JP2654012B2 - Electron emitting device and method of manufacturing the same - Google Patents

Electron emitting device and method of manufacturing the same

Info

Publication number
JP2654012B2
JP2654012B2 JP10884687A JP10884687A JP2654012B2 JP 2654012 B2 JP2654012 B2 JP 2654012B2 JP 10884687 A JP10884687 A JP 10884687A JP 10884687 A JP10884687 A JP 10884687A JP 2654012 B2 JP2654012 B2 JP 2654012B2
Authority
JP
Japan
Prior art keywords
electron
electrode
emitting device
protruding end
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10884687A
Other languages
Japanese (ja)
Other versions
JPS63274047A (en
Inventor
健夫 塚本
守 宮脇
哲也 金子
彰 鈴木
勇 下田
俊彦 武田
昌彦 奥貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10884687A priority Critical patent/JP2654012B2/en
Priority to US07/189,216 priority patent/US4904895A/en
Priority to EP88107251A priority patent/EP0290026B1/en
Priority to DE8888107251T priority patent/DE3878298T2/en
Publication of JPS63274047A publication Critical patent/JPS63274047A/en
Priority to US08/199,967 priority patent/US5786658A/en
Application granted granted Critical
Publication of JP2654012B2 publication Critical patent/JP2654012B2/en
Priority to US09/060,354 priority patent/US6515640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子放出素子およびその製造方法に係り、特
に突端部を有する電子放出用電極と該突端部に対向して
設けられた対向電極とを有する電子放出素子およびその
製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device and a method for manufacturing the same, and more particularly, to an electron-emitting electrode having a tip and a counter electrode provided to face the tip. And a method of manufacturing the same.

〔従来技術〕(Prior art)

電子発生源としては従来熱陰極からの熱電子放出が用
いられていた。この様な熱陰極を利用した電子放出は、
加熱によるエネルギーロスが大きい点、加熱手段の形成
が必要である点、及び予備加熱にかなりの時間を要する
点や熱により系が不安定化しやすいという点で問題があ
った。
Conventionally, thermionic emission from a hot cathode has been used as an electron source. Electron emission using such a hot cathode is
There are problems in that energy loss due to heating is large, that a heating means needs to be formed, that preheating takes a considerable amount of time, and that the system tends to be unstable due to heat.

そこで、加熱によらない電子放出素子の研究が進めら
れ、その中の一つに電界効果型(FE型)の電子放出素子
がある。
Therefore, research on electron-emitting devices that do not rely on heating has been advanced, and one of them is a field-effect (FE) electron-emitting device.

第7図は従来の電界効果型の電子放出素子の概略的構
成図である。
FIG. 7 is a schematic configuration diagram of a conventional field-effect type electron-emitting device.

同図に示すように従来の電界効果型の電子放出素子
は、基体23上に設けられた、強電界を得るために先端を
鋭く尖らせた陰極チップ20と、基体23上に絶縁層21を介
して設けられ、且つ陰極チップ20の尖頭部を中心として
略円形状の開口部が形成された引き出し電極22とから構
成され、陰極チップ20と引き出し電極22との間に引き出
し電極22を高電位とする電圧を印加し、電界強度の大き
くなる陰極チップ20の尖頭部から電子を放出させるもの
である。
As shown in the figure, the conventional field-effect type electron-emitting device has a cathode chip 20 provided on a base 23 and having a sharply sharpened tip for obtaining a strong electric field, and an insulating layer 21 on the base 23. And a lead electrode 22 having a substantially circular opening centered on the tip of the cathode chip 20. The lead electrode 22 is positioned between the cathode chip 20 and the lead electrode 22. A voltage as a potential is applied, and electrons are emitted from the pointed tip of the cathode chip 20 where the electric field intensity increases.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記従来の電界効果型の電子放出素子
は陰極チップ20の先端を鋭く尖らせることが難しく、一
般的に陰極チップ20を作製する場合には、電解研摩を行
った後にリモルディングを行っていた。この工程は多く
の手間を要し煩雑であるとともに、経験的な要素が強い
ために、機械化が難かしく、製造条件にバラツキが生じ
やすく、品質が安定しない等の問題点があった。
However, it is difficult for the above-mentioned conventional field-effect type electron-emitting device to sharply sharpen the tip of the cathode chip 20, and in general, when manufacturing the cathode chip 20, remolding is performed after electrolytic polishing. Was. This process requires a lot of trouble and is complicated, and also has problems such as difficulty in mechanization, liability to be generated in manufacturing conditions, and unstable quality due to strong empirical factors.

