JP2653967B2 - Analytical electron microscope - Google Patents

Analytical electron microscope

Info

Publication number
JP2653967B2
JP2653967B2 JP5143991A JP14399193A JP2653967B2 JP 2653967 B2 JP2653967 B2 JP 2653967B2 JP 5143991 A JP5143991 A JP 5143991A JP 14399193 A JP14399193 A JP 14399193A JP 2653967 B2 JP2653967 B2 JP 2653967B2
Authority
JP
Japan
Prior art keywords
magnetic pole
notch
ray detector
electron beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5143991A
Other languages
Japanese (ja)
Other versions
JPH076724A (en
Inventor
隆志 谷中
小林  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP5143991A priority Critical patent/JP2653967B2/en
Publication of JPH076724A publication Critical patent/JPH076724A/en
Application granted granted Critical
Publication of JP2653967B2 publication Critical patent/JP2653967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電子顕微鏡を用いて
X線分析を行い、電子レベルの構造解析及びナノメータ
レベルの元素分析を同時に可能にする分析電子顕微鏡に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical electron microscope which performs an X-ray analysis using an electron microscope to simultaneously perform an electronic level structural analysis and a nanometer level elemental analysis.

【0002】[0002]

【従来の技術】従来の分析電子顕微鏡としては、例え
ば、図3に示すようなものがある。その構成は、高速電
子線源を形成する電子銃11、その電子線12を試料面
へ縮小投影する多段集束レンズ系13、その下の対物レ
ンズ系14、対物レンズ系14を形成する上側磁極15
及び下側磁極16、それらの上側磁極片17及び下側磁
極片18、上側磁極15と下側磁極16の磁極間に配置
される試料21を含む試料室22があり、これらによっ
て鏡筒20が形成され、鏡筒20の側面から試料室22
内に進入するように、X線検出器25が配設されてい
る。なお、X線検出器25の付近を図4に拡大して示
す。
2. Description of the Related Art As a conventional analytical electron microscope, for example, there is one as shown in FIG. The configuration comprises an electron gun 11 forming a high-speed electron beam source, a multistage focusing lens system 13 for reducing and projecting the electron beam 12 onto a sample surface, an objective lens system 14 therebelow, and an upper magnetic pole 15 forming an objective lens system 14.
And a lower magnetic pole 16, an upper magnetic pole piece 17 and a lower magnetic pole piece 18, and a sample chamber 22 including a sample 21 disposed between the magnetic poles of the upper magnetic pole 15 and the lower magnetic pole 16. The sample chamber 22 is formed from the side of the lens barrel 20.
An X-ray detector 25 is provided so as to enter the inside. The vicinity of the X-ray detector 25 is shown in FIG.

【0003】そして、電子銃11で発生し、集束レンズ
系13及び対物レンズ系14を経た電子線12が試料2
1に照射され、電子線12と試料21表面との相互作用
により、試料21に電子線12が照射されたスポット2
3から、放射状にX線24が発生するが、このX線24
をX線検出器25によって検出し、それを増幅して信号
処理を行い、試料21の含有元素やその百分率を知るよ
うになっている。こゝでX線検出器25の検出部27
は、一般には12〜14mm径の保護筒の中に配置さ
れ、保護筒の先端部にはベリリウム等の耐圧力隔壁が張
られ、その先端から約2mmの所に置かれており、約3
0mm2 の表面積を持っている。
The electron beam 12 generated by the electron gun 11 and passing through the focusing lens system 13 and the objective lens system 14
1, and the spot 2 where the electron beam 12 is irradiated on the sample 21 due to the interaction between the electron beam 12 and the surface of the sample 21.
3, X-rays 24 are generated radially.
Is detected by the X-ray detector 25, amplified and subjected to signal processing to know the elements contained in the sample 21 and the percentage thereof. Here, the detection unit 27 of the X-ray detector 25
Is generally disposed in a protective cylinder having a diameter of 12 to 14 mm, a pressure-resistant partition wall such as beryllium is stretched at the tip of the protective cylinder, and is placed at a position about 2 mm from the tip.
It has a surface area of 0 mm 2 .

【0004】また、上側磁極15と下側磁極16は截頭
円錐状の上側磁極片17及び下側磁極片18を有する
が、電子顕微鏡の性能を上げるためその球面収差を小さ
くししようとすれば、この磁極片の頂角は50°以上と
しなければならない。さらに分析電子顕微鏡では、分析
点(電子線スポットが照射される点23)から発生する
X線が、検出器によって捕捉され易くするため、X線検
出器25の位置は、分析点23を含む水平面に対し、あ
る一定の角度を保持している。
Further, the upper magnetic pole 15 and the lower magnetic pole 16 have an upper magnetic pole piece 17 and a lower magnetic pole piece 18 in the form of truncated cones. To improve the performance of the electron microscope, if the spherical aberration is to be reduced. The apex angle of this pole piece must be 50 ° or more. Further, in the analytical electron microscope, the position of the X-ray detector 25 is set on the horizontal plane including the analysis point 23 so that the X-ray generated from the analysis point (the point 23 irradiated with the electron beam spot) is easily captured by the detector. Holds a certain angle.

