JP2653157B2 - Forging method of heat-resistant alloy - Google Patents

Forging method of heat-resistant alloy

Info

Publication number
JP2653157B2
JP2653157B2 JP4737289A JP4737289A JP2653157B2 JP 2653157 B2 JP2653157 B2 JP 2653157B2 JP 4737289 A JP4737289 A JP 4737289A JP 4737289 A JP4737289 A JP 4737289A JP 2653157 B2 JP2653157 B2 JP 2653157B2
Authority
JP
Japan
Prior art keywords
heat
forging
insulating
burette
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4737289A
Other languages
Japanese (ja)
Other versions
JPH02224841A (en
Inventor
幸二 炭谷
武男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4737289A priority Critical patent/JP2653157B2/en
Publication of JPH02224841A publication Critical patent/JPH02224841A/en
Application granted granted Critical
Publication of JP2653157B2 publication Critical patent/JP2653157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、WASP等の耐熱合金の鍛造方法に関する。The present invention relates to a method for forging a heat-resistant alloy such as WASP.

「従来の技術」 例えば、ガスタービン等の構成部品として使用される
リングを製造する場合、最近ではWASP(ワスパロイ:商
品名)と称する耐熱合金が使用されている。
[Background Art] For example, when manufacturing a ring used as a component of a gas turbine or the like, a heat-resistant alloy called WASP (Waspalloy: trade name) has recently been used.

このWASPは、Ni−Cr−Al−Ti系の合金であり、耐熱性
能に優れる反面、約980℃以下の温度では硬質で、しか
も結晶析出により割れやすい特徴を有する。
This WASP is a Ni-Cr-Al-Ti alloy and is excellent in heat resistance, but is hard at a temperature of about 980 ° C or less and easily cracks due to crystal precipitation.

そこで従来、このWASPで前述のリングを製造する際に
は、鍛造により得られた円柱形のビュレットを再加熱に
より赤熱し、速やかに鍛造プレス装置にセットし、短時
間のうちに高圧で鍛造して円板状にする。そしてさらに
リングミルを用いて、この円板体をリング状に形成する
方法が採られていた。
Therefore, conventionally, when manufacturing the above-mentioned ring with this WASP, the cylindrical burette obtained by forging is heated red by reheating, quickly set in a forging press device, and forged at high pressure in a short time. To make a disk. Further, a method of forming the disk into a ring shape using a ring mill has been adopted.

「発明が解決しようとする課題」 しかしながら、上記従来の鍛造方法では、赤熱状態の
ビュレットを速やかにプレス装置にセットしても、その
直後からプレス装置への当接面が冷却し始めることが避
けられない。このため、温度が低い接触面近傍で相対的
に硬質になり、鍛造後のビュレットは完全な円板形でな
く鼓状に変形し、組織が不均質になるだけでなく、当接
面近傍に980℃以下の部分が生じた場合には、この低温
部分が割れてしまうこともあった。さらに、比較的硬質
の状態でビュレットを鍛造しなければならないから、プ
レス装置には大きな駆動力が要求され、装置が大掛かり
になり製造コストが高くつくばかりか、プレスのビュレ
ット当接面が加熱されて劣化し、装置寿命が短くなる問
題もあった。
[Problems to be Solved by the Invention] However, in the above-described conventional forging method, even if the burette in the red hot state is quickly set in the press device, the contact surface to the press device is prevented from cooling immediately after that. I can't. For this reason, it becomes relatively hard near the contact surface where the temperature is low, and the burette after forging deforms like a drum instead of a perfect disk, and not only the structure becomes non-homogeneous, but also near the contact surface. When a portion having a temperature of 980 ° C. or lower occurs, the low-temperature portion may be broken. Furthermore, since the burette must be forged in a relatively hard state, a large driving force is required for the press device, which increases the size of the device and increases the manufacturing cost, and also heats the buret contact surface of the press. And the life of the device is shortened.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、
加熱した耐熱合金材の表面に液状のセラミックス系断熱
溶剤を塗布し、さらに鍛造プレス装置との当接面にセラ
ミックス系断熱繊維シートを固定した後、鍛造を行なう
ことを特徴とする。
"Means for solving the problem" The present invention has been made to solve the above problems,
A liquid ceramic-based heat-insulating solvent is applied to the surface of the heated heat-resistant alloy material, and the ceramic-based heat-insulating fiber sheet is fixed to a contact surface with a forging press device, and then forging is performed.

