JP2649068B2 - Metathesis catalyst for olefins and method of using the same - Google Patents

Metathesis catalyst for olefins and method of using the same

Info

Publication number
JP2649068B2
JP2649068B2 JP63203265A JP20326588A JP2649068B2 JP 2649068 B2 JP2649068 B2 JP 2649068B2 JP 63203265 A JP63203265 A JP 63203265A JP 20326588 A JP20326588 A JP 20326588A JP 2649068 B2 JP2649068 B2 JP 2649068B2
Authority
JP
Japan
Prior art keywords
metathesis
metathesis catalyst
olefin
olefins
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63203265A
Other languages
Japanese (ja)
Other versions
JPH0252044A (en
Inventor
速夫 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP63203265A priority Critical patent/JP2649068B2/en
Publication of JPH0252044A publication Critical patent/JPH0252044A/en
Application granted granted Critical
Publication of JP2649068B2 publication Critical patent/JP2649068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、高活性なメタセシス触媒及びその使用方法
に関する。
The present invention relates to a highly active metathesis catalyst and a method for using the same.

<従来の技術> メタセシス反応とは一般的に複分解反応と同一であ
り、例えばオレフィンのメタセシスは、下記反応式
(I)及び(II)によって示すことができる。
<Prior Art> The metathesis reaction is generally the same as the metathesis reaction. For example, metathesis of an olefin can be represented by the following reaction formulas (I) and (II).

2R1R2C=CR3R4R1R2C=CR1R2+R3R4C=CR3RR4‥(I) aAB+bCDcAA+dBB+eCC+fDD+gAD+hAC+iBC+jBD‥
(II) (式中RRC=,A,B,C及びDはアルキリデン基を示す。) メタセシスは、1964年バンクス(Banks)とバイレイ
(Bailey)によって、オレフィンの不均化反応という名
称で報告されて以来、実用プロセスとして種々工業化さ
れている。従来メタセシスに用いる触媒については、不
均一系を含めて開発されており、例えばタングステン、
モリブデン、レニウムの化合物、具体的にはWCl6/LiBu,
MoCl2(NO)2py/Al2(CH33Cl3(pyはピリジンを示
す。)、WCl6/SnBu4,Re2O7ReO3等が開発され、特別な場
合を除き、前記タングステン、モリブテン、レニウムの
化合物に限定されているのが実状であり、希土類金属−
XCl4(Xはチタン,ジルコニウム,ハフニウムを示
す。)系触媒については、全く知られていない。
2R 1 R 2 C = CR 3 R 4 R 1 R 2 C = CR 1 R 2 + R 3 R 4 C = CR 3R R 4 {(I) aAB + bCDcAA + dBB + eCC + fDD + gAD + hAC + iBC + jBD}
(II) (wherein RRC =, A, B, C and D represent alkylidene groups.) Metathesis was reported by Banks and Bailey in 1964 under the name olefin disproportionation reaction. Since then, various industrial processes have been industrialized. Conventionally, catalysts used for metathesis have been developed including heterogeneous systems, such as tungsten,
Compounds of molybdenum and rhenium, specifically WCl 6 / LiBu,
MoCl 2 (NO) 2 py / Al 2 (CH 3 ) 3 Cl 3 (py indicates pyridine), WCl 6 / SnBu 4 , Re 2 O 7 ReO 3 and the like have been developed. In fact, it is limited to compounds of tungsten, molybdenum and rhenium, and rare earth metals
XCl 4 (X represents titanium, zirconium and hafnium) catalysts are not known at all.

<発明が解決しようとする課題> 本発明の目的は、メタセシス反応全てに対し、高活性
及び高選択率を示すオレフィン用メタセシス触媒を提供
することにある。
<Problems to be Solved by the Invention> An object of the present invention is to provide a metathesis catalyst for olefins that exhibits high activity and high selectivity for all metathesis reactions.

本発明の別の目的は、オレフィンに対して、特に優れ
た高活性及び高選択率を示すオレフィン用メタセシス触
媒の使用方法を提供することにある。
Another object of the present invention is to provide a method for using a metathesis catalyst for olefins which exhibits particularly excellent high activity and high selectivity for olefins.