【0005】[0005]

【発明が解決しようとする課題】ところでこのような、
従来のX線分析装置にあっては、X線検出器が保護筒の
中に配置され、その先端の検出部は、約30mm2 の表
面積しか持ち得ないことになる。また、磁極の截頭円錐
状の磁極片の頂角は、後に述べる球面収差係数をその限
界値0.4mm程度に低く抑えるためには、50°以上
としなければならないという制約がある。
SUMMARY OF THE INVENTION
In the conventional X-ray analyzer, the X-ray detector is arranged in the protective tube, and the detection section at the tip can have only a surface area of about 30 mm 2 . In addition, the apex angle of the pole piece in the shape of a truncated cone of a magnetic pole has a restriction that it must be 50 ° or more in order to keep the spherical aberration coefficient described below at a limit value of about 0.4 mm.

【0006】さらにX線検出器の位置は、試料に電子線
が照射されたスポット(分析点)を含む水平面に対し、
一定の角度を保持するようにしなければならない。即ち
この角度が小さすぎると、発散するX線の強度が弱い部
分で検出することになるし、この角度が大きすぎると上
側磁極片と抵触してしまうので、この角度は20°程度
の値を保持するようにしなければならない。このような
条件により、分析点からX線検出器の検出部までの距離
Rは、ある程度大きな値となってしまう。
Further, the position of the X-ray detector is set with respect to a horizontal plane including a spot (analysis point) where the sample is irradiated with an electron beam.
A certain angle must be maintained. That is, if this angle is too small, detection will be performed at a portion where the intensity of diverging X-rays is weak. If this angle is too large, it will conflict with the upper pole piece, so this angle should be about 20 °. Must be retained. Under such conditions, the distance R from the analysis point to the detection unit of the X-ray detector has a somewhat large value.

【0007】一方、X線分析の検出効率を示す尺度は、
検出立体角で表現され、検出立体角Ωは、X線検出器の
検出部の表面積Sを、分析点からX線検出器までの距離
Rの2乗で除した値となり、 Ω=S/R2 ステラジアン (1) で表されるが、X線検出器が有効に作動するためには、
検出立体角Ωは大きいことが望ましい。ところが従来の
分析電子顕微鏡では、 0.13ステラジアンの検出立
体角を実現しているが、この値と上記の表面積である
S=30mm2を(1)式にあてはめて計算すると、
R=15mm となる。よって、X線検出器の検出効率
を上げるためには、分析点から検出部までの距離Rを1
5mmより小さくし、立体角を大きくしなければならな
いという問題がある。
On the other hand, the scale indicating the detection efficiency of X-ray analysis is:
The detected solid angle Ω is a value obtained by dividing the surface area S of the detection unit of the X-ray detector by the square of the distance R from the analysis point to the X-ray detector. Ω = S / R It is expressed by 2 steradians (1). In order for the X-ray detector to operate effectively,
It is desirable that the detected solid angle Ω is large. However, in the conventional analytical electron microscope, a detection solid angle of 0.13 steradian is realized.
When S = 30 mm 2 is applied to equation (1) and calculated,
R = 15 mm. Therefore, in order to increase the detection efficiency of the X-ray detector, the distance R from the analysis point to the detection unit must be one.
There is a problem that the solid angle must be made smaller than 5 mm and the solid angle must be made larger.

【0008】この発明はこのような従来の課題に着目し
てなされたもので、分析電子顕微鏡における截頭円錐状
の磁極片の頂角、X線検出器の位置等の条件を上記の値
に保持しながら、分析点からX線検出器の検出部までの
距離を短かくして、検出立体角を一定の限度以上とする
ことができる分析電子顕微鏡を提供することを目的とす
る。
The present invention has been made in view of such a conventional problem, and the conditions such as the apex angle of a frustum-shaped pole piece and the position of an X-ray detector in an analytical electron microscope are set to the above values. It is an object of the present invention to provide an analytical electron microscope capable of shortening the distance from an analysis point to a detection unit of an X-ray detector while maintaining the detection solid angle to be equal to or larger than a certain limit.

【0009】また、対物レンズ系の性能パラメータ(特
に球面収差係数)を劣化させると、実際の電子線プロー
ブ径は、理想的な照射半径からずれてしまい、撮像の解
像力が低下してしまう。同時に球面収差係数が大きくな
ると、プローブ電流も減少する。例えば球面収差係数C
s1=0.4mm の場合と、Cs2=1.2mmの2
つの場合とを比較したとき、プローブ径を一定にして、
それぞれのプローブ電流をIp,Ipとすると、公
知の方法により計算又は実測した結果は、 Ip=Ip/2 となる。一方、X線の単位時間当たりの収量は、プロー
ブ電流Ipと検出立体角Ωの積に比例することから、X
線の検出効率を向上させるためには、対物レンズ系の球
面収差係数を極力小さく抑えることが重要である。
If the performance parameters (particularly, the spherical aberration coefficient) of the objective lens system are degraded, the actual diameter of the electron beam probe deviates from the ideal irradiation radius, and the resolution of imaging decreases. At the same time, when the spherical aberration coefficient increases, the probe current also decreases. For example, spherical aberration coefficient C
s1 = 0.4 mm and C s2 = 1.2 mm2
When comparing the two cases, make the probe diameter constant,
Assuming that the respective probe currents are Ip 1 and Ip 2 , the result calculated or measured by a known method is Ip 2 = Ip 1/2 . On the other hand, the yield of X-rays per unit time is proportional to the product of the probe current Ip and the detected solid angle Ω.
In order to improve the line detection efficiency, it is important to keep the spherical aberration coefficient of the objective lens system as small as possible.