以下、本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically.

この方法ではまず、鍛造で成形された直後の赤熱状態
にあるWASP等の耐熱合金製ビュレットに、セラムガード
(商品名)等のセラミックス系断熱溶剤をハケやスプレ
ーガン等の手段を用いて全面に略均一厚に塗布する。こ
のセラミックス系断熱溶剤は、セラミックス微粉末を水
等の液体でスラリー状に溶いたもので、塗布層の厚みは
0.1〜0.5mm程度となることが望ましい。0.1mm以下では
十分な断熱効果が得られず、0.5mmより厚く塗っても断
熱効果は増大しない。
In this method, first, a ceramic heat-insulating solvent such as Serum Guard (trade name) is applied to the entire surface of a buret made of a heat-resistant alloy such as WASP in the red hot state immediately after being formed by forging using a brush or a spray gun. Apply to a substantially uniform thickness. This ceramic-based heat-insulating solvent is obtained by dissolving ceramic fine powder in a slurry form with a liquid such as water.
Desirably, it is about 0.1 to 0.5 mm. If the thickness is less than 0.1 mm, a sufficient heat insulating effect cannot be obtained, and the heat insulating effect does not increase even if applied thicker than 0.5 mm.

なお、塗布前のビュレットの温度は、例えばWASPの場
合、900〜1100℃であることが望ましい。900℃未満では
鍛造時に割れが生じるおそれがあり、1100℃より高温で
はセラミックスが融解して流れ出すおそれがある。
The temperature of the buret before application is preferably 900 to 1100 ° C. in the case of WASP, for example. If the temperature is lower than 900 ° C., cracks may occur during forging, and if the temperature is higher than 1100 ° C., the ceramics may melt and flow.

次に、鍛造プレス装置の下プレス上面にカオウール
(商品名)等のセラミックス系断熱繊維シートを敷き、
断熱溶剤の塗布が完了したビュレットを、速やかにこの
断熱繊維シート上に載せる。さらにビュレットの上面に
も同様のセラミックス系断熱繊維シートを載せ、速やか
に鍛造を行なう。なお、可能であれば、ビュレットの全
面に前記断熱繊維シートを巻き付けてもよい。こうすれ
ば一層断熱効果を高めることができる。
Next, a ceramic insulating fiber sheet such as kao wool (trade name) is laid on the lower press upper surface of the forging press device,
The buret on which the application of the heat-insulating solvent has been completed is quickly placed on the heat-insulating fiber sheet. Further, a similar ceramics heat insulating fiber sheet is placed on the upper surface of the burette, and forging is rapidly performed. If possible, the heat insulating fiber sheet may be wound around the entire surface of the burette. This can further enhance the heat insulating effect.

前記セラミックス系断熱繊維シートは前記温度でも溶
解しないもので、前述のカオウールの他にもアスベスト
等が使用可能である。またシートの厚みは、例えばカオ
ウールの場合、圧力をかけない自然状態で10〜20mm程度
であることが望ましい。この範囲より薄いと断熱効果が
不十分で従来の問題が解決できず、これより厚いとシー
トの厚みにより鍛造精度が低下するおそれがある。
The ceramic insulating fiber sheet does not dissolve even at the above-mentioned temperature, and asbestos or the like can be used in addition to the above-mentioned kao wool. Further, in the case of kao wool, for example, the thickness of the sheet is desirably about 10 to 20 mm in a natural state where no pressure is applied. If the thickness is smaller than this range, the heat insulating effect is insufficient and the conventional problem cannot be solved. If the thickness is larger than this range, the forging accuracy may decrease due to the thickness of the sheet.

なお、本発明の鍛造方法は、WASPのみならず、同様の
問題を有していたU−710等の耐熱合金にも適用可能で
ある。
The forging method of the present invention is applicable not only to WASP but also to heat-resistant alloys such as U-710, which have similar problems.