<課題を解決するための手段> 本発明によれば、チタン、ジルコニウム及びハフニウ
ムから成る群の1種又は2種以上より選択される金属の
塩と活性化された希土類金属とを含むオレフィン用メタ
セシス触媒が提供される。
<Means for Solving the Problems> According to the present invention, metathesis for olefins containing a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal. A catalyst is provided.

また本発明によればチタン、ジルコニウム及びハフニ
ウムから成る群の1種又は2種以上から選択される金属
の塩と活性化された希土類金属とを含むメタセシス触媒
を減圧下、加熱し、活性化させた状態において、該メタ
セシス触媒とオレフィンとを接触させ、該オレフィンを
メタセシス反応させることを特徴とするオレフィン用メ
タセシス触媒の使用方法が提供される。
Further, according to the present invention, a metathesis catalyst containing a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal is heated under reduced pressure to activate the metathesis catalyst. A method for using a metathesis catalyst for olefins, wherein the metathesis catalyst is brought into contact with the olefin in a state where the olefin is brought into contact, and the olefin is subjected to a metathesis reaction.

以下本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明のメタセシス触媒は、チタン、ジルコニウム及
びハフニウムから成る群の1種又は2種以上より選択さ
れる金属の塩と活性化された希土類金属とを必須の構成
成分として含むことを特徴とする。
The metathesis catalyst of the present invention is characterized by containing, as essential components, a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal.

本発明に用いるチタン、ジルコニウム及びハフニウム
から成る群の1種又は2種以上より選択される金属の酸
化数は、特に限定されるものではないが、3価又は4価
であることが好ましい。
The oxidation number of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium used in the present invention is not particularly limited, but is preferably trivalent or tetravalent.

本発明に使用する前記塩としては、例えばハロゲン化
塩、錯塩等を好ましく挙げることができ、具体的には、
フッ素、塩素、臭素及びヨウ素の塩、アルコキシド、ア
セチルアセトン等の錯塩等を好ましく挙げることができ
る。
As the salt used in the present invention, for example, a halide salt, a complex salt and the like can be preferably mentioned, and specifically,
Preferable examples include salts of fluorine, chlorine, bromine and iodine, and complex salts such as alkoxides and acetylacetone.

本発明において、チタン、ジルコニウム及びハフニウ
ムから成る群の1種又は2種以上より選択される金属の
塩を調製するには、例えば、高温下において、該金属に
例えばハロゲン元素等の塩を構成する成分を通じればよ
く、具体的には塩化チタン(IV)を調製する場合、酸化
チタン(IV)と炭素との混合物に、熱時塩素を通じて合
成する等の公知の方法により調製することができる。
In the present invention, in order to prepare a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium, for example, a salt such as a halogen element is formed on the metal at a high temperature. The components may be passed through. Specifically, in the case of preparing titanium (IV) chloride, it can be prepared by a known method such as synthesizing a mixture of titanium oxide (IV) and carbon with hot chlorine.

本発明において、希土類金属は、活性化されておれば
特に限定されることはないが、サマリウム(Sm)、イッ
テルビウム(Yb)、ユーロピウム(Eu)等を好ましく用
いることができる。前記希土類金属を活性化させる方法
としては、例えば反応系内を10-6Torr程度に減圧した
後、十分に脱水精製したテトラヒドロフラン、シクロヘ
キサン、ベンゼン等の有機溶媒を反応管内壁に−196℃
程度に冷却固化した状態で投入し、その上に希土類金属
蒸気を蒸着分散反応させ、次いで反応系内を室温に戻
し、過剰の前記有機溶媒を除去する等の公知の方法によ
り活性化させることができる。
In the present invention, the rare earth metal is not particularly limited as long as it is activated, but samarium (Sm), ytterbium (Yb), europium (Eu) and the like can be preferably used. As a method for activating the rare earth metal, for example, after reducing the pressure in the reaction system to about 10 −6 Torr, a sufficiently dehydrated and purified organic solvent such as tetrahydrofuran, cyclohexane, and benzene is applied to the inner wall of the reaction tube at −196 ° C.
Charged in a state of cooling and solidification to a degree, a rare earth metal vapor is vapor-dispersed and dispersed thereon, and then the reaction system is returned to room temperature and activated by a known method such as removing excess organic solvent. it can.