【0010】この発明は、上記の従来の課題にも着目し
てなされたもので、分析電子顕微鏡の対物レンズの性能
に影響する球面収差係数を、極力小さい値に保持しなが
ら、X線の検出効率を向上させ、X線の収量を高めるこ
とができる分析電子顕微鏡を提供することをも目的とす
る。
The present invention has been made in view of the above-mentioned conventional problems, and it has been proposed to detect X-rays while keeping the spherical aberration coefficient affecting the performance of the objective lens of the analytical electron microscope as small as possible. It is another object of the present invention to provide an analytical electron microscope capable of improving the efficiency and increasing the yield of X-rays.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の課題を
解決するための手段として、その構成を、電子線12を
発生する電子源11と、該電子線12を投影する集束レ
ンズ系13と、截頭円錐面を有する上側磁極15と下側
磁極16とを持つ対物レンズ系14と、前記上側磁極1
5と下側磁極16との間に配置された試料21を含む試
料室22を有する鏡筒20と、該鏡筒20側面から試料
室22内に進入し前記試料21から発生するX線を検出
するX線検出器25とを有する分析電子顕微鏡10にお
いて、前記対物レンズ系14)の上側磁極15の磁極片
17に前記X線検出器25の検出部27が嵌入する切欠
き部30を設けると共に、前記磁極片17の前記截頭円
錐面26の前記切欠き部30以外の部分に、前記電子軸
12に対称に肉盛り部31を設けたこととした。
The present invention, as means for solving the above-mentioned problems, comprises an electron source 11 for generating an electron beam 12, and a focusing lens system 13 for projecting the electron beam 12. An objective lens system 14 having an upper magnetic pole 15 having a truncated conical surface and a lower magnetic pole 16;
A lens barrel 20 having a sample chamber 22 including a sample 21 disposed between the lower pole 5 and the lower magnetic pole 16, and detecting the X-rays that enter the sample chamber 22 from the side surface of the lens barrel 20 and are generated from the sample 21. In the analytical electron microscope 10 having the X-ray detector 25, the notch 30 into which the detection unit 27 of the X-ray detector 25 is fitted is provided in the pole piece 17 of the upper magnetic pole 15 of the objective lens system 14). In addition, in the portion of the pole piece 17 other than the cutout portion 30 of the truncated conical surface 26, a built-up portion 31 is provided symmetrically with respect to the electronic axis 12.

【0012】また、前記上側磁極15の磁極片17の前
記X線検出器25の検出部27が嵌入する切欠き部30
を設ける際に、前記切欠き部30を、電子線軸12を中
心とした対称位置に設ける。また4個の切欠き部30
を、前記磁極片17に等角度の間隔で設けることとし
た。
A notch 30 of the magnetic pole piece 17 of the upper magnetic pole 15 into which the detecting portion 27 of the X-ray detector 25 is fitted.
Is provided, the notch 30 is provided at a symmetrical position with respect to the electron beam axis 12. Also, four notches 30
Are provided on the pole pieces 17 at equal angular intervals.

【0013】[0013]

【作用】次に本発明の作用を説明する。前記上側磁極1
5の磁極片17に前記X線検出器25の検出器26が嵌
入する切欠き部30を設け、前記磁極片17の前記截頭
円錐面26の切欠き部30以外の部分に、前記電子線軸
12に対称に肉盛り部31を設けたので、前記X線検出
器25の検出部27は、その切欠き部30に嵌入して、
試料21上の分析点の近くまで接近して設置でき、X線
検出の際の立体角が大きくなってX線分析の効率が向上
し、前記切欠き部30を設けたことによる対物レンズ系
14の球面収差の増加を抑えることができ、影像の解像
度が保持され、測定の精度が向上する。
Next, the operation of the present invention will be described. The upper magnetic pole 1
5 is provided with a notch 30 into which the detector 26 of the X-ray detector 25 is fitted, and a part of the pole piece 17 other than the notch 30 on the truncated conical surface 26 is provided with the electron beam axis. Since the overlay portion 31 is provided symmetrically to 12, the detection portion 27 of the X-ray detector 25 fits into the notch portion 30,
The objective lens system 14 can be installed close to the analysis point on the sample 21, the solid angle at the time of X-ray detection is increased, the efficiency of X-ray analysis is improved, and the notch 30 is provided. Can be suppressed, the resolution of the image is maintained, and the measurement accuracy is improved.

