JP2648272B2 - Thermal wastewater power generation method and apparatus using thermocouple - Google Patents
Thermal wastewater power generation method and apparatus using thermocoupleInfo
- Publication number
- JP2648272B2 JP2648272B2 JP4331373A JP33137392A JP2648272B2 JP 2648272 B2 JP2648272 B2 JP 2648272B2 JP 4331373 A JP4331373 A JP 4331373A JP 33137392 A JP33137392 A JP 33137392A JP 2648272 B2 JP2648272 B2 JP 2648272B2
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- flow path
- thermocouple
- inner cylinder
- cylindrical body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002351 wastewater Substances 0.000 title claims description 26
- 238000010248 power generation Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000013535 sea water Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱電対利用の温排水発
電方法及び装置に関し、特に熱利用施設から放流される
温排水の排熱を効率よく電力に変換する熱電対利用の温
排水発電方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for generating hot waste water using a thermocouple, and more particularly to a hot waste water generation using a thermocouple for efficiently converting waste heat of hot waste water discharged from a heat utilization facility into electric power. Method and apparatus.
【0002】[0002]
【従来の技術】従来、熱電素子を用いた発電装置として
以下のもの等が提案されている。 (1)ソーラポンド熱電発電装置:図5に示すように、ソ
ーラポンド34において太陽エネルギーが蓄えられた蓄熱
層L3の温水(360゜K程度)と地下水源Uから揚水ポンプ35
により汲み上げた灌漑用水F(290゜K程度)との温度差を
利用する熱電発電装置2であり、発電により得られた電
力により揚水ポンプ35を駆動する。図中のソーラポンド
34において、L1は表層を示し、L2は非対流層を示す。 (2)海洋温度差発電装置:図6に示すように、海洋の上
層温海水S(300゜K程度)と水深1000m程度の深層冷海水
D(280゜K程度)とを揚水ポンプ35で汲み上げ、両者間の
温度差を熱電対モジュール20を用いて起電力に変換する
熱電発電装置2である。2. Description of the Related Art Heretofore, the following devices have been proposed as power generation devices using thermoelectric elements. (1) Sorapondo thermoelectric generator: As shown in FIG. 5, the hot water (about 360 ° K) of the heat storage layer L 3 in which solar energy is stored in Sorapondo 34 and pump 35 from the underground water source U
The thermoelectric generator 2 uses a temperature difference between the irrigation water F (approximately 290 ° K) pumped by the generator, and drives a pump 35 with electric power obtained by power generation. Solar pound in figure
In 34, L 1 represents a surface layer, L 2 denotes a non-convective layer. (2) Ocean temperature difference power generator: As shown in Fig. 6, the upper warm seawater S (about 300K) and the deep cold seawater D (about 280K) with a depth of about 1000m are pumped by the pump 35. The thermoelectric generator 2 converts a temperature difference between the two into an electromotive force using the thermocouple module 20.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来の熱
電素子を利用した発電装置は、(1)発電のために大きな
装置の建設が必要であり、更に(2)温・冷水を循環させ
る装置のために外部から動力を供給する必要があった。However, the above-mentioned conventional power generation device using a thermoelectric element requires (1) the construction of a large device for power generation, and (2) a device for circulating hot and cold water. Needed to be powered externally for
【0004】従って本発明の目的は、冷水循環ポンプを
用いない熱電対利用の温排水発電方法及び装置を提供す
るにある。Accordingly, an object of the present invention is to provide a method and an apparatus for generating hot waste water using a thermocouple without using a chilled water circulation pump.