「作 用」 上記の方法では、ビュレットとプレスの間に敷いたセ
ラミックス系断熱繊維シートが、プレス圧力がかかった
際にもビュレットの当接部位から逃げず、圧縮されても
ある程度の厚みを繊維し、高い断熱効果が得られるた
め、高温のビュレットからプレスへの伝熱を防ぎ、ビュ
レットの局部的冷却および硬化を防止できる。したがっ
て、比較的小さいプレス圧力で効率良く鍛造が行なえる
うえ、得られる鍛造品の組織が均質になり、温度低下に
よる割れや形状不良も生じず、さらに伝熱によるプレス
劣化のおそれもない。
[Operation] In the above method, the ceramic insulating fiber sheet laid between the burette and the press does not escape from the abutment portion of the buret even when press pressure is applied, and the fiber has a certain thickness even when compressed. However, since a high heat insulating effect is obtained, it is possible to prevent heat transfer from the high temperature burette to the press, and to prevent local cooling and hardening of the burette. Therefore, forging can be efficiently performed with a relatively small pressing pressure, and the structure of the obtained forged product is uniform, cracks and shape defects due to a decrease in temperature do not occur, and there is no fear of press deterioration due to heat transfer.

一方、セラミックス系断熱溶剤は、それ自体断熱効果
を発揮することはもちろん、ビュレットと断熱繊維との
間に断熱層を形成して、断熱繊維が高温のビュレットに
直接溶着することを防ぎ、さらに固化後は耐熱合金との
熱膨張係数差により鍛造品との接触界面で応用歪を生
じ、断熱繊維を供なって鍛造品から容易に剥離するた
め、除去が極めて簡単である。
On the other hand, the ceramic-based heat-insulating solvent not only exerts its own heat-insulating effect, but also forms a heat-insulating layer between the burette and the heat-insulating fiber, preventing the heat-insulating fiber from directly welding to the high-temperature buret, and further solidifying. After that, applied strain is generated at the contact interface with the forged product due to the difference in thermal expansion coefficient from the heat-resistant alloy, and the insulating fiber is easily peeled off from the forged product by providing heat insulating fibers, so that the removal is extremely simple.

ちなみに、もしもセラミックス系断熱溶剤を使わず
に、セラミックス系断熱繊維シートを赤熱したビュレッ
トに被せれば、1000℃以上の高温とプレス圧力のため断
熱繊維シートはビュレットに溶着し、固化後は容易に剥
がすことができない。また、ビュレットにセラミックス
系断熱溶剤を塗布しただけで断熱繊維を用いないとすれ
ば、鍛造時に断熱溶剤がビュレット表面から逃げてプレ
スとビュレットが直接接触し、伝熱により従来の問題が
解決できないだけでなく、プレス装置が断熱溶剤で汚れ
る等の不都合も生じる。
By the way, if the ceramic insulating fiber sheet is put on the glowing burette without using the ceramic insulating solvent, the insulating fiber sheet is welded to the burette due to the high temperature of 1000 ° C or higher and the pressing pressure, and it is easy to solidify after the solidification. Cannot be peeled. Also, if the burette is simply coated with a ceramic-based heat-insulating solvent and no heat-insulating fibers are used, the heat-insulating solvent escapes from the burette surface during forging, and the press and buret come into direct contact. In addition, inconveniences such as contamination of the press device with the heat insulating solvent also occur.

「実施例」 次に、実施例を挙げて本発明の効果を実証する。WASP
を原料として36cmφ×120cmの円柱状ビュレットを鋳造
した。そして、赤熱状態にあるうちに、このビュレット
にセラムガードをハケで約0.3mmの厚さに塗布したう
え、上下全面に厚さ10mm(自然状態)のカオウールをは
さみ、プレス装置で鍛造した。得た鍛造品は48cmφ×60
cmの円柱状である。
"Examples" Next, the effects of the present invention will be demonstrated with examples. WASP
Was used as a raw material to cast a cylindrical burette of 36 cmφ × 120 cm. Then, while in the glowing state, the buret was applied with a brush with a brush to a thickness of about 0.3 mm, and the entire upper and lower surfaces were sandwiched with kao wool having a thickness of 10 mm (natural state) and forged with a press device. The obtained forged product is 48cmφ × 60
It is a column of cm.