【0014】また切欠き部30を電子線軸12を中心と
した対称位置に設け、しかも4個の切欠き部30を等角
度の間隔で設けたので、X線の収量を高め、X線分析の
効率がさらに向上する。
Further, since the notches 30 are provided at symmetrical positions about the electron beam axis 12 and the four notches 30 are provided at equal angular intervals, the yield of X-rays is increased, and the X-ray analysis is improved. Efficiency is further improved.

【0015】[0015]

【実施例】以下、この発明を図面に基づいて説明する。
本発明の電子顕微鏡10の構成図の概略は、図3に示す
従来技術と同様で、高速電子線源を形成する電子銃1
1、その電子線12を試料21の面へ縮小投影する集束
レンズ系13、次の対物レンズ系14、対物レンズ系1
4を形成する上側磁極15及び下側磁極16が設けられ
ており、上側磁極15及び下側磁極16は、截頭円錐面
26を持つ上側磁極片17及び下側磁極片18を有して
おり、上側磁極15及び下側磁極16の両磁極間に試料
21が置かれている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
The schematic diagram of the configuration of the electron microscope 10 of the present invention is similar to that of the prior art shown in FIG.
1. a converging lens system 13 for reducing and projecting the electron beam 12 onto a surface of a sample 21; a next objective lens system 14;
An upper magnetic pole 15 and a lower magnetic pole 16 are provided to form the upper and lower magnetic poles 4. The upper magnetic pole 15 and the lower magnetic pole 16 have an upper magnetic pole piece 17 and a lower magnetic pole piece 18 having a truncated conical surface 26. The sample 21 is placed between the upper magnetic pole 15 and the lower magnetic pole 16.

【0016】この両磁極の磁極間隙の大きさは 2mm
以下である。また、上側磁極15及び下側磁極16は、
磁性材料として鉄とコバルトとの合金から形成されてい
る。そして試料21は試料室22内に配置されるが、こ
れらによって鏡筒20が形成され、鏡筒20の側面から
試料室22内に進入するようにして、X線検出器25が
配設されている。
The size of the gap between the magnetic poles is 2 mm.
It is as follows. The upper magnetic pole 15 and the lower magnetic pole 16 are
The magnetic material is formed from an alloy of iron and cobalt. The sample 21 is disposed in the sample chamber 22, and the lens barrel 20 is formed by these components. The X-ray detector 25 is disposed so as to enter the sample chamber 22 from the side surface of the lens barrel 20. I have.

【0017】そして電子銃11で発生し、レンズ系を経
た電子線12が、試料21に照射されたスポット23か
ら、放射状にX線24が発生する。これをX線検出器2
5によって検出して信号処理を行い、試料21の含有元
素や、その百分率を知るようになっているものであっ
て、こゝまでは略従来技術と同様な構成を持っており、
同一部材は同一符号で示す。
Then, an electron beam 12 generated by the electron gun 11 and passing through a lens system is radiated from a spot 23 irradiated on a sample 21 to generate an X-ray 24 radially. This is called X-ray detector 2
5 to perform signal processing by detecting the elements contained in the sample 21 and the percentage thereof, and have a configuration substantially similar to that of the conventional technology up to this point.
The same members are denoted by the same reference numerals.

【0018】一方、截頭円錐状の上側磁極片17の頂角
は、球面収差CS を小さくするために50°以上としな
ければならず、さらにX線検出器25の位置は、試料2
1に電子線が照射されたスポット23(分析点)を含む
水平面に対し、20°の角度を保持するようにしなけれ
ばならないから、この条件で分析点23からX線検出器
25までの距離Rをできるだけ短くするため、図1に示
すように、対物レンズ14の上側磁極15の磁極片17
に、X線検出器25の先端の検出部27が嵌入する切欠
き部30を設ける。
On the other hand, the apex angle of the truncated conical upper pole piece 17 must be 50 ° or more in order to reduce the spherical aberration C S, and the position of the X-ray detector 25 is
1 must maintain an angle of 20 ° with respect to the horizontal plane including the spot 23 (analysis point) irradiated with the electron beam, and the distance R from the analysis point 23 to the X-ray detector 25 under this condition. As shown in FIG. 1, the pole piece 17 of the upper magnetic pole 15 of the objective lens 14 is
Is provided with a cutout portion 30 into which the detection portion 27 at the tip of the X-ray detector 25 is fitted.

【0019】上側磁極15の磁極片17に切欠き部30
が設けられると、対物レンズ系14の球面収差係数CS
が大きくなり、球面収差係数CS の増大に伴って、X線
検出器25のプローブ電流が小さくなる。これによって
X線検出器25におけるX線の単位時間当たりの収量が
小さくなるので、球面収差係数CS をできるだけ小さく
することが必要となる。
Notch 30 is formed in pole piece 17 of upper magnetic pole 15.
Is provided, the spherical aberration coefficient C S of the objective lens system 14
Increases, with an increase of the spherical aberration coefficient C S, the probe current of the X-ray detector 25 is reduced. This interrupts the yield per unit time of the X-rays in the X-ray detector 25 is reduced, it is necessary to minimize the spherical aberration coefficient C S.