本発明において、前記チタン、ジルコニウム及びハフ
ニウムから成る群の1種又は2種以上より選択される金
属の塩及び活性化された希土類金属とを含むメタセシス
触媒としては、Sm−TiCl4,Sm−TiBr4,Sm−TiI4,Sm−Ti
(0C3H7)4,Sm−ZrCl4,Sm−ZrBr4,Sm−ZrI4,Sm−HfCl4,
Sm−HfBr4,Sm−HfI4Yb−TiCl4,Yb−TiBr4,Yb−TiI4,Yb
−Ti(0C3H74,Yb−ZrCl4,Yb−ZrBr4,Yb−ZrI4,Yb−Hf
Cl4,Yb−HfBr4,Yb−HfI4等を好ましく挙げることができ
る。
In the present invention, the metathesis catalyst containing a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal includes Sm-TiCl 4 , Sm-TiBr 4 , Sm-TiI 4 , Sm-Ti
(0C 3 H7) 4, Sm -ZrCl 4, Sm-ZrBr 4, Sm-ZrI 4, Sm-HfCl 4,
Sm-HfBr 4, Sm-HfI 4 Yb-TiCl 4, Yb-TiBr 4, Yb-TiI 4, Yb
−Ti (0C 3 H 7 ) 4 , Yb−ZrCl 4 , Yb−ZrBr 4 , Yb−ZrI 4 , Yb−Hf
Cl 4 , Yb-HfBr 4 , Yb-HfI 4 and the like can be preferably mentioned.

本発明のメタセシス触媒を調製するには、例えば前記
チタン、ジルコニウム及びフハフニウムから成る群の1
種又は2種以上より選択される金属の塩と前記活性化さ
れた希土類金属とをテトラヒドロフラン又はシクロヘキ
サン等の有機溶媒の存在下20〜60℃の温度範囲で3〜10
時間反応させ、該有機溶媒を除去する等の方法を用いる
ことにより調製することができる。この際、前記金属の
塩と活性化された希土類金属の含有割合は、活性化され
た希土類金属1gに対して、前記金属の塩0.1〜1mmolであ
ることが好ましく、特に0.4〜0.6mmolであることが望ま
しい。
To prepare the metathesis catalyst of the present invention, for example, one of the group consisting of titanium, zirconium and fhafnium is used.
A salt of a metal selected from the group consisting of two or more species and the activated rare earth metal is reacted with an organic solvent such as tetrahydrofuran or cyclohexane at a temperature of 20 to 60 ° C. for 3 to 10 minutes.
It can be prepared by using a method of reacting for an hour and removing the organic solvent. At this time, the content ratio of the metal salt and the activated rare earth metal is preferably 0.1 to 1 mmol, more preferably 0.4 to 0.6 mmol, for 1 g of the activated rare earth metal. It is desirable.

本発明のメタセシス触媒を用いてメタセシス反応に付
することのできる物質については、特に限定されるもの
ではなく、全てのメタセシス反応において有効である。
The substance that can be subjected to the metathesis reaction using the metathesis catalyst of the present invention is not particularly limited, and is effective in all metathesis reactions.

次に本発明のメタセシス触媒を用いて、オレフィンを
メタセシス反応させる際の使用方法について説明する。
Next, a method of using the metathesis catalyst of the present invention to cause a metathesis reaction of an olefin will be described.

本発明において、前記チタン、ジルコニウム及びハフ
ニウムから成る群の1種又は2種以上から選択される金
属の塩と活性化された希土類金属とを含むメタセシス触
媒を例えば10-4〜10-6Torrの範囲に減圧し、200〜300℃
で2〜3時間加熱することにより活性化させ、次いで好
ましくはオレフィン1molに対して、該活性化されたメタ
セシス触媒1〜5gを、反応温度100〜200℃、圧力30〜10
0torrの範囲でオレフィンと接触させることにより、副
反応がほとんどなく、該オレフィンをメタセシス反応さ
せることができる。前記メタセシス反応に付することの
できるオレフィンについては、特に限定されるものでは
ないが、例えばプロピレン、ブテン、イソブテン、ペン
テン、ヘキセン等の鎖状オレフィン、シクロペンテン、
シクロオクテン、シクロドデセン等の環状オレフィン、
ブタジエン、イソプレン等の共役ジエン等を有効にメタ
セシス反応させることができる。
In the present invention, the metathesis catalyst containing a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal is, for example, 10 -4 to 10 -6 Torr. Decompress to the range, 200 ~ 300 ℃
For 2 to 3 hours, and preferably 1 to 5 g of the activated metathesis catalyst per 1 mol of olefin is reacted at a reaction temperature of 100 to 200 ° C. and a pressure of 30 to 10
By bringing the olefin into contact with the olefin within the range of 0 torr, there is almost no side reaction, and the olefin can be subjected to a metathesis reaction. The olefin that can be subjected to the metathesis reaction is not particularly limited, but, for example, propylene, butene, isobutene, pentene, chain olefins such as hexene, cyclopentene,
Cyclic olefins such as cyclooctene and cyclododecene,
Conjugated dienes such as butadiene and isoprene can be effectively metathesized.