その結果、鍛造に要したプレス圧力は200kg/cm2であ
った。自然冷却後、鍛造品からセラムガードおよびカオ
ウールの剥離を試みたところ、カオウールはセラムガー
ドで板状に固化して容易に剥がれた。また外周面に着い
たセラムガードも、耐熱合金との熱膨張率の差により容
易に剥離できた。鍛造品はほぼ完全な円柱形をなし、割
れや鼓状の変形は生じておらず、組織も均質だった。
As a result, the press pressure required for forging was 200 kg / cm 2 . After natural cooling, an attempt was made to peel off the serum guard and kao wool from the forged product, and the chao wool solidified into a plate shape with the serum guard and peeled off easily. Further, the serum guard attached to the outer peripheral surface could be easily peeled off due to the difference in coefficient of thermal expansion from the heat-resistant alloy. The forged product had an almost perfect cylindrical shape, no cracks or drum-like deformations, and had a homogeneous structure.

一方、比較例1として、前記同様に赤熱したビュレッ
トを、プレス装置に直接セットして鍛造を行なった。そ
の結果、前記と同寸の鍛造品を得るのに1020kg/cm2のプ
レス圧力を要し、鍛造品は鼓状になってしかも下面には
放射状に割れが生じた。
On the other hand, as Comparative Example 1, a burette that was glowed in the same manner as described above was directly set in a press device and forged. As a result, a pressing pressure of 1020 kg / cm 2 was required to obtain a forged product of the same size as above, and the forged product had a drum-like shape and cracks occurred radially on the lower surface.

また、比較例2として、赤熱したビュレットの上下全
面に前記と同じカオウールをはさみ、鍛造プレスを行な
った結果、200kg/cm2のプレス圧力を要した。鍛造品は
ほぼ完全な円柱形であったが、上下面にカオウールが溶
着してしまい、除去に手間がかかり、実用的でなかっ
た。
Further, as Comparative Example 2, the same chao wool as above was sandwiched over the entire upper and lower surfaces of the red-hot burette, and as a result of forging press, a pressing pressure of 200 kg / cm 2 was required. Although the forged product had a substantially perfect cylindrical shape, kao wool was welded to the upper and lower surfaces, and removal was troublesome, and was not practical.

また、比較例3として、赤熱したビュレットの全面に
セラムガードを前記実施例と同じ厚みに吹き付け、その
まま鍛造プレスを行なった。その結果、ビュレットの上
下面に吹き付けたセラムガードは当接面から流れでてし
まい、ビュレットの上下面が冷却されて鍛造品は鼓状と
なった。またプレス装置にセラムガードが付着、固化し
て除去に手間がかかった。
Further, as Comparative Example 3, a serum guard was sprayed on the entire surface of the red-heated burette to the same thickness as in the above example, and the forging press was performed as it was. As a result, the serum guard sprayed on the upper and lower surfaces of the burette flowed from the contact surface, and the upper and lower surfaces of the buret were cooled, and the forged product became drum-shaped. In addition, the serum guard adhered to the press device, solidified, and took time to remove.

「発明の効果」 以上説明したように、本発明に係わる耐熱合金の鍛造
方法によれば、ビュレットとプレスの間に敷いたセラミ
ックス系断熱繊維シートが、圧縮されてもある程度の厚
みを維持し、高い断熱効果を発揮するため、高温のビュ
レットからプレスへの伝熱を著しく低下させ、ビュレッ
トの局部的冷却および硬化を防止できる。したがって、
比較的小さいプレス圧力で効率良く鍛造が行なうことが
でき、駆動力に要するコストを削減できるうえ、得られ
る鍛造品の組織が均質になり、温度低下による割れや形
状不良も生じない。さらに伝熱によるプレスの劣化も防
げる。
As described above, according to the heat-resistant alloy forging method according to the present invention, the ceramic insulating fiber sheet laid between the burette and the press maintains a certain thickness even when compressed, Due to the high heat insulating effect, the heat transfer from the hot burette to the press is significantly reduced, and local cooling and hardening of the burette can be prevented. Therefore,
Forging can be performed efficiently with a relatively small press pressure, the cost required for the driving force can be reduced, and the structure of the obtained forged product is uniform, and cracks and shape defects due to a decrease in temperature do not occur. Further, deterioration of the press due to heat transfer can be prevented.