【0020】そのため、上側磁極片17の截頭円錐面の
電子線軸12を中心とした対称位置に、X線検出器25
が嵌入しないダミーの切欠き部30をも設けるように
し、また対称位置に設けられる切欠き部30は、4個の
切欠き部30を90°おきに等角度の間隔で設ける。さ
らに、上側磁極片17の側面の切欠き部30以外の部分
に、電子線軸12に対称に肉盛り部31を設ける。図2
は上側磁極片17の切欠き部30と肉盛り部31の斜視
図である。
Therefore, the X-ray detector 25 is positioned symmetrically about the electron beam axis 12 on the frusto-conical surface of the upper pole piece 17.
The notches 30 are not provided, and four notches 30 are provided at symmetrical positions at regular intervals of 90 °. Further, a build-up portion 31 is provided symmetrically with respect to the electron beam axis 12 in a portion other than the cutout portion 30 on the side surface of the upper magnetic pole piece 17. FIG.
FIG. 3 is a perspective view of a cutout portion 30 and a built-up portion 31 of the upper magnetic pole piece 17.

【0021】截頭円錐状の上側磁極片17の側面に、X
線検出器25の先端の検出部27が嵌入する切欠き部3
0を設けたので、その切欠き部30に、X線検出器25
の先端の検出部27が嵌入して、X線検出器25を、試
料21上の分析点23の近くまで接近して設置でき、分
析点からX線検出器までの距離Rが小さくなり、X線検
出の際の立体角が大きくなってX線分析の効率が向上す
る。
On the side surface of the upper pole piece 17 having a truncated cone shape, X
Notch 3 into which detector 27 at the tip of line detector 25 is fitted
0, the notch 30 has an X-ray detector 25
The detection unit 27 at the tip of the X-ray detector is fitted, and the X-ray detector 25 can be installed close to the analysis point 23 on the sample 21, the distance R from the analysis point to the X-ray detector decreases, and X The solid angle at the time of line detection increases, and the efficiency of X-ray analysis improves.

【0022】なお、切欠き部30を設けることにより、
対物レンズ系14の球面収差CS が増大するので、これ
をできるだけ小さい値に保持しなければならない。そし
て対物レンズは、電子ビームを試料上に欠陥なく絞ると
いうことと、試料の結像を原子レベルの解像力で実行す
るという、両面の完全性を備えていなければならない。
しかし切欠き部30を1個だけ設けた場合には、対物レ
ンズ系の二次、三次の非点収差が大きくなったり、また
コマ収差が現れるという欠陥が生じてくる。
By providing the notch 30,
Since the spherical aberration C S of the objective lens system 14 increases, it must be kept as small as possible. And the objective lens must have the perfection of both sides: to focus the electron beam on the sample without any defect, and to execute the imaging of the sample with an atomic resolution.
However, when only one cutout portion 30 is provided, defects such as an increase in secondary and tertiary astigmatism of the objective lens system and an appearance of coma aberration occur.

【0023】そこで、切欠き部30による磁束の乱れ
が、レンズ光学軸を損なったり非点収差を増したりする
のを防ぐため、X線検出器25の先端の検出部27が嵌
入する切欠き部30の、磁極片17の電子線軸12を中
心とした対称位置に、ダミーの切欠き部30を設けるこ
とが考えられる。しかして2個の切欠き部30を対称位
置に設けた場合は二次の非点補正器を、3個の切欠き部
30を対称位置に設けた場合は三次の非点補正器を、従
来の非点補正器とは別に設けなければならない。よっ
て、4個の切欠き部30を90°の間隔で、磁極片17
の截頭円錐面26上に等間隔で設ける。
Therefore, in order to prevent the disturbance of the magnetic flux due to the notch portion 30 from damaging the optical axis of the lens and increasing astigmatism, the notch portion into which the detection portion 27 at the tip of the X-ray detector 25 fits. It is conceivable to provide a dummy notch 30 at a symmetrical position of the pole piece 17 about the electron beam axis 12 of the pole piece 17. When two notches 30 are provided at symmetrical positions, a secondary astigmatism corrector is used. When three notches 30 are provided at symmetrical positions, a tertiary astigmatism corrector is used. Must be provided separately from the astigmatism corrector. Therefore, the four notches 30 are arranged at 90 ° intervals to form the pole pieces 17.
Are provided at equal intervals on the truncated conical surface 26 of FIG.