【0005】[0005]
【課題を解決するための手段】本発明者は、熱使用施設
から放流される温排水のエネルギーを、冷水ポンプなし
で供給される冷水に一端が接触する熱電対の他端に接触
させることにより電力として回収すれば、排熱の電力へ
の変換効率を改善できることに注目した。図1及び2の
実施例を参照して本発明の熱電対利用の温排水発電方法
を説明する。熱使用設備からの温排水Hを内側筒体4内
部の第1流路5に流入させ、内側筒体4の外周面に熱電
対10の一端を電気的に絶縁して接触させ、内側筒体4の
外側に熱電対10を隔てて中間筒体7を内側筒体4と同心
的に設け、中間筒体7の内周面に熱電対10の他端を電気
的に絶縁して接触させ、中間筒体7の外側に第2流路6
を隔てて外側筒体3を中間筒体7と同心的に設け、第1
流路5に温排水Hの流れにより駆動される回転部材(例
えば水平軸23付き羽根24)を設け、伝動手段(例えば歯
車装置26と半径方向回転軸即ち垂直軸25からなる)を介
して回転部材により駆動される羽根24を第2流路6に設
け、前記羽根23により冷水Cを第2流路6に流入させ、
温排水Hと冷水Cとの温度差により熱電対10の両端間に
起電力を発生させてなるものである。 SUMMARY OF THE INVENTION The present inventor has proposed that the energy of hot waste water discharged from a heat use facility is brought into contact with the other end of a thermocouple, one end of which contacts cold water supplied without a chilled water pump. It was noted that the efficiency of conversion of waste heat to electric power can be improved by recovering it as electric power. With reference to the embodiment shown in FIGS. 1 and 2, a method for generating hot waste water using a thermocouple according to the present invention will be described. The hot waste water H from the heat use equipment is caused to flow into the first flow path 5 inside the inner cylinder 4, and one end of the thermocouple 10 is brought into contact with the outer peripheral surface of the inner cylinder 4 while being electrically insulated. 4, an intermediate cylinder 7 is provided concentrically with the inner cylinder 4 with a thermocouple 10 therebetween, and the other end of the thermocouple 10 is brought into contact with the inner peripheral surface of the intermediate cylinder 7 while being electrically insulated. The second flow path 6 is provided outside the intermediate cylinder 7.
The outer cylinder 3 is provided concentrically with the intermediate cylinder 7 with the
Rotary member driven by the flow of hot water H
For example, a blade 24 with a horizontal shaft 23) is provided, and transmission means (for example, teeth
Through the vehicle device 26 and the radial axis of rotation or vertical axis 25)
And the blade 24 driven by the rotating member is set in the second flow path 6.
The cold water C is caused to flow into the second flow path 6 by the blade 23,
Due to the temperature difference between hot waste water H and cold water C
An electromotive force is generated.
【0006】熱電対10は、2種の熱電素子11、12及びそ
の一端を直接に結合した結合部13と他端19とを有する。
結合部13は結合電極14を介在させて形成してもよい。結
合部13を、例えば図1に示すように、複数個の熱電対10
の結合電極14を内側筒体4の外周面に電気的に絶縁して
接触させる。また、各熱電対10の熱電素子11(12)の他端
19と隣接する熱電素子10の熱電素子11(12)の他端19とを
接続する接続電極15を、例えば中間筒体7の内周面に電
気的に絶縁して接触させる。さらに、図示例では他端19
の接続電極15を出力部とし、これを出力端子17に接続し
ているが、熱電対10の出力部は図示例の他端19や接続電
極15に限定されない。The thermocouple 10 has two types of thermoelectric elements 11 and 12, a connecting portion 13 in which one end is directly connected to the thermoelectric element 11, and the other end 19.
The coupling portion 13 may be formed with the coupling electrode 14 interposed. For example, as shown in FIG.
Electrically contacted to insulate the coupling electrode 14 on the outer peripheral surface of the inner tubular member 4. Also, the other end of the thermoelectric element 11 (12) of each thermocouple 10
The connection electrode 15 connecting the 19 and the other end 19 of the thermoelectric element 11 (12) of the adjacent thermoelectric element 10 is brought into contact with, for example, the inner peripheral surface of the intermediate cylinder 7 while being electrically insulated. Further, in the illustrated example, the other end 19
Of the thermocouple 10 is not limited to the other end 19 or the connection electrode 15 in the illustrated example.