本発明の目的は、上記従来技術の問題に鑑み、電子放
出用の陰極の尖頭部の製造工程を簡易化し、且つ薄型化
を可能とした電界効果型の電子放出素子およびその製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a field-effect type electron-emitting device and a method for manufacturing the same, in which the manufacturing process of the pointed tip of the electron-emitting cathode is simplified and the thickness is reduced. Is to do.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の電子放出素子は、絶縁基体の同一面内に、突
端部を有する電子放出用電極と該突端部に対向した対向
電極とが間隔を有して配置されており、少なくとも、該
電子放出用電極の突端部下、該対向電極の該突端部に対
向する側の端部下、該突端部と該対向電極との間、の該
絶縁基体に凹部を有することを特徴とする。
In the electron-emitting device according to the present invention, an electron-emitting electrode having a protruding end and a counter electrode facing the protruding end are arranged at intervals in the same plane of the insulating base. The insulating base has a concave portion below the protruding end of the electrode for use, below the end of the counter electrode facing the protruding end, and between the protruding end and the counter electrode.

また、本発明の電子放出素子の製造方法は、絶縁基体
の同一面内に積層された導電層から、突端部を有する電
子放出用電極と該突端部に対向した対向電極とを間隔を
有して形成する工程と、少なくとも、該電子放出用電極
の突端部下、該対向電極の該突端部に対向する側の端部
下、該突端部と該対向電極との間、の該絶縁基体にエッ
チング処理にて凹部を形成する工程と、を有することを
特徴とする。
Further, the method for manufacturing an electron-emitting device according to the present invention is characterized in that the conductive layer laminated on the same surface of the insulating substrate has an interval between the electron-emitting electrode having the tip and the counter electrode facing the tip. And etching the insulating substrate at least below the projecting end of the electron-emitting electrode, below the end of the counter electrode facing the projecting end, and between the projecting end and the counter electrode. And forming a concave portion with the method.

〔作 用〕(Operation)

一般に電界放出に必要な電界強度は106V/cm以上であ
り、この電界が印加されると、固体中の電子がトンネル
効果により、表面のポテンシャル障壁を通り抜けて電子
が放出される。
In general, the electric field intensity required for field emission is 10 6 V / cm or more. When this electric field is applied, electrons in the solid pass through a potential barrier on the surface due to a tunnel effect and are emitted.

いま、対向する電子放出用の電極と対向電極との間に
印加する電圧をVとし、電子放出用電極の電子放出部分
の曲率半径をrとすると、曲率半径rが小さい場合、電
子放出部の電界強度Eは、 なる関係がある。
Now, assuming that the voltage applied between the opposing electrode for electron emission and the counter electrode is V, and the radius of curvature of the electron emission portion of the electron emission electrode is r, if the radius of curvature r is small, The electric field strength E is There is a relationship.

電子放出を行わせる場合、電子の収束性を良くするに
は、放出電子のエネルギー幅を小さくすることが望まし
く、また、低電圧で駆動できることが望ましい。このた
め、前記曲率半径rは極力小さくすることが望ましい。
When performing electron emission, in order to improve the convergence of electrons, it is desirable to reduce the energy width of the emitted electrons, and it is desirable to be able to drive at a low voltage. Therefore, it is desirable that the radius of curvature r be as small as possible.

さらに電子放出電圧のバラツキ等を抑えるために、電
子放出用電極と対向電極との間の距離を精度よく形成す
ることが望まれる。
Further, in order to suppress variations in the electron emission voltage, it is desired that the distance between the electron emission electrode and the counter electrode be formed with high accuracy.

本発明は、電子放出用電極と対向電極とを同一面に形
成することで、両電極の作製にFIB等の微細加工技術を
用いることを可能として、電子放出用電極の曲率半径を
極力小さく形成し、またこの電子放出用電極と対向電極
との間の距離を精度よく形成せんとするものである。
By forming the electron emission electrode and the counter electrode on the same surface, the present invention makes it possible to use a microfabrication technique such as FIB for the production of both electrodes, and to minimize the radius of curvature of the electron emission electrode. The distance between the electron emission electrode and the counter electrode is precisely formed.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を用いて詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の電子放出素子の第一実施例を示す概
略的構成図である。
FIG. 1 is a schematic structural view showing a first embodiment of the electron-emitting device of the present invention.