【0024】さらに、截頭円錐状の上側磁極片17の側
面の円錐面26の切欠き部30以外の部分に、電子線軸
12に対称に肉盛り部31を設けるようにし、切欠き部
30によって発生する磁気回路のこの部分での断面積の
欠損を補うようにする。これによって、切欠き部30を
設けたことによる球面収差係数CS の増加を抑えること
ができる。
Further, in the portion other than the notch 30 of the conical surface 26 on the side surface of the upper pole piece 17 having a truncated conical shape, a built-up portion 31 is provided symmetrically with respect to the electron beam axis 12. The resulting loss of cross-sectional area in this part of the magnetic circuit is compensated for. Thereby, an increase in the spherical aberration coefficient C S due to the provision of the notch 30 can be suppressed.

【0025】また、磁極片17に切欠き部30を設けた
ことにより発生する、対物レンズ14の起磁力の損失分
を補うため、対物レンズ14の励磁電流を強めるように
する。さらに、磁極片17に切欠き部30を設けたこと
により、漏洩磁束の作用によってサブレンズができ、対
物レンズ14のC/O点が移動する。またC/O点は励
磁電流によっても移動するので、これらを勘案して試料
21の位置を上に移動させることが必要になる。しか
し、試料21の面を上にずらすに従ってプローブ径の大
きさが変化し、その結果一般的には球面収差係数が増加
するが、それを肉盛り部31を設けて相殺するように、
計算または実測による試行錯誤により求めるようにす
る。
Further, in order to compensate for the loss of the magnetomotive force of the objective lens 14 caused by providing the notch 30 in the pole piece 17, the exciting current of the objective lens 14 is increased. Furthermore, by providing the notch 30 in the pole piece 17, a sub-lens is formed by the action of the leakage magnetic flux, and the C / O point of the objective lens 14 moves. Further, since the C / O point also moves due to the exciting current, it is necessary to move the position of the sample 21 upward in consideration of these. However, as the surface of the sample 21 is shifted upward, the size of the probe diameter changes, and as a result, the spherical aberration coefficient generally increases.
Determine by trial and error by calculation or actual measurement.

【0026】上記の実施例により得られた分析電子顕微
鏡の性能向上の効果を、実験データとして示すと、電子
加速電圧が200kVとした時、本発明の構成により、
球面収差係数が0.5mmである対物レンズを実現し、
その場合の分析点からの距離R=10mmとなり、励磁
電流の増加分は5%、それに伴う試料位置上昇分は磁極
間隙長の2.5%、球面収差係数の増大分は2%とな
り、特に球面収差係数は殆ど誤差の範囲内であり、X線
の収量には何ら影響がないものが得られた。
The effect of improving the performance of the analytical electron microscope obtained by the above embodiment is shown as experimental data. When the electron accelerating voltage is 200 kV, the structure of the present invention allows
Realize an objective lens with a spherical aberration coefficient of 0.5 mm,
In this case, the distance R from the analysis point is 10 mm, the increase in the exciting current is 5%, the increase in the sample position is 2.5% of the pole gap length, and the increase in the spherical aberration coefficient is 2%. The spherical aberration coefficient was almost within the range of the error, and one having no influence on the X-ray yield was obtained.

【0027】また低い加速電圧においては、対物レンズ
の励磁電流を低く設定できるので、本構成による励磁電
流の増加分、試料位置の上昇分、球面収差係数の増加分
を少なくすることができる。例えば、加速電圧60kV
では、上記各値の増加分を何れも零にすることができ
る。
At a low accelerating voltage, the exciting current of the objective lens can be set low, so that an increase in the exciting current, an increase in the sample position, and an increase in the spherical aberration coefficient due to the present configuration can be reduced. For example, an acceleration voltage of 60 kV
Then, the increment of each of the above values can be made zero.

【0028】さらに本構成により、 検出立体角 Ω= 0.28ステラジアン 取り出し角 θ=20° を同時に達成し、図4の従来例と比較するとX線収率は
4倍になった。また従来よく知られている球面収差係数
S =1.2mm、検出立体角=0.13ステラジアン
のものと比較すると、検出効率で2.2倍、プローブ電
流で2倍となり、X線の検出収率で4.4倍となった。
Further, with this configuration, the solid angle of detection Ω = 0.28 steradian The take-out angle θ = 20 ° was simultaneously achieved, and the X-ray yield was quadrupled as compared with the conventional example of FIG. Compared with the well-known conventional spherical aberration coefficient C S = 1.2 mm and the detected solid angle = 0.13 steradians, the detection efficiency is 2.2 times, the probe current is twice, and the X-ray detection is performed. The yield was 4.4 times.

【0029】なお上記の実施例では、4個の切欠き部3
0を90°の間隔で等間隔で設けているが、2〜3個の
切欠き部を設けてもよく、この場合は非点補正器を設け
なければならないため、製造コストが増加し操作も複雑
になるが、同様の作用と効果を有する。
In the above embodiment, four notches 3
Although 0s are provided at equal intervals of 90 °, two or three notches may be provided. In this case, since a stigmator must be provided, the manufacturing cost increases and the operation is increased. Although it is complicated, it has similar functions and effects.