<発明の効果> 本発明のメタセシス触媒を用いることにより、オレフ
ィンのメタセシス反応において高活性及び高選択率が示
される。また本発明では、特にオレフィンを高活性、高
選択率でメタセシス反応させることができる。
<Effect of the Invention> By using the metathesis catalyst of the present invention, high activity and high selectivity are exhibited in the olefin metathesis reaction. Further, in the present invention, in particular, an olefin can be subjected to a metathesis reaction with high activity and high selectivity.

<実施例> 以下実施例及び比較例により、更に詳細に説明するが
本発明はこれらにより限定されるものではない。
<Examples> Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1 反応系内を10-6Torrに減圧した真空蒸着装置に、十分
脱水精製したテトラヒドロフラン30mlを投入し、−196
℃にて冷却固化した後、サマリウム蒸気1gを、前記反応
系内に−196℃の低温に保ったまま蒸発分散し、サマリ
ウム粒子1gを得た。次いで得られたサマリウム粒子1gと
テトラクロロチタン0.52mmolとをテトラヒドロフラン50
mlと共にシュレンクに入れ、室温25℃にて3時間撹拌し
た後、反応系内を10-4Torrにして、テトラヒドロフラン
を除去し、目的のメタセシス触媒を約1g得た。得られた
化合物をプラズマ発光分析(ICP)により元素分析を行
なったところ、Sm−TiCl4であった。また得られた化合
物のメタセシス活性を、100℃、90Torrの条件下で、プ
ロピレンと反応させることによって測定した。その結果
を表1に示す。
Example 1 30 ml of sufficiently dehydrated and purified tetrahydrofuran was charged into a vacuum evaporation apparatus in which the pressure in the reaction system was reduced to 10 −6 Torr, and −196.
After cooling and solidifying at 1 ° C., 1 g of samarium vapor was evaporated and dispersed in the reaction system while keeping the temperature at −196 ° C. to obtain 1 g of samarium particles. Next, 1 g of the obtained samarium particles and 0.52 mmol of tetrachlorotitanium were added to 50 parts of tetrahydrofuran.
The mixture was placed in Schlenk together with the ml, and stirred at room temperature of 25 ° C. for 3 hours. Then, the inside of the reaction system was adjusted to 10 −4 Torr, and tetrahydrofuran was removed to obtain about 1 g of the target metathesis catalyst. When the obtained compound was subjected to elemental analysis by plasma emission spectrometry (ICP), it was Sm-TiCl 4. The metathesis activity of the obtained compound was measured by reacting with propylene at 100 ° C. and 90 Torr. Table 1 shows the results.

実施例2 サマリウムとテトラクロロチタンとの加熱排気温度を
250℃とした以外は実施例1と同様に目的のメタセシス
触媒を得て、メタセシス活性を測定した。その結果を表
1に示す。
Example 2 The heating exhaust temperature of samarium and tetrachlorotitanium was
A target metathesis catalyst was obtained in the same manner as in Example 1 except that the temperature was changed to 250 ° C., and the metathesis activity was measured. Table 1 shows the results.

実施例3 テトラクロロチタン0.58mmol、加熱排気温度200℃と
する以外は、実施例1と同様に目的のメタセシス触媒を
得て、メタセシス特性を測定した。その結果を表1に示
す。
Example 3 A target metathesis catalyst was obtained and the metathesis characteristics were measured in the same manner as in Example 1 except that 0.58 mmol of tetrachlorotitanium and a heating and exhausting temperature of 200 ° C. were obtained. Table 1 shows the results.