一方、断熱溶剤は、それ自体断熱効果を発揮すること
はもちろん、ビュレットと断熱繊維との間に断熱層を形
成して、断熱繊維が高温のビュレットに直接溶着するこ
とを防ぎ、さらに固化後は耐熱合金との熱膨張係数差に
より鍛造品との接触界面で応力歪を生じる。したがっ
て、この方法では、断熱溶剤および断熱繊維のいずれを
も鍛造品から容易に剥離することができ、鍛造後の後処
理が極めて簡単に済むという優れた効果も得られる。
On the other hand, the heat-insulating solvent not only exerts the heat-insulating effect itself, but also forms a heat-insulating layer between the burette and the heat-insulating fiber, thereby preventing the heat-insulating fiber from directly welding to the high-temperature buret, and after solidification. Due to the difference in the coefficient of thermal expansion from the heat-resistant alloy, stress strain occurs at the contact interface with the forging. Therefore, according to this method, both the heat-insulating solvent and the heat-insulating fiber can be easily peeled off from the forged product, and an excellent effect that post-processing after forging can be extremely easily performed can be obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱した耐熱合金製ビュレットの表面に液
状のセラミックス系断熱溶剤を塗布したうえ、少なくと
も鍛造プレス装置との当接面をセラミックス系断熱繊維
シートで被覆し、前記鍛造プレス装置で鍛造を行なうこ
とを特徴とする耐熱合金の鍛造方法。
A liquid ceramic-based heat-insulating solvent is applied to the surface of a heated heat-resistant alloy buret, and at least a surface in contact with a forging press is covered with a ceramic-based heat-insulating fiber sheet. Forging a heat-resistant alloy.
JP4737289A 1989-02-28 1989-02-28 Forging method of heat-resistant alloy Expired - Lifetime JP2653157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4737289A JP2653157B2 (en) 1989-02-28 1989-02-28 Forging method of heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4737289A JP2653157B2 (en) 1989-02-28 1989-02-28 Forging method of heat-resistant alloy

Publications (2)

Publication Number Publication Date
JPH02224841A JPH02224841A (en) 1990-09-06
JP2653157B2 true JP2653157B2 (en) 1997-09-10

Family

ID=12773274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4737289A Expired - Lifetime JP2653157B2 (en) 1989-02-28 1989-02-28 Forging method of heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP2653157B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263580B2 (en) * 2008-05-08 2013-08-14 三菱マテリアル株式会社 Ring disc for gas turbine
AT508322B1 (en) * 2009-06-05 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR THE HOT FORMING OF A WORKPIECE
JP7023090B2 (en) * 2016-11-30 2022-02-21 日立金属株式会社 Manufacturing method of hot forging material
JP6857309B2 (en) * 2017-03-24 2021-04-14 日立金属株式会社 Forging material manufacturing method
WO2023037667A1 (en) * 2021-09-10 2023-03-16 株式会社プロテリアル Method for producing hot-forged member

Also Published As

Publication number Publication date
JPH02224841A (en) 1990-09-06

Similar Documents

Publication Publication Date Title
JP2653157B2 (en) Forging method of heat-resistant alloy
JPS5835954B2 (en) Method for bonding metal-ceramic multilayer abradable composites to metallic substrates
CN109735757A (en) A kind of sintered hard alloy boat contact material
JP2004074202A (en) Surface-coated casting process
JPH11309589A (en) Manufacture of two-layer titanium clad steel plate by casting method
JPS6138773A (en) Refractory material reinforced by hoop
JPH10281663A (en) Repairing method for lining refractory of molten metal vessel
JPH01271021A (en) Method for forging super heat-resistant alloy
JPH0436062B2 (en)
JPS58100935A (en) Warmth keeping method for heated metal
JP2000117412A (en) Production of two-layer titanium cast clad steel plate having stripping property
JPS6055211B2 (en) Horizontal continuous casting method
JPH02255263A (en) Method for including ceramic as internal chill
JPS59179253A (en) Production of gypsum mold
JP3297320B2 (en) Overlay method
JPH0327720Y2 (en)
JPH0325505B2 (en)
JPS61159262A (en) Sliding gate plate for controlling flow rate of molten metal
JPS61201719A (en) Construction of skid button for heating furnace
JPS58157572A (en) Method for reinforcing refractory
JP2952668B1 (en) Method for producing double-layer titanium cast clad steel sheet with prevention of melting of titanium
JPH0514151U (en) Skid button for heating furnace
JPH0514148U (en) Skid button for heating furnace
JPH0216183B2 (en)
JPS61135453A (en) Break ring for continuous casting