同図に示すように、ガラス等の絶縁基板1上に、導電
層を約500Å程度、蒸着等によって積層させ、後述するF
IB等のマスクレスエッチング技術を用いて、電子放出用
電極2及び対向電極3を形成する。
As shown in the figure, a conductive layer is laminated on an insulating substrate 1 such as glass by about 500 ° by evaporation or the like.
The electron emission electrode 2 and the counter electrode 3 are formed by using a maskless etching technique such as IB.

電子放出用電極2の突端部形状は、極力、曲率半径が
小さくなるように前記FIB等を用いて、三角形状、放物
線形状等に加工されて、くさび形の柱状体、放物線状の
側面を有する柱状体等に形成される。
The protruding end of the electron-emitting electrode 2 is processed into a triangular shape, a parabolic shape, or the like using the FIB or the like so as to minimize the radius of curvature, and has a wedge-shaped columnar body and a parabolic side surface. It is formed in a columnar body or the like.

電子放出用電極2の材質は、上記のように電子放出用
電極2の曲率半径が小さくなるように形成され、電流密
度が大きくなり、発熱量が大きくなるために、高融点材
料であることが好ましく、また印加電圧を低減させるた
めに低仕事関数材料から構成されることが好ましい。例
えば、W,Zr,Ti等の金属、TiC,ZrC,HfC等の金属炭化物、
LaB6,SmB6,GdB6等の金属ホウ化物、WSi2,TiSi2,ZrSi2,G
dSi2等の金属シリサイド等を用いることができる。
The material of the electron emission electrode 2 is formed so that the radius of curvature of the electron emission electrode 2 is reduced as described above, and the current density is increased and the calorific value is increased. Preferably, it is made of a low work function material in order to reduce the applied voltage. For example, W, Zr, metal such as Ti, TiC, ZrC, metal carbide such as HfC,
Metal borides such as LaB 6 , SmB 6 , GdB 6 , WSi 2 , TiSi 2 , ZrSi 2 , G
Metal silicide such as dSi 2 can be used.

対向電極3の形状は特に限定されるものではないが、
本実施例において示したように、直線状に電子放出用電
極2の突端部と対向するように形成すれば、作製が容易
で、電子放出用電極2から電子を効率よく放出させるこ
とができる。
Although the shape of the counter electrode 3 is not particularly limited,
As shown in this embodiment, if the electrode is formed linearly so as to face the protruding end of the electron-emitting electrode 2, the fabrication is easy and electrons can be efficiently emitted from the electron-emitting electrode 2.

このような構成の電子放出素子において、電子放出用
電極2と対向電極3との間に、電源4により対向電極3
を高電位とする電圧を印加することにより、電子放出用
電極2の突端部に強電界がかかり、電子が放出される。
この時の放出電流密度Jはファウラーノルドハイムの式
を用いて、 で与えられる。
In the electron-emitting device having such a configuration, the power supply 4 supplies the counter electrode 3 between the electron-emitting electrode 2 and the counter electrode 3.
Is applied, a strong electric field is applied to the tip of the electron-emitting electrode 2, and electrons are emitted.
The emission current density J at this time is calculated using Fowler-Nordheim equation, Given by

例えば、電子放出用電極2の突端部を30゜の双曲線刃
形の開き角とし、対向電極との距離を0.1μm,電圧を80V
とすると、得られる電界は2.0×107V/cmとなり、得られ
る放出電流密度Jは金属の仕事関数をφ=3.5とすると
J=3.7×10-2A/cm2となる。
For example, the tip of the electron emission electrode 2 has a hyperbolic blade opening angle of 30 °, a distance of 0.1 μm from the counter electrode, and a voltage of 80 V.
Then, the obtained electric field is 2.0 × 10 7 V / cm, and the obtained emission current density J is J = 3.7 × 10 −2 A / cm 2 when the work function of the metal is φ = 3.5.

電子放出用電極2の突端部から放出した電子は対向電
極3に吸収される電子もあれば、電子のエネルギーが低
いために低エネルギーが電子線回折現象によって、放出
された電子が、対向電極3の結晶格子により散乱され
て、絶縁基板1に対して垂直方向に放出される電子が存
在し、絶縁基板1に対して垂直方向に運動成分を持つ電
子を電子源として利用することができる。
Some of the electrons emitted from the protruding end of the electron emission electrode 2 are absorbed by the counter electrode 3, and the electrons emitted by the electron beam diffraction phenomenon have low energy due to the low energy of the electrons. There are electrons that are scattered by the crystal lattice and are emitted in a direction perpendicular to the insulating substrate 1, and electrons having a motion component in a direction perpendicular to the insulating substrate 1 can be used as an electron source.