【0030】また上記の実施例では、加速電圧200k
Vの場合について説明したが、よく知られている電子光
学の相似則を用いることにより、200kV以上の電子
顕微鏡に本発明を適用することができる。さらに上記の
実施例では、上側磁極の磁極片に切欠き部を設けている
が、試料が電子線を透過可能な場合は、下側磁極の磁極
片にX線検出器の検出部が嵌入する切欠き部を設けるこ
とにより、X線検出器の検出部を分析点に近づけ、検出
立体角を大きくして、X線の収量を高めるようにするこ
ともできる。
In the above embodiment, the acceleration voltage is 200 k
Although the case of V has been described, the present invention can be applied to an electron microscope of 200 kV or more by using a well-known similarity rule of electron optics. Further, in the above embodiment, the notch is provided in the pole piece of the upper magnetic pole. However, when the sample can transmit an electron beam, the detection unit of the X-ray detector fits into the magnetic pole piece of the lower magnetic pole. By providing the notch, the detection unit of the X-ray detector can be brought closer to the analysis point, the solid angle detected can be increased, and the yield of X-rays can be increased.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、上側磁極の磁極片に前記X線検出器の検出部が嵌入
する切欠き部を設け、磁極片の截頭円錐面の切欠き部以
外の部分に、電子線軸に対称に肉盛り部を設けたので、
その切欠き部30にX線検出器の先端の検出部が嵌入し
て、X線検出器を試料上の分析点の近くまで近づけて設
置でき、X線検出の際の立体角が大きくなって、X線分
析の効率が向上し、さらに肉盛り部により、切欠き部を
設けたことによる対物レンズ系の球面収差の増加を抑え
ることができ、影像の解像度が保持され、測定の精度が
向上するという効果を有する。
As described above, according to the present invention, the notch of the X-ray detector is provided in the pole piece of the upper magnetic pole, and the notch of the frusto-conical surface of the pole piece is provided. In other parts than the part, since the build-up part was provided symmetrically to the electron beam axis,
The detection section at the tip of the X-ray detector is fitted into the notch 30 so that the X-ray detector can be installed close to the analysis point on the sample, and the solid angle at the time of X-ray detection increases. In addition, the efficiency of X-ray analysis is improved, and the overlaid portion can suppress the increase in spherical aberration of the objective lens system due to the provision of the notch portion, thereby maintaining the resolution of the image and improving the measurement accuracy. It has the effect of doing.

【0032】また、上側磁極の磁極片の電子線軸を中心
とした対称位置に、X線検出器の検出部が嵌入する4個
の切欠き部を等角度の間隔で設けることとしたので、X
線の収量を高め、X線の分析の効率がさらに向上し、測
定精度が向上するという効果を有する。
Also, four notches into which the detecting portions of the X-ray detector are fitted are provided at equal angle intervals at symmetrical positions about the electron beam axis of the pole piece of the upper magnetic pole.
This has the effect of increasing the yield of X-rays, further improving the efficiency of X-ray analysis, and improving measurement accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の構成を示す分析電子顕微鏡の対物レ
ンズおよびX線検出器の図で、図1(a)は平面図、図
1(b)は図1(a)のAOB断面図である。
FIG. 1 is a view of an objective lens and an X-ray detector of an analytical electron microscope showing a configuration of the present invention, wherein FIG. 1 (a) is a plan view and FIG. 1 (b) is an AOB sectional view of FIG. 1 (a). is there.

【図2】図1の対物レンズの上側磁極をやゝ下から見上
げた斜視図である。
FIG. 2 is a perspective view of the upper magnetic pole of the objective lens of FIG.

【図3】従来の分析電子顕微鏡の断面図である。FIG. 3 is a sectional view of a conventional analytical electron microscope.

【図4】従来の分析電子顕微鏡の対物レンズとX線検出
器部の断面図である。
FIG. 4 is a sectional view of an objective lens and an X-ray detector of a conventional analytical electron microscope.

【符号の説明】[Explanation of symbols]

11 電子銃 12 電子線 13 集束レンズ系 14 対物レンズ系 15 上側磁極15 16 下側磁極16 17 上側磁極片 18 下側磁極片 21 試料 22 試料室 25 X線検出器 30 切欠き部 31 肉盛り部 DESCRIPTION OF SYMBOLS 11 Electron gun 12 Electron beam 13 Focusing lens system 14 Objective lens system 15 Upper magnetic pole 15 16 Lower magnetic pole 16 17 Upper magnetic pole piece 18 Lower magnetic pole piece 21 Sample 22 Sample chamber 25 X-ray detector 30 Notch 31 Overlay