実施例4 テトラクロロチタン0.65mmolとする以外は実施例3と
同様に目的のメタセシス触媒を得て、実施例1と同様に
メタセシス活性を測定した。その結果を表1に示す。
Example 4 A target metathesis catalyst was obtained in the same manner as in Example 3 except that the amount of tetrachlorotitanium was changed to 0.65 mmol, and the metathesis activity was measured in the same manner as in Example 1. Table 1 shows the results.

実施例5 サマリウム蒸気1gの代わりにイッテルビウム蒸気1gを
用い、且つテトラクロロチタンを0.39mmol、加熱排気温
度を200℃とする以外は実施例1と同様にメタセシス触
媒を得た。得られたメタセシス触媒をプラズマ発光分析
(ICP)により元素分析を行なったところYb−TiCl4であ
った。また得られたメタセシス触媒のメタセシス活性を
実施例1と同様に測定した。その結果を表1に示す。
Example 5 A metathesis catalyst was obtained in the same manner as in Example 1 except that 1 g of ytterbium vapor was used instead of 1 g of samarium vapor, 0.39 mmol of tetrachlorotitanium was used, and the heating and exhausting temperature was 200 ° C. The resulting metathesis catalyst was a Yb-TiCl 4 was subjected to elemental analysis by plasma emission spectrometry (ICP). The metathesis activity of the obtained metathesis catalyst was measured in the same manner as in Example 1. Table 1 shows the results.

実施例6 テトラクロロチタン0.60mmolとする以外は実施例5と
同様に目的のメタセシス触媒を得て、メタセシス活性を
測定した。その結果を表1に示す。
Example 6 A target metathesis catalyst was obtained in the same manner as in Example 5 except that the amount of tetrachlorotitanium was changed to 0.60 mmol, and the metathesis activity was measured. Table 1 shows the results.

比較例1 テトラクロロチタンを用いない以外は、実施例2と同
様に処理し、サマリウムを活性化した。次いで実施例1
と同様な条件下でメタセシス活性を測定した。その結果
を表1に示す。
Comparative example 1 Except not using tetrachlorotitanium, it processed similarly to Example 2 and activated samarium. Next, Example 1
The metathesis activity was measured under the same conditions as described above. Table 1 shows the results.

実施例7 実施例1にて得られたSm−TiCl40.3gをU字形反応管
内に入れ、反応器内を10-5Torrに減圧し、200℃にて2
時間加熱した後、該Sm−TiCl40.3gとプロピレン29ml(9
0torr)とを定容積の閉鎖循環系装置を用い加熱排気温
度100℃にて3時間反応させたところ、エチレン0.16mmo
lと2−ブテン0.015mmolとが得られた。反応時のエチレ
ン及び2−ブテンの生成量と時間との関係を第1図に示
す。
Example 7 0.3 g of Sm-TiCl 4 obtained in Example 1 was put into a U-shaped reaction tube, the pressure inside the reactor was reduced to 10 −5 Torr,
After heating for one hour, 0.3 g of the Sm-TiCl 4 and 29 ml of propylene (9
0 torr) was reacted for 3 hours at a heating / exhausting temperature of 100 ° C. using a closed-volume closed-circulation system having a constant volume.
l and 0.015 mmol of 2-butene were obtained. FIG. 1 shows the relationship between the amount of ethylene and 2-butene produced during the reaction and time.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のメタセシス触媒であるSm−TiCl4
用いて、プロピレンをメタセシス反応させた際のエチレ
ン及び2−ブテンの生成量と時間との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the production amount of ethylene and 2-butene and time when propylene is subjected to a metathesis reaction using Sm-TiCl 4 as a metathesis catalyst of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン、ジルコニウム及びハフニウムから
成る群の1種又は2種以上より選択される金属の塩と活
性化された希土類金属とを含むオレフィン用メタセシス
触媒。
1. A metathesis catalyst for olefins comprising a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal.
【請求項2】チタン、ジルコニウム及びハフニウムから
成る群の1種又は2種以上より選択される金属の塩と活
性化された希土類金属とを含むオレフィン用メタセシス
触媒を減圧下、加熱し、活性化させた状態において、該
メタセシス触媒とオレフィンとを接触させることを特徴
とするオレフィン用メタセシス触媒の使用方法。
2. An olefin metathesis catalyst comprising a salt of a metal selected from one or more of the group consisting of titanium, zirconium and hafnium and an activated rare earth metal is heated under reduced pressure to activate A method for using a metathesis catalyst for olefins, wherein the metathesis catalyst is brought into contact with an olefin in the state where the metathesis catalyst is brought into contact with the olefin.
JP63203265A 1988-08-17 1988-08-17 Metathesis catalyst for olefins and method of using the same Expired - Lifetime JP2649068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203265A JP2649068B2 (en) 1988-08-17 1988-08-17 Metathesis catalyst for olefins and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203265A JP2649068B2 (en) 1988-08-17 1988-08-17 Metathesis catalyst for olefins and method of using the same