なお、電子放出用電極2と対向電極3との間の電界強
度を向上させ、且つ放出された電子を絶縁基板上にチャ
ージさせることなく、効率よく電子を取り出すために
は、ドライエッチ等の技術を用いて電界が集中する部分
の絶縁基板面を深く掘ることが望ましい。以下、その製
造工程について説明する。
In order to improve the electric field strength between the electron emission electrode 2 and the counter electrode 3 and to efficiently extract electrons without charging the emitted electrons onto the insulating substrate, it is necessary to use a technique such as dry etching. It is desirable to dig deep into the insulating substrate surface at the portion where the electric field is concentrated using the method. Hereinafter, the manufacturing process will be described.

第2図(A)〜(D)は、基板に凹部を形成する製造
工程を説明するための概略的説明図である。
2 (A) to 2 (D) are schematic explanatory views for explaining a manufacturing process for forming a concave portion on a substrate.

まず、第2図(A)に示すように、Si基板5上に熱酸
化等によりSiO2層6を形成する。
First, as shown in FIG. 2A, an SiO 2 layer 6 is formed on a Si substrate 5 by thermal oxidation or the like.

次に、第2図(B)に示すように、タングステン
(W)等の導電層7を形成する。
Next, as shown in FIG. 2B, a conductive layer 7 of tungsten (W) or the like is formed.

次に、第2図(C)に示すように、FIB等の微細加工
技術を用いて突端部形状を有する電子放出用電極2と直
線形状の対向電極3を形成する。
Next, as shown in FIG. 2 (C), an electron emission electrode 2 having a protruding end portion shape and a linear counter electrode 3 are formed by using a fine processing technique such as FIB.

次に、第2図(D)に示すように、フッ硝酸系のエッ
チング液を用いたウェットエッチング,CF4等の反応ガス
を用いたプラズマエッチング等の選択エッチングによっ
てSiO2層6をエッチングする。このとき、エッチングは
電子放出用電極2と対向電極3との間の開口部分を通し
て行われ、エッチング方向は等方的に行われて凹部が形
成されるので、電子放出に寄与する電界集中部分の一部
となるSiO2層の6の部分は完全に除去される。
Next, as shown in FIG. 2 (D), the SiO 2 layer 6 is etched by selective etching such as wet etching using a hydrofluoric-nitric acid-based etchant and plasma etching using a reactive gas such as CF 4 . At this time, the etching is performed through the opening between the electron emission electrode 2 and the counter electrode 3, and the etching is performed isotropically to form a concave portion. The portion 6 of the SiO 2 layer that will become part is completely removed.

次に本発明に用いる微細加工技術について説明する。 Next, the fine processing technology used in the present invention will be described.

通常、微細加工技術としてはレジストプロセスとエッ
チングプロセスからなるリソグラフィー技術が用いられ
るが、マスクずれ等が生じるために、0.7μm以下の微
細加工は困難である。
Usually, a lithography technique including a resist process and an etching process is used as the fine processing technique. However, fine processing of 0.7 μm or less is difficult because a mask shift occurs.

本発明に用いる微細加工技術は、0.7μ以下の微細加
工が可能なものをいい、例えば前述したFIBが用いられ
る。
The microfabrication technology used in the present invention refers to a technology capable of performing microfabrication of 0.7 μm or less. For example, the above-described FIB is used.

第3図はFIB装置の一例の構成図である。FIB技術は、
サブミクロンに集束した金属イオンを走査し、固体表面
におけるスパッタリング現象を利用して、サブミクロン
オーダの微細加工を行うものである。
FIG. 3 is a configuration diagram of an example of the FIB device. FIB technology
Sub-micron focused metal ions are scanned, and fine processing on the order of sub-microns is performed by utilizing the sputtering phenomenon on the solid surface.