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子線(12)を発生する電子源(11)
と、該電子線(12)を投影する集束レンズ系(13)
と、截頭円錐面を有する上側磁極(15)と下側磁極
(16)とを持つ対物レンズ系(14)と、前記上側磁
極(15)と下側磁極(16)との間に配置された試料
(21)を含む試料室(22)を有する鏡筒(20)
と、該鏡筒(20)側面から試料室(22)内に進入し
前記試料(21)から発生するX線を検出するX線検出
器(25)とを有する分析電子顕微鏡(10)におい
て、 前記対物レンズ系(14)の上側磁極(15)の磁極片
(17)に前記X線検出器(25)の検出部(27)が
嵌入する切欠き部(30)を設けると共に、前記磁極片(17)の前記截頭円錐面(26)の前記切
欠き部(30)以外の部分に、前記電子線軸(12)に
対称に肉盛り部(31)を設けたこと を特徴とする分析
電子顕微鏡。
An electron source (11) for generating an electron beam (12).
And a focusing lens system (13) for projecting the electron beam (12).
An objective lens system (14) having an upper magnetic pole (15) having a truncated conical surface and a lower magnetic pole (16), and disposed between the upper magnetic pole (15) and the lower magnetic pole (16). (20) having a sample chamber (22) containing a sample (21)
And an X-ray detector (25) that enters the sample chamber (22) from the side of the lens barrel (20) and detects X-rays generated from the sample (21). the detection unit (27) notch in which is fitted a pole piece (17) in the X-ray detector (25) of the upper magnetic pole (15) of the objective lens system (14) provided with a (30), said pole pieces (17) The truncated conical surface (26)
In the portion other than the notch (30), the electron beam axis (12)
An analytical electron microscope characterized by symmetrically providing a built-up portion (31) .
【請求項2】請求項1において、前記上側磁極(15)
の前記磁極片(17)の前記電子線軸(12)を中心と
した対称位置に、前記切欠き部(30)と同一の切欠き
部(30)を設けたことを特徴とする分析電子顕微鏡。
2. The upper magnetic pole according to claim 1, wherein:
An analytical electron microscope characterized in that a notch (30) identical to the notch (30) is provided at a symmetric position of the pole piece (17) about the electron beam axis (12).
【請求項3】請求項2において、前記上側磁極(15)
前記磁極片(17)の前記電子線軸(12)を中心と
した対称位置に、4個の前記切欠き部(30)を等角度
の間隔で設けたことを特徴とする分析電子顕微鏡。
3. The upper magnetic pole according to claim 2, wherein:
Wherein the the symmetrical positions with the center electron beam axis (12), analytical electron microscope, characterized by comprising four said notch (30) at equal angular intervals of the magnetic pole piece (17).
JP5143991A 1993-06-15 1993-06-15 Analytical electron microscope Expired - Fee Related JP2653967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5143991A JP2653967B2 (en) 1993-06-15 1993-06-15 Analytical electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5143991A JP2653967B2 (en) 1993-06-15 1993-06-15 Analytical electron microscope

Publications (2)

Publication Number Publication Date
JPH076724A JPH076724A (en) 1995-01-10
JP2653967B2 true JP2653967B2 (en) 1997-09-17

Family

ID=15351771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5143991A Expired - Fee Related JP2653967B2 (en) 1993-06-15 1993-06-15 Analytical electron microscope

Country Status (1)

Country Link
JP (1) JP2653967B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082580B2 (en) * 2013-09-23 2015-07-14 Kla-Tencor Corporation Notched magnetic lens for improved sample access in an SEM

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104865A (en) * 1976-03-01 1977-09-02 Hitachi Ltd X-ray analysis apparatus in electronic microscope or like

Also Published As

Publication number Publication date
JPH076724A (en) 1995-01-10

Similar Documents

Publication Publication Date Title
US7531799B2 (en) Charged particle beam column
US6674075B2 (en) Charged particle beam apparatus and method for inspecting samples
JP4920385B2 (en) Charged particle beam apparatus, scanning electron microscope, and sample observation method
US20150228452A1 (en) Secondary electron optics and detection device
US8481935B2 (en) Scanning electron microscope
TWI613693B (en) System for imaging a signal charged particle beam, method for imaging a signal charged particle beam, and charged particle beam device
US6515287B2 (en) Sectored magnetic lens and method of use
US4933552A (en) Inspection system utilizing retarding field back scattered electron collection
JP2018509741A (en) Charged particle microscopy system and method with improved image beam stabilization and discrimination
JPS6369135A (en) Electronic detector
JP2015216086A (en) Charged particle beam device and inspection method employing the same
JPH0286036A (en) Ion micro-analyzer
JPH0337260B2 (en)
US5591971A (en) Shielding device for improving measurement accuracy and speed in scanning electron microscopy
US6891167B2 (en) Apparatus and method for applying feedback control to a magnetic lens
EP2219204B1 (en) Arrangement and method for the contrast improvement in a charged particle beam device for inspecting a specimen
WO2004097890A2 (en) Objective lens arrangement for use in a charged particle beam column
US20030218133A1 (en) Charged particle beam column and method for directing a charged particle beam
JP2588833B2 (en) Analytical electron microscope
JP2019035744A (en) Diffraction pattern detection in transmission type charged particle microscope
JP2653967B2 (en) Analytical electron microscope
KR20060056964A (en) Scanning electron microscope having multiple detectors and a method for multiple detector based imaging
JP2000228162A (en) Electron beam device
US10297418B2 (en) Method of reducing coma and chromatic aberration in a charged particle beam device, and charged particle beam device
US4961003A (en) Scanning electron beam apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees