviated.

実施例5 実施例1で合成した2,4,6−トリス(m−エテニルベ
ンジルチオ)−トリアジン60重量部と不飽和単量体とし
てスチレン40重量部の混合物100重量部に対してラジカ
ル重合開始剤としてt−ブチルパーオキシ−2−エチル
ヘキサネート1重量部を添加しよく混合した。この混合
液をガラス板とエチレン−酢酸ビニル共重合体とから成
るガスケットで構成された鋳型の中へ注入し、注型重合
を行った。重合は、空気炉を用い、30℃から90℃で18時
間かけ、徐々に温度を上げて行き、90℃に2時間保持し
た。重合終了後、鋳型を空気炉から取出し、放冷後、重
合体を鋳型のガラスからとりはずした。
Example 5 Radical polymerization was conducted with respect to 100 parts by weight of a mixture of 60 parts by weight of 2,4,6-tris (m-ethenylbenzylthio) -triazine synthesized in Example 1 and 40 parts by weight of styrene as an unsaturated monomer. One part by weight of t-butylperoxy-2-ethylhexanate was added as an initiator and mixed well. This mixture was poured into a mold composed of a gasket composed of a glass plate and an ethylene-vinyl acetate copolymer, and cast polymerization was performed. The polymerization was carried out using an air furnace at 30 ° C. to 90 ° C. for 18 hours, gradually increasing the temperature, and maintaining the temperature at 90 ° C. for 2 hours. After the polymerization was completed, the mold was taken out of the air furnace, and after standing to cool, the polymer was removed from the glass of the mold.

得られた重合体は無色透明であり、屈折率1.640、比
重1.17、硬度114、であり、耐候性も0であった。
The obtained polymer was colorless and transparent, had a refractive index of 1.640, a specific gravity of 1.17, a hardness of 114, and had no weather resistance.

実施例6 実施例2で合成した2,4,6−トリス(メタクリロイル
チオ)−トリアジンを60重量部と不飽和単量体としてス
チレン40重量部の混合物を用いた以外実施例5と同様に
実施した。
Example 6 The same operation as in Example 5 was carried out except that a mixture of 2,4,6-tris (methacryloylthio) -triazine synthesized in Example 2 and 60 parts by weight of styrene as an unsaturated monomer was used. did.

得られた重合体は無色透明であり、屈折率1.618、比
重1.23、硬度118であり耐候性も0であった。
The obtained polymer was colorless and transparent, had a refractive index of 1.618, a specific gravity of 1.23, a hardness of 118 and a weather resistance of 0.

実施例7 実施例1で合成した2,4,6−トリス(m−エテニルベ
ンジルチオ)−トリアジン及び第2表に示す不飽和単量
体から成る混合物を用いた以外、実施例5と全く同様に
実施した。
Example 7 Except that a mixture of 2,4,6-tris (m-ethenylbenzylthio) -triazine synthesized in Example 1 and an unsaturated monomer shown in Table 2 was used, the same as Example 5 was used. The same was done.

得られた重合体の物性を測定した第2表に示した。 The physical properties of the obtained polymer are shown in Table 2 below.

実施例8 第3表に示すトリアジン化合物及び不飽和単量体から
成る混合物を用いた以外、実施例5と全く同様に実施し
た。
Example 8 Example 8 was carried out in exactly the same manner as in Example 5, except that a mixture comprising a triazine compound and an unsaturated monomer shown in Table 3 was used.