同図において、イオン源9は、引き出し電極により液
体金属原子を放出させ、EXB質量分離器11によって所望
のイオンビームを選別し(合金系液体金属を用いる場
合)、対物レンズ12によって80KeV程度に加速したイオ
ンビームを0.1μm程度まで集束し、偏向電極13によっ
て基体14上を走査する。なおイオンビームの位置合わせ
は、試料ステージ15によって行われる。
In the figure, an ion source 9 emits liquid metal atoms by an extraction electrode, selects a desired ion beam by an EXB mass separator 11 (when using an alloy-based liquid metal), and accelerates it to about 80 KeV by an objective lens 12. The focused ion beam is focused to about 0.1 μm, and the deflection electrode 13 scans the base 14. The alignment of the ion beam is performed by the sample stage 15.

第4図は、本発明の電子放出素子の第二実施例を示す
概略的断面図である。
FIG. 4 is a schematic sectional view showing a second embodiment of the electron-emitting device of the present invention.

同図に示すように、本実施例の電子放出素子は前記実
施例と同一の構造を持つ電子源に対して、各運動ベクト
ルを持つ電子を有効に引き出すために、引き出し電極16
を電子源上部に設けたものである。電源17によって、電
子放出用電極2と引き出し電極16との間に、引き出し電
極16側を高電位とする電圧を印加すると、電子放出用電
極2から放出された電子を効率よく、絶縁基板1に対し
て垂直方向に取り出すことができる。
As shown in the figure, the electron-emitting device of the present embodiment has a draw-out electrode 16 for effectively drawing out electrons having each motion vector from an electron source having the same structure as that of the above-described embodiment.
Is provided above the electron source. When a voltage for raising the potential of the extraction electrode 16 is applied between the electron emission electrode 2 and the extraction electrode 16 by the power supply 17, the electrons emitted from the electron emission electrode 2 are efficiently transferred to the insulating substrate 1. In contrast, it can be taken out vertically.

第5図は、本発明の電子放出素子の第三実施例を示す
概略的構成図である。
FIG. 5 is a schematic configuration diagram showing a third embodiment of the electron-emitting device of the present invention.

同図に示すように、電子放出用電極2はFIB等の微細
加工技術を用いて、複数個の突端部が形成され、各突端
部と対向電極3との間の距離は高精度に形成されるの
で、電子放出のための印加電圧のバラツキは少なく、各
突端部から放出される電子の量は略同一となる。
As shown in the figure, the electrode 2 for electron emission has a plurality of protruding portions formed by using a fine processing technique such as FIB, and the distance between each protruding portion and the opposing electrode 3 is formed with high precision. Therefore, there is little variation in the applied voltage for electron emission, and the amount of electrons emitted from each tip is substantially the same.

第6図は、本発明の電子放出素子の第四実施例を示す
概略的説明図である。
FIG. 6 is a schematic explanatory view showing a fourth embodiment of the electron-emitting device of the present invention.

同図に示すように、本実施例の電子放出素子は複数の
突端部を有する配線181〜185と、この配線181〜185とマ
トリクス状に配置され且つ該それぞれの突端部に対向し
て形成された対向電極を有する配線191〜195とによって
複数個の電子放出部Aが構成され、配線181〜185を順次
OVとし、この走査に合わせて、配線191〜195にそれぞれ
接続されるトランジスタTr1〜Tr5に所定の電圧Vを印加
すれば、所望の電子放出部から電子放出させることが可
能となる。
As shown in the figure, the electron-emitting device of the present embodiment faces the wiring 18 1-18 5 having a plurality of projecting portions, the projecting end of each wiring 18 1-18 5 and are arranged in a matrix and the a plurality of electron emission regions a by the wiring 19 1-19 5 having a counter electrode formed in a configuration, sequentially wiring 18 1-18 5
And OV, in accordance with the scanning, when applied to the transistor Tr 1 to Tr 5 are respectively connected to predetermined voltage V to the wiring 19 1-19 5, it is possible to emit electrons from a desired electron emitting portion .

〔発明の効果〕〔The invention's effect〕

以上、詳細に説明したように、本発明によれば、陰極
の曲率半径を極力小さく形成し、またこの電子放出用電
極と対向電極との間の距離を精度よく形成することがで
きるので次の効果がある。
As described above in detail, according to the present invention, the radius of curvature of the cathode can be formed as small as possible, and the distance between the electron emission electrode and the counter electrode can be formed with high accuracy. effective.

(1) 低電圧駆動が可能となり、放出される電子のエ
ネルギーのバラツキを減少することができる。
(1) Low-voltage driving is possible, and variations in the energy of emitted electrons can be reduced.

(2) FIB等の微細加工技術によって、電子放出用電
極,対向電極が、高精度に形成されるので、リモルディ
ング等の製造工程が不要であり、製造工程を簡易化する
ことができる。
(2) Since the electron emission electrode and the counter electrode are formed with high precision by the fine processing technology such as FIB, a manufacturing process such as remolding is unnecessary, and the manufacturing process can be simplified.

(3) 電子放出用電極及び対向電極が平面的に微細加
工されるので薄型化,小型化,軽量化が容易である。
(3) Since the electron emission electrode and the counter electrode are finely processed in a planar manner, it is easy to reduce the thickness, size, and weight.

また、本願発明によれば、少なくとも、電子放出用電
極の突端部下、対向電極の該突端部に対向する側の端部
下、該突端部と該対向電極との間、の絶縁基体に凹部を
形成することで、突端部から放出された電子を該絶縁基
体面へチャージアップさせることなく、効率よく電子を
取り出すことができる。
Further, according to the present invention, at least a recess is formed in the insulating base between the protruding portion and the counter electrode, below the protruding portion of the electron emission electrode, below the protruding portion of the opposing electrode, and between the protruding portion and the opposing electrode. By doing so, electrons can be efficiently extracted without charging up the electrons emitted from the protruding end portion to the insulating base surface.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電子放出素子の第一実施例を示す概略
的構成図である。 第2図(A)〜(D)は、基板に凹部を形成する製造工
程を説明するための概略的説明図である。 第3図はFIB装置の一例の構成図である。 第4図は、本発明の電子放出素子の第二実施例を示す概
略的断面図である。 第5図は、本発明の電子放出素子の第三実施例を示す概
略的構成図である。 第6図は、本発明の電子放出素子の第四実施例を示す概
略的説明図である。 第7図は従来の電界効果型の電子放出素子の概略的構成
図である。 1……絶縁基板、2……電子放出用電極、3……対向電
極、4,17……電源、8……凹部、16……引き出し電極。
FIG. 1 is a schematic structural view showing a first embodiment of the electron-emitting device of the present invention. 2 (A) to 2 (D) are schematic explanatory views for explaining a manufacturing process for forming a concave portion on a substrate. FIG. 3 is a configuration diagram of an example of the FIB device. FIG. 4 is a schematic sectional view showing a second embodiment of the electron-emitting device of the present invention. FIG. 5 is a schematic configuration diagram showing a third embodiment of the electron-emitting device of the present invention. FIG. 6 is a schematic explanatory view showing a fourth embodiment of the electron-emitting device of the present invention. FIG. 7 is a schematic configuration diagram of a conventional field-effect type electron-emitting device. DESCRIPTION OF SYMBOLS 1 ... Insulating substrate, 2 ... Electron emission electrode, 3 ... Counter electrode, 4, 17 ... Power supply, 8 ... Depression, 16 ... Extraction electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 彰 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 下田 勇 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 武田 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 奥貫 昌彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭59−105252(JP,A) 特開 昭63−274048(JP,A) 実開 昭56−167456(JP,U) 特公 昭46−20944(JP,B1) 特公 昭54−17551(JP,B2) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Suzuki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Isamu 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (72) Inventor Toshihiko Takeda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Masahiko Okunuki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. ( 56) References JP-A-59-105252 (JP, A) JP-A-63-274048 (JP, A) JP-A-56-167456 (JP, U) JP-B-46-20944 (JP, B1) JP-B 54-17551 (JP, B2)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基体の同一面内に、突端部を有する電
子放出用電極と該突端部に対向した対向電極とが間隔を
有して配置されており、 少なくとも、該電子放出用電極の突端部下、該対向電極
の該突端部に対向する側の端部下、該突端部と該対向電