Publications (2)

Publication Number Publication Date
JPH0252044A JPH0252044A (en) 1990-02-21
JP2649068B2 true JP2649068B2 (en) 1997-09-03

Family

ID=16471174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203265A Expired - Lifetime JP2649068B2 (en) 1988-08-17 1988-08-17 Metathesis catalyst for olefins and method of using the same

Country Status (1)

Country Link
JP (1) JP2649068B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793217B (en) * 2013-11-20 2019-05-31 鲁姆斯科技公司 Olefins process

Also Published As

Publication number Publication date
JPH0252044A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
Nagashima et al. Oxidative addition of allylic halides to ruthenium (II) compounds. Preparation, reactions, and X-ray crystallographic structure of ruthenium (IV)-allyl complexes
Persson et al. ortho‐Chelating Arenethiolatocopper (i) Complexes as Versatile Catalysts in the Regioselective Cross‐Coupling of Allylic Derivatives with nBuMgI—An Example of Reversed Reactivity of Leaving Groups
WO1995029755A1 (en) Heterogeneous metathesis catalyst
Trifonov et al. Synthesis of lanthanide complexes coordinated by an asymmetric cyclopentadienyl ligand
Kondo et al. Oxidative Addition of Allylic Substrates to Coordinatively Unsaturated Ruthenium Compounds,[Ru (η 5-C5Me5)(η-amidinate)]: Preparation, Structure Elucidation, and Catalysis of Novel Ruthenium (IV)-η 3-Allyl Complexes
CA1330566C (en) Organic derivatives of rhenium oxides and their preparation and use for the metathesis of olefins
JP2649068B2 (en) Metathesis catalyst for olefins and method of using the same
EP1344772A1 (en) Arylbis (perfluoroalkylsulfonyl) methane, metal salt of the same, and processes for producing these
US7339082B2 (en) Arylbis (perfluoroalkylsulfonyl)methane and metallic salt thereof, and methods for producing the same
Calderazzo et al. Reactions of zirconium (. eta. 6-benzene)(AlCl4) 2 with alkynes: cyclooligomerization reactions and crystal and molecular structure of the seven-membered metallacycle [cyclic][ZrCPh (CPh) 4CPh][(. mu.-Cl) 2AlCl2] 2
Nagashima et al. Organoruthenium (ii) and (iii) amidinates,(η 5-C 5 Me 5) Ru (η-amidinate) and (η 5-C 5 Me 5) RuCl (η-amidinate), as unique redox catalysts for the intramolecular Kharasch reactions: Facile access to a pyrrolizidine alkaloid skeleton under mild conditions
JPH0776184B2 (en) Catalysts for the ethenolytic metathesis of olefinic compounds consisting of organic derivatives of rhenium oxide and a process for the ethenolytic metathesis of olefinic compounds using these catalysts
Haakansson et al. A complex between isoprene and copper (I) chloride: synthesis and structural characterization
JPH058054B2 (en)
US4008287A (en) Process for the preparation of cyclopropane derivatives
EP0524522B1 (en) Catalyst for metathetic reactions of olefins
EP0021496B1 (en) Synthesis of long-chain alkanes having terminal functionality
JPH06234668A (en) Production of 9,9-dialkylfulorene
JPS58140036A (en) Preparation of carbonyl compound
JP2768971B2 (en) Ammonia production catalyst
JPS60158121A (en) Production of vinylcyclohexane
JP3203332B2 (en) Method for producing chlorotrifluoroethylene
JP2003342317A (en) Organometallic complex containing bidentate chelate ligand formed by bonding nitrogen-containing heterocycle with alcohol and its catalytic use to oligomerize olefin
US4366101A (en) Synthesis of long-chain alkanes having terminal functionality
CS235983B2 (en) Method of acetic acid production by for mic acid methylester&#39;s catalytic re-arrangrment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12