得られた重合体の物性を測定して第3表に示した。 The physical properties of the obtained polymer were measured and are shown in Table 3.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1で得られた本発明の化合物の赤外吸収
スペクトルであり、第2図は実施例1で得られた本発明
の化合物1H−核磁気共鳴スペクトルである。
FIG. 1 is an infrared absorption spectrum of the compound of the present invention obtained in Example 1, and FIG. 2 is a 1 H-nuclear magnetic resonance spectrum of the compound of the present invention obtained in Example 1.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記式〔I〕 で示されるトリアジン化合物。1. The following formula [I] A triazine compound represented by the formula: 【請求項2】一般式〔II〕 で示される化合物と 一般式〔III〕 で示される化合物とを反応させることを特徴とする特許
請求の範囲第(1)項記載のトリアジン化合物の製造方
法。
2. The general formula [II] And a compound represented by the general formula [III] The method for producing a triazine compound according to claim 1, wherein the compound is reacted with the compound represented by the formula (1).
【請求項3】一般式(IV) で示される化合物と、 一般式(V) で示される化合物とを反応させることを特徴とする特許
請求の範囲第(1)項記載のトリアジン化合物の製造方
法。
3. A compound of the general formula (IV) And a compound represented by the general formula (V) The method for producing a triazine compound according to claim 1, wherein the compound is reacted with the compound represented by the formula (1).
【請求項4】一般式(VI) で示される化合物と 一般式〔VII〕 で示される化合物とを反応させることを特徴とする特許
請求の範囲第(1)項記載のトリアジン化合物の製造方
法。
4. A compound of the general formula (VI) And a compound represented by the general formula [VII] The method for producing a triazine compound according to claim 1, wherein the compound is reacted with the compound represented by the formula (1).
JP8980189A 1989-04-11 1989-04-11 Triazine compound and method for producing the same Expired - Lifetime JP2656109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8980189A JP2656109B2 (en) 1989-04-11 1989-04-11 Triazine compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8980189A JP2656109B2 (en) 1989-04-11 1989-04-11 Triazine compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02268170A JPH02268170A (en) 1990-11-01
JP2656109B2 true JP2656109B2 (en) 1997-09-24

Family

ID=13980820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8980189A Expired - Lifetime JP2656109B2 (en) 1989-04-11 1989-04-11 Triazine compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2656109B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379760B1 (en) * 2001-02-24 2003-04-10 한국화학연구원 High refractive index triazine type monomer
EP1581595A4 (en) * 2003-01-06 2007-03-21 Fujifilm Corp Optical members and polymerizable compositions and thio compounds for producing them
JP4808416B2 (en) * 2004-09-17 2011-11-02 三菱製紙株式会社 Novel polymerizable monomer, photosensitive composition comprising the same, and lithographic printing plate
JP4941942B2 (en) * 2008-01-30 2012-05-30 日立化成工業株式会社 Sulfur-containing hyperbranched compound and unsaturated group-containing hyperbranched compound
KR102117555B1 (en) * 2018-02-09 2020-06-01 에스엠에스주식회사 High refractive index acryl monomer and photosensitive composition using the same

Also Published As

Publication number Publication date
JPH02268170A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
JP2546887B2 (en) Thiocarboxylic acid ester compound and method for producing the same
JP2656109B2 (en) Triazine compound and method for producing the same
JPH0547544B2 (en)
JP2570776B2 (en) Sulfur-containing aliphatic acrylic compound
JPS61127712A (en) Resin for lens having high refractive index
JP2505574B2 (en) Norbornane compound and method for producing the same
JP4204391B2 (en) Polymerizable adamantane compound
JP2735732B2 (en) Phosphorus-containing compounds
JPH05320181A (en) Phosphorus-containing compound
JP2609487B2 (en) Phosphite compound
JP2896261B2 (en) Vinyl compound, polymer for optical material and optical product obtained using the same
JP2001064278A (en) Sulfur-containing (meth)acrylate-based polymerizable monomer
JP2609486B2 (en) Phosphite compound
JPH0748081B2 (en) Optical material
JPH0676370B2 (en) Sulfur-containing acrylic compound
JPH0311054A (en) Thiocarboxylic acid ester compound and production thereof
JPH0539296A (en) Phosphoric acid ester compound
JP2759321B2 (en) Synthetic resin lens composition
JPH0684333B2 (en) Biphenyl compound and method for producing the same
JPH11263749A (en) (meth)acrylate derivative
JP2575233B2 (en) Phosphite compound and method for producing the same
JPH0657690B2 (en) Sulfur-containing compound and method for producing the same
JP3595615B2 (en) Sulfur-containing (meth) acrylate
JPH10204056A (en) Optical resin and composition therefor
JPH0786131B2 (en) Polymer and optical product using the same