極との間、の該絶縁基体に凹部を有することを特徴とす
る電子放出素子。
An electron emitting electrode having a protruding end portion and a counter electrode facing the protruding end portion are arranged on the same surface of the insulating substrate with a space therebetween. An electron-emitting device having a concave portion in the insulating base below the protruding end, below the end of the counter electrode facing the protruding end, and between the protruding end and the counter electrode.
【請求項2】少なくとも前記突端部の構成材料が高融点
低仕事関数材料からなる特許請求の範囲第1項記載の電
子放出素子。
2. The electron-emitting device according to claim 1, wherein at least a constituent material of said protruding portion is made of a material having a high melting point and a low work function.
【請求項3】前記電子放出用電極が複数の突端部を有す
る特許請求の範囲第1項記載の電子放出素子。
3. An electron-emitting device according to claim 1, wherein said electron-emitting electrode has a plurality of protruding ends.
【請求項4】前記突端部上に引き出し電極を設けた特許
請求の範囲第1項又は第3項記載の電子放出素子。
4. The electron-emitting device according to claim 1, wherein an extraction electrode is provided on the protruding end.
【請求項5】前記複数の突端部を有する配線と、それぞ
れの突端部に対向して形成された対向電極を有する配線
とをマトリクス状に配置した特許請求の範囲第3項記載
の電子放出素子。
5. The electron-emitting device according to claim 3, wherein the wiring having the plurality of protruding portions and the wiring having opposing electrodes formed to face the respective protruding portions are arranged in a matrix. .
【請求項6】絶縁基体の同一面内に積層された導電層か
ら、突端部を有する電子放出用電極と該突端部に対向し
た対向電極とを間隔を有して形成する工程と、 少なくとも、該電子放出用電極の突端部下、該対向電極
の該突端部に対向する側の端部下、該突端部と該対向電
極との間、の該絶縁基体にエッチング処理にて凹部を形
成する工程と、 を有することを特徴とする電子放出素子の製造方法。
6. A step of forming an electron emitting electrode having a protruding end and a counter electrode facing the protruding end with an interval from a conductive layer laminated on the same surface of the insulating base; Forming a concave portion by etching in the insulating substrate between the protruding end of the electron-emitting electrode, the lower end of the counter electrode facing the protruding end, and the space between the protruding end and the counter electrode; A method for manufacturing an electron-emitting device, comprising:
【請求項7】前記突端部を有する電子放出用電極と前記
突端部に対向した対向電極は、前記導電層を微細加工す
ることで形成された特許請求の範囲第6項記載の電子放
出素子の製造方法。
7. The electron-emitting device according to claim 6, wherein the electron-emitting electrode having the protruding end and the counter electrode facing the protruding end are formed by finely processing the conductive layer. Production method.
JP10884687A 1987-05-06 1987-05-06 Electron emitting device and method of manufacturing the same Expired - Lifetime JP2654012B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10884687A JP2654012B2 (en) 1987-05-06 1987-05-06 Electron emitting device and method of manufacturing the same
US07/189,216 US4904895A (en) 1987-05-06 1988-05-02 Electron emission device
EP88107251A EP0290026B1 (en) 1987-05-06 1988-05-05 Electron emission device
DE8888107251T DE3878298T2 (en) 1987-05-06 1988-05-05 DEVICE FOR EMISSION OF ELECTRONES.
US08/199,967 US5786658A (en) 1987-05-06 1994-02-22 Electron emission device with gap between electron emission electrode and substrate
US09/060,354 US6515640B2 (en) 1987-05-06 1998-04-15 Electron emission device with gap between electron emission electrode and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10884687A JP2654012B2 (en) 1987-05-06 1987-05-06 Electron emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63274047A JPS63274047A (en) 1988-11-11
JP2654012B2 true JP2654012B2 (en) 1997-09-17

Family

ID=14495067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10884687A Expired - Lifetime JP2654012B2 (en) 1987-05-06 1987-05-06 Electron emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2654012B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109663B2 (en) 2003-06-11 2006-09-19 Canon Kabushiki Kaisha Electron emission device, electron source, and image display having dipole layer
US7583016B2 (en) 2004-12-10 2009-09-01 Canon Kabushiki Kaisha Producing method for electron-emitting device and electron source, and image display apparatus utilizing producing method for electron-emitting device
US7811625B2 (en) 2002-06-13 2010-10-12 Canon Kabushiki Kaisha Method for manufacturing electron-emitting device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623738B2 (en) * 1988-08-08 1997-06-25 松下電器産業株式会社 Image display device
JP2574500B2 (en) * 1990-03-01 1997-01-22 松下電器産業株式会社 Manufacturing method of planar cold cathode
US5157309A (en) * 1990-09-13 1992-10-20 Motorola Inc. Cold-cathode field emission device employing a current source means
DE69432174T2 (en) * 1993-11-24 2003-12-11 Tdk Corp., Tokio/Tokyo COLD CATHODE ELECTRODE SOURCE ELEMENT AND METHOD FOR PRODUCING THE SAME
CA2137873C (en) * 1993-12-27 2000-01-25 Hideaki Mitsutake Electron source and electron beam apparatus
JPH09190783A (en) 1996-01-11 1997-07-22 Canon Inc Image forming device
US6140761A (en) * 1996-01-31 2000-10-31 Canon Kabushiki Kaisha Electron generation using a fluorescent element and image forming using such electron generation
CN1154148C (en) * 1996-10-07 2004-06-16 佳能株式会社 Image-forming apparatus and method of driving the same
JP3703287B2 (en) 1997-03-31 2005-10-05 キヤノン株式会社 Image forming apparatus
JP3234188B2 (en) 1997-03-31 2001-12-04 キヤノン株式会社 Image forming apparatus and manufacturing method thereof
JP3195290B2 (en) * 1997-03-31 2001-08-06 キヤノン株式会社 Image forming device
US6506087B1 (en) 1998-05-01 2003-01-14 Canon Kabushiki Kaisha Method and manufacturing an image forming apparatus having improved spacers
JP4865169B2 (en) 2000-09-19 2012-02-01 キヤノン株式会社 Manufacturing method of spacer
JP3728281B2 (en) 2001-08-28 2005-12-21 キヤノン株式会社 Electron source substrate and image forming apparatus
JP2004111143A (en) 2002-09-17 2004-04-08 Canon Inc Electron beam device and image display device using the same
EP2109132A3 (en) * 2008-04-10 2010-06-30 Canon Kabushiki Kaisha Electron beam apparatus and image display apparatus using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO145589C (en) * 1977-06-30 1982-04-21 Rosenblad Corp PROCEDURE FOR THE CONDENSATION OF STEAM IN A HEAT EXCHANGE AND A HEAT EXCHANGE FOR USE IN THE PROCEDURE
JPS56167456U (en) * 1980-05-16 1981-12-11
DE3243596C2 (en) * 1982-11-25 1985-09-26 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method and device for transferring images to a screen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811625B2 (en) 2002-06-13 2010-10-12 Canon Kabushiki Kaisha Method for manufacturing electron-emitting device
US7109663B2 (en) 2003-06-11 2006-09-19 Canon Kabushiki Kaisha Electron emission device, electron source, and image display having dipole layer
US7259520B2 (en) 2003-06-11 2007-08-21 Canon Kabushiki Kaisha Electron emission device, electron source, and image display having dipole layer
US7682213B2 (en) 2003-06-11 2010-03-23 Canon Kabushiki Kaisha Method of manufacturing an electron emitting device by terminating a surface of a carbon film with hydrogen
US7583016B2 (en) 2004-12-10 2009-09-01 Canon Kabushiki Kaisha Producing method for electron-emitting device and electron source, and image display apparatus utilizing producing method for electron-emitting device

Also Published As

Publication number Publication date
JPS63274047A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
JP2654012B2 (en) Electron emitting device and method of manufacturing the same
US6515640B2 (en) Electron emission device with gap between electron emission electrode and substrate
US7504767B2 (en) Electrode structures, display devices containing the same
US5214346A (en) Microelectronic vacuum field emission device
US20060226765A1 (en) Electronic emitters with dopant gradient
JPH0636680A (en) Electronic element using diamond film electron source
JPH0340332A (en) Electric field emitting type switching element and manufacture thereof
US6924158B2 (en) Electrode structures
US5857885A (en) Methods of forming field emission devices with self-aligned gate structure
JP2654013B2 (en) Electron emitting device and method of manufacturing the same
JPH0887956A (en) Electron emitting element, its manufacture, crt and plane display
US5607335A (en) Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
JP2601091B2 (en) Electron-emitting device
JP2627622B2 (en) Electron-emitting device
JP2645708B2 (en) Electron-emitting device
JP2835434B2 (en) Cold electron emission device
JP2790218B2 (en) Field emission type electron-emitting device
JP3127054B2 (en) Field emission type vacuum tube
JPH07114109B2 (en) Planar type cold cathode manufacturing method
JP3160547B2 (en) Method of manufacturing field emission electron source
JPH03295130A (en) Electron emission device
JPH0817332A (en) Field emission electronic device and its manufacture
JPH05182583A (en) Field emission type element and manufacture thereof
JPH0785397B2 (en) Electron-emitting device
JP3097522B2 (en) Method for manufacturing field emission element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term