【0007】図2の実施例を参照するに、本発明の熱電
対利用の発電装置1Aは、内部が第1流路5である内側筒
体4、内側筒体4の外側に間隙を介して同心的に設けた
中間筒体7、前記間隙内に配置されて内側筒体4の外周
面に電気的に絶縁して接触する一端(図示例では結合部
13)と中間筒体7の内周面に電気的に絶縁して接触する
他端19と発生した起電力の出力部(図示例では接続電極
15)とを有する熱電対10;前記出力部(図示例では接続
電極15)に接続した出力端子17、中間筒体7の外側に第
2流路6を隔てて同心的に設けた外側筒体3を備えてな
る熱電対利用の発電装置において、内側筒体4及び外側
筒体3と同軸的に結合され第1流路5及び第2流路6の
延長部を形成する内方筒体4A及び外方筒体3A;内方筒体
4の内部位置に内方筒体固定の支持腕16で保持した歯車
箱26;歯車箱26から内方筒体4の軸方向に突出する羽根
24付き水平軸23;歯車箱26から内方筒体4を水密的に垂
直に貫通し、歯車箱26内で水平軸23の回転に応じて駆動
される垂直軸25;及び垂直軸25の前記第2流路6の延長
部内部分に取付けられた羽根24を備え、第1流路5の延
長部に流体Hが流れる時に羽根付き水平軸23を回転さ
せ、その水平軸23の回転に応ずる垂直軸25の回転による
第2流路6の延長部内羽根24の回転によって第2流路6
の延長部内の流体Cを内方筒体4の軸方向に駆動してな
るものである。 Referring to the embodiment of FIG. 2, a power generator 1A using a thermocouple according to the present invention has an inner cylinder 4 having a first flow path 5 inside, and a gap outside the inner cylinder 4 through a gap. An intermediate cylinder 7 provided concentrically, one end (in the illustrated example, a connecting portion in the illustrated example) that is disposed in the gap and electrically insulates and contacts the outer peripheral surface of the inner cylinder 4.
13) and the other end 19 electrically insulated and in contact with the inner peripheral surface of the intermediate cylindrical body 7 and an output portion of the generated electromotive force (the connection electrode in the illustrated example).
15); an output terminal 17 connected to the output section (the connection electrode 15 in the illustrated example); an outer cylindrical body provided concentrically outside the intermediate cylindrical body 7 with the second flow path 6 therebetween. It includes a 3
In the power generation device using a thermocouple, the inner cylinder 4 and the outer
The first flow path 5 and the second flow path 6 are coaxially coupled to the cylindrical body 3.
Inner cylinder 4A and outer cylinder 3A forming an extension; inner cylinder
The gear held by the support arm 16 fixed to the inner cylinder at the inner position of 4
Box 26; blades protruding from gear box 26 in the axial direction of inner cylinder 4
Horizontal shaft 23 with 24; inner cylindrical body 4 is suspended from gear box 26 in a watertight manner
Drives according to the rotation of the horizontal shaft 23 in the gear box 26
Vertical axis 25; and extension of the second flow path 6 of the vertical axis 25
It has a blade 24 attached to the inner part and extends the first flow path 5.
When the fluid H flows through the long part, the horizontal shaft 23 with wings is rotated.
And the rotation of the vertical axis 25 corresponding to the rotation of the horizontal axis 23
The rotation of the inner blade 24 of the extension of the second flow path 6 causes the second flow path 6 to rotate.
Is driven in the axial direction of the inner cylinder 4.
Things.
【0008】[0008]
【作用】図7を参照して本発明の作用を説明する。図7
(A)に示す熱電対10は、例えば第1熱電素子11と第2熱
電素子12からなり、各熱電素子11、12の一端を結合して
結合部13とし、各熱電素子11、12の他端19を出力端子17
を介して外部へ接続すると共に各熱電素子11、12の他端
19を同一温度に保ったものである。図中、点線枠は二つ
の他端19が同一温度に保たれることを示す。結合部13と
二つの他端19をそれぞれ異なる温度T1、T2に保つと、ゼ
ーベック効果により二つの出力端子17に起電力Vが発生
する。図2の実施例では、第1流路5に温排水Hの流れ
により駆動される水平軸23付き羽根24を設けて回転部材
とする。第1流路5に設けた歯車装置26と第2流路6ま
で延びる垂直軸25とにより伝動手段を構成し、垂直軸25
の第2流路6内部分に羽根24を取付け、その羽根24を前
記伝動手段を介して回転部材により駆動する。垂直軸25
上の羽根24の回転により冷水Cを第2流路6に流入させ
る。熱電対10においては、結合部13を内側筒体4の外周
面に接触させて第1流路5を流れる温排水Hから熱を奪
うことにより温度を高く保ち、他端19を中間筒体7の内
周面に接触させて第2流路6を流れる冷水Cに熱を与え
ることにより温度を低く保ち、両者の温度差から出力端
子17に起電力Vを発生させる。 The operation of the present invention will be described with reference to FIG. FIG.
The thermocouple 10 shown in FIG. 1A includes, for example, a first thermoelectric element 11 and a second thermoelectric element 12. One end of each of the thermoelectric elements 11 and 12 is connected to form a connecting portion 13. Output terminal 17 to terminal 19
And the other end of each thermoelectric element 11, 12
19 was kept at the same temperature. In the figure, the dotted frame indicates that the two other ends 19 are kept at the same temperature. When the coupling portion 13 and the two other ends 19 are kept at different temperatures T1 and T2, an electromotive force V is generated at the two output terminals 17 by the Seebeck effect. In the embodiment of FIG. 2, the flow of hot waste water H
Rotary member provided with a blade 24 with a horizontal shaft 23 driven by
And The gear device 26 provided in the first flow path 5 and the second flow path 6
The transmission means is constituted by a vertical shaft 25 extending at
The blade 24 is attached to the inside of the second flow path 6 of the
It is driven by a rotating member via the transmission means. Vertical axis 25
The rotation of the upper blade 24 allows the cold water C to flow into the second flow path 6
You. In the thermocouple 10, the connecting portion 13 is connected to the outer periphery of the inner cylindrical body 4.
Heat is taken from the hot waste water H flowing through the first flow path 5 by contact with the surface.
To maintain the temperature high, and connect the other end 19 to the inside of the intermediate cylinder 7.
Heat is applied to the cold water C flowing through the second flow path 6 by contacting the peripheral surface.
To keep the temperature low, and the output
An electromotive force V is generated in the child 17.
【0009】温水と冷水との温度差を用いた熱電素子利
用の発電を効率的に行うには、温水と冷水とをそれぞれ
流水とする必要がある。熱使用施設から放流される温排
水Hはかなりの流速を持っているので、温水循環用の動
力を必要としない。また、冷水Cとして河川の流水又は
流動海水等の自然の流動冷水を使用するならば、冷水C
循環用の動力を省くことが可能である。In order to efficiently generate electric power using a thermoelectric element using the temperature difference between hot water and cold water, it is necessary to use hot water and cold water as flowing water, respectively. The hot wastewater H discharged from the heat use facility has a considerable flow velocity, and thus does not require power for hot water circulation. If natural flowing cold water such as river running water or flowing seawater is used as the cold water C, the cold water C
The power for circulation can be omitted.
【0010】図2及び図3は、温排水Hの運動エネルギ
ーを冷水Cの循環に利用する本発明の冷水循環装置9を
示す。図3に示す冷水循環装置9では、内側筒体4及び
外側筒体3と同軸的に結合され内方筒体4A及び外方筒体
3Aにより第1流路5及び第2流路6の延長部を形成す
る。内方筒体4Aの内部の所定位置に歯車箱26を内方筒体
4A固定の支持腕16で保持し、羽根24付き水平軸23を歯車
箱26から内方筒体4Aの軸方向に突出させる。歯車箱26か
ら内方筒体4Aを水密的に垂直に貫通させて垂直軸25を設
け、その垂直軸25を歯車箱26内で水平軸23の回転により
駆動する。垂直軸25の第2流路6の延長部内部分に羽根
24を取付ける。第1流路5の延長部に温排水Hが流れる
時に羽根付き水平軸23をその温排水Hの流れによって回
転させ、その水平軸回転に応ずる垂直軸25の回転による
第2流路6の延長部内の羽根24の回転によって、第2流
路6の延長部内の例えば冷水Cである流体を内方筒体4A
の軸方向に駆動する。すなわち、第1流路5の延長部内
に流れる温排水Hの運動エネルギーを利用して、第2流
路6の延長部内の冷水Cの流れを発生させる。好ましく
は冷水循環装置9に、内方筒体4Aの軸方向に間隙をおい
て外方筒体3Aに穿った吸入口30及び吐出口31、及び第2
流路6の延長部を吸入口30と吐出口31との中間で区切る
内方筒体4Aと外方筒体3Aとの間の環状仕切り壁18を設
け、歯車箱26を環状仕切り壁18の片側における内方筒体
4Aの内部位置に保持する。FIGS. 2 and 3 show a chilled water circulating device 9 according to the present invention which utilizes the kinetic energy of the hot waste water H for circulating the chilled water C. FIG. In the chilled water circulation device 9 shown in FIG. 3, the inner cylinder 4A and the outer cylinder are coaxially coupled with the inner cylinder 4 and the outer cylinder 3.
An extension of the first flow path 5 and the second flow path 6 is formed by 3A. The gear box 26 is placed at a predetermined position inside the inner cylinder 4A.
The horizontal shaft 23 with the blades 24 is held by the support arm 16 fixed at 4A, and protrudes from the gear box 26 in the axial direction of the inner cylinder 4A. A vertical shaft 25 is provided by vertically penetrating the inner cylindrical body 4A from the gear box 26 in a watertight manner, and the vertical shaft 25 is driven by the rotation of the horizontal shaft 23 in the gear box 26. A blade is provided on the vertical shaft 25 inside the extension of the second flow path 6.
Install 24. When the hot waste water H flows through the extension of the first flow path 5, the horizontal shaft 23 with the blades is rotated by the flow of the hot waste water H, and the second flow path 6 is extended by the rotation of the vertical shaft 25 corresponding to the horizontal rotation. Due to the rotation of the blades 24 in the section, the fluid, for example, cold water C in the extension of the second flow path 6 is removed from the inner cylinder 4A.
In the axial direction. That is, the flow of the cold water C in the extension of the second flow path 6 is generated by using the kinetic energy of the hot waste water H flowing in the extension of the first flow path 5. Preferably, in the chilled water circulation device 9, the suction port 30 and the discharge port 31 formed in the outer cylinder 3A with a gap in the axial direction of the inner cylinder 4A, and the second
An annular partition wall 18 is provided between the inner cylindrical body 4A and the outer cylindrical body 3A that divides the extension of the flow path 6 between the suction port 30 and the discharge port 31. Inner cylinder on one side
Hold at 4A internal position.
【0011】本発明は冷水を循環させるための動力を外
部から与える必要がない。従って、本発明の目的である
「冷水循環ポンプを用いない熱電対利用の温排水発電方
法及び装置の提供」が達成される。In the present invention, there is no need to externally supply power for circulating cold water. Accordingly, the object of the present invention is to provide "a method and apparatus for generating hot wastewater using a thermocouple without using a cold water circulation pump".
【0012】[0012]
【実施例】図1の本発明の発電装置の実施例では、図7
(B)に示す熱電素子10の複数個を、例えば平面状の所定
面状に配列して図7(C)のモジュール20を形成した後、
結合電極14を内側筒体4の外周面に電気的に絶縁して接
触させ、接続電極15を中間筒体7の内周面に電気的に絶
縁して接触させる。内側筒体4の内周面及び中間筒体7
の外周面には、温排水H及び冷水Cとの熱交換効率を向
上させるためのフィン8を設ける。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the power generator of the present invention shown in FIG.
After a plurality of thermoelectric elements 10 shown in (B) are arranged in a predetermined planar shape, for example, to form the module 20 of FIG.
The coupling electrode 14 is electrically insulated and in contact with the outer peripheral surface of the inner cylinder 4, and the connection electrode 15 is electrically insulated and in contact with the inner peripheral surface of the intermediate cylinder 7. Inner peripheral surface of inner cylinder 4 and intermediate cylinder 7
Are provided on the outer peripheral surface of the fin 8 for improving the heat exchange efficiency between the hot waste water H and the cold water C.
【0013】図4に冷水循環装置9の他の実施例を示
す。図4の実施例においても、内側筒体4及び外側筒体
3と同軸的に結合される内方筒体4A及び外方筒体3Aによ
り第1流路5及び第2流路6の延長部を形成する。内方
筒体4Aの一部分を、内方筒体4A上に軸方向間隔をおいて
形成した円周方向の水密軸受け22の支持により、回転自
在とした回転筒体27とする。回転筒体27の内側に放射状
羽根28を固定し、回転筒体27の外周面上に水送り羽根29
を形成する。第1流路5の延長部に温排水Hが流れる時
に放射状羽根28付き回転筒体27をその温排水Hの流れに
よって回転させ、回転筒体27外周面状の水送り羽根29の
回転によって第2流路6の延長部内の流体を軸方向に駆
動する。好ましくは、内方筒体4Aの軸方向に間隙をおい
て外方筒体3Aに穿った吸入口30及び吐出口31、及び第2
流路6の延長部を吸入口30と吐出口31との中間で区切る
内方筒体4Aと外方筒体3Aとの間の環状仕切り壁18を備
え、回転筒体27を環状仕切り壁18の少なくとも片側に形
成する。更に好ましくは、水送り羽根29をらせん状羽根
とする。FIG. 4 shows another embodiment of the chilled water circulation device 9. Also in the embodiment of FIG. 4, the extension of the first flow path 5 and the second flow path 6 by the inner cylinder 4A and the outer cylinder 3A coaxially coupled to the inner cylinder 4 and the outer cylinder 3. To form A part of the inner cylinder 4A is made to be a rotatable cylinder 27 rotatably supported by a circumferential watertight bearing 22 formed on the inner cylinder 4A at an axial interval. A radial blade 28 is fixed inside the rotary cylinder 27, and a water feed blade 29 is provided on the outer peripheral surface of the rotary cylinder 27.
To form When the warm drainage H flows through the extension of the first flow path 5, the rotary cylinder 27 with the radial vanes 28 is rotated by the flow of the warm drainage H, and the rotation of the water feed vane 29 on the outer peripheral surface of the rotary cylinder 27 causes the rotation. The fluid in the extension of the two flow paths 6 is driven in the axial direction. Preferably, the suction port 30 and the discharge port 31 formed in the outer cylinder 3A with a gap in the axial direction of the inner cylinder 4A,
An annular partition wall 18 is provided between the inner cylindrical body 4A and the outer cylindrical body 3A that divides the extension of the flow path 6 between the suction port 30 and the discharge port 31. Is formed on at least one side. More preferably, the water feed blade 29 is a spiral blade.
【0014】図2は、図1の発電装置1Aと図3又は図4
の冷水循環装置9とを組み合わせた温排水発電装置1の
実施例を示す。適当な形で流れている冷水Cを用いるこ
とができない場合にも、水循環装置9を組合わせること
により、冷水ポンプなしで効率的なエネルギー交換が可
能であり、発電効率の向上を図ることができる。FIG. 2 shows the power generator 1A of FIG. 1 and FIG.
An embodiment of the hot water drainage power generator 1 in combination with the cold water circulation device 9 of FIG. Even when the cold water C flowing in an appropriate form cannot be used, efficient energy exchange is possible without the use of the cold water pump by combining the water circulating device 9 and the power generation efficiency can be improved. .
【0015】[0015]
【発明の効果】以上詳細に説明したように、本発明の熱
電対利用の温排水発電方法及び装置は、冷水循環ポンプ
を用いないで熱電対利用の温排水発電を行うので、次の
顕著な効果を奏する。 (1)構造がシンプルであるため、製作が容易である。 (2)発電装置と冷水循環装置をユニット式に組合わせて
用いるので、効率的な設置が可能である。 (3)既存の温排水設備にも容易に取付が可能である。 (4)外部からの動力が必要ないので、発電効率の向上を
図ることができる。 (5)保守作業を簡単に行うことができる。As described in detail above, the method and apparatus for generating hot wastewater using thermocouples of the present invention perform hot wastewater generation using thermocouples without using a chilled water circulation pump. It works. (1) Since the structure is simple, manufacture is easy. (2) Since the power generation device and the chilled water circulation device are used in combination in a unit type, efficient installation is possible. (3) It can be easily installed on existing hot water drainage facilities. (4) Since no external power is required, power generation efficiency can be improved. (5) Maintenance work can be easily performed.
【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.
【図2】は、本発明の他の実施例の説明図である。FIG. 2 is an explanatory diagram of another embodiment of the present invention.
【図3】は、本発明の循環装置の一実施例の説明図であ
る。FIG. 3 is an explanatory view of an embodiment of the circulation device of the present invention.
【図4】は、本発明の循環装置の他の実施例の説明図で
ある。FIG. 4 is an explanatory view of another embodiment of the circulation device of the present invention.
【図5】は、ソーラポンドと組み合わせた熱電発電装置
の説明図である。FIG. 5 is an explanatory diagram of a thermoelectric generator combined with a solar pond.
【図6】は、海洋温度差を利用した熱電発電装置の説明
図である。FIG. 6 is an explanatory diagram of a thermoelectric generator using an ocean temperature difference.
【図7】は、熱電対の模式的説明図である。FIG. 7 is a schematic explanatory diagram of a thermocouple.
1、1A 温排水発電装置 2 熱電発電装置 3
外側筒体 3A 外方筒体 4 内側筒体 3B
内方筒体 5 第1流路 6 第2流路 7
中間筒体 8 フィン 9 冷水循環装置 10
熱電対 11 第1熱電素子 12 第2熱電素子 13
結合部 14 結合電極 15 接続電極 16
支持腕 17 出力端子 18 仕切壁 19
他端 20 モジュール 21 接続フランジ 22
水密軸受 23 水平軸 24 羽根 25
垂直軸 26 歯車装置 27 回転筒体 28
放射線羽根 29 らせん状羽根 30 吸入口 31
吐出口 34 ソーラーポンド 35 揚水ポンプ 36
循環ポンプ。1, 1A hot water drainage generator 2 thermoelectric generator 3
Outer cylinder 3A Outer cylinder 4 Inner cylinder 3B
Inner cylinder 5 First flow path 6 Second flow path 7
Intermediate cylinder 8 Fin 9 Chilled water circulation device 10
Thermocouple 11 First thermoelectric element 12 Second thermoelectric element 13
Connection part 14 Connection electrode 15 Connection electrode 16
Support arm 17 Output terminal 18 Partition wall 19
Other end 20 Module 21 Connection flange 22
Watertight bearing 23 Horizontal shaft 24 Blade 25
Vertical shaft 26 Gear unit 27 Rotating cylinder 28
Radiation blade 29 Spiral blade 30 Inlet 31
Discharge port 34 Solar pond 35 Pump 36
Circulation pump.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 勝矢 東京都調布市飛田給2丁目19番1号 鹿 島建設株式会社 技術研究所内 (56)参考文献 実開 昭62−2388(JP,U) ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Katsuta Ota 2-9-1-1, Tobita-Shi, Chofu-shi, Tokyo Kashima Corporation, Technical Research Institute
Claims (8)
の第1流路に流入させ、前記内側筒体の外周面に熱電対
の一端を電気的に絶縁して接触させ、前記内側筒体の外
側に前記熱電対を隔てて中間筒体を前記内側筒体と同心
的に設け、前記中間筒体の内周面に前記熱電対の他端を
電気的に絶縁して接触させ、前記中間筒体の外側に第2
流路を隔てて外側筒体を前記中間筒体と同心的に設け、
前記第1流路に温排水の流れにより駆動される回転部材
を設け、伝動手段を介して前記回転部材により駆動され
る羽根を前記第2流路に設け、前記羽根により冷水を前
記第2流路に流入させ、前記温排水と冷水との温度差に
より前記熱電対の両端間に起電力を発生させてなる熱電
対利用の温排水発電方法。1. A hot waste water from a heat use facility is caused to flow into a first flow path inside an inner cylindrical body, and one end of a thermocouple is brought into contact with an outer peripheral surface of the inner cylindrical body by electrically insulating one end thereof. An intermediate cylinder is provided concentrically with the inner cylinder with the thermocouple provided outside the cylinder, and the other end of the thermocouple is electrically insulated and brought into contact with the inner peripheral surface of the intermediate cylinder, A second outside of the intermediate cylinder
An outer cylinder is provided concentrically with the intermediate cylinder with a flow path therebetween,
A rotating member driven by a flow of hot waste water in the first flow path
Which is driven by the rotating member via transmission means.
Blades are provided in the second flow path, and the blades
Flowing into the second flow path, and the temperature difference between the hot waste water and the cold water
A method for generating hot waste water using a thermocouple , wherein an electromotive force is generated between both ends of the thermocouple.
記第1流路の回転部材を該流路の中心軸線上の水平回転
軸付き回転羽根とし、前記伝動手段を前記水平回転軸の
回転と前記第2流路に達する半径方向回転軸との間の伝
動歯車装置とし、前記第2流路の羽根を前記半径方向回
転軸の第2流路内部位に取付けた羽根としてなる熱電対
利用の温排水発電方法。2. A thermal discharge power generation method according to claim 1, before
The rotation member of the first flow path is horizontally rotated on the center axis of the flow path.
A rotating blade with a shaft, and the transmission means of the horizontal rotating shaft
The transmission between rotation and the radial axis of rotation reaching the second flow path
A dynamic gear device, wherein the blades of the second flow path are rotated in the radial direction;
A hot water drainage power generation method using a thermocouple as a blade attached to a portion of the spindle in the second flow path .
記第1流路の長さ方向同一部位における前記内側筒体と
中間筒体と両筒体間の熱電対とを、前記両筒体に対し水
密を保ちつつ前記流路の中心軸線周りに回転可能な回転
筒体と置換え、前記第1流路の回転部材を前記回転筒体
の内側表面に前記温排水の流れで駆動されるように固定
した被動羽根とし、前記第2流路の羽根を前記回転筒体
の外側表面に固定した水送り羽根としてなる熱電対利用
の温排水発電方法。 3. The method according to claim 1, wherein
The inner cylinder at the same position in the length direction of the first flow path;
The intermediate cylinder and the thermocouple between the two cylinders are
Rotation that can rotate around the central axis of the flow path while keeping the density
Replacing the rotating member of the first flow path with the rotating cylinder
Fixed on the inner surface of the so that it is driven by the flow of the warm drainage
Driven blade, and the blade of the second flow path is
Of thermocouples as water feed vanes fixed to the outer surface of a tree
Thermal wastewater power generation method.
側筒体の外側に間隙を介して同心的に設けた中間筒体、
前記間隙内に配置されて前記内側筒体の外周面に電気的
に絶縁して接触する一端と前記中間筒体の内周面に電気
的に絶縁して接触する他端と発生した起電力の出力部と
を有する熱電対、前記中間筒体の外側に第2流路を隔て
て同心的に設けた外側筒体を備えてなる熱電対利用の発
電装置において、前記内側筒体及び外側筒体と同軸的に
結合され前記第1流路及び第2流路の延長部を形成する
内方筒体及び外方筒体;前記内方筒体の内部位置に前記
内方筒体固定の支持腕で保持した歯車箱;前記歯車箱か
ら前記内方筒体の軸方向 に突出する羽根付き水平軸;前
記歯車箱から前記内方筒体を水密的に垂直に貫通し、歯
車箱内で前記水平軸の回転に応じて駆動される垂直軸;
及び前記垂直軸の前記第2流路の延長部内部分に取付け
られた羽根を備え、前記第1流路の延長部に流体が流れ
る時に前記羽根付き水平軸を回転させ、その水平軸回転
に応ずる垂直軸回転による前記第2流路の延長部内羽根
の回転によって前記第2流路の延長部内の流体を前記内
方筒体の軸方向に駆動してなる熱電対利用の温排水発電
装置。 4. An inner cylinder body having a first flow passage therein.
An intermediate cylinder provided concentrically outside the side cylinder via a gap,
It is arranged in the gap and electrically connected to the outer peripheral surface of the inner cylinder.
The one end that insulates and contacts the inner cylinder and the inner peripheral surface of the intermediate cylinder
The other end that is electrically insulated and in contact with the output of the generated electromotive force
Having a second flow path outside the intermediate cylindrical body
Of a thermocouple using a concentric outer cylinder
In the electric device, the inner cylinder and the outer cylinder may be coaxial.
Combined to form an extension of the first and second flow paths
An inner cylinder and an outer cylinder;
Gear box held by a support arm fixed to the inner cylinder;
Horizontal axis with blades protruding in the axial direction of the inner cylinder from the front; front
From the gear box, penetrate the inner cylinder vertically vertically in a watertight manner, and
A vertical axis driven in response to the rotation of the horizontal axis in the car case;
And attaching the vertical axis to an inner portion of an extension of the second flow path.
Fluid flows through an extension of the first flow path.
When the horizontal axis with the wings is rotated,
Inner blade of the extension of the second flow path by vertical axis rotation corresponding to
The fluid in the extension of the second flow path by the rotation of
A hot-water drainage power generator using a thermocouple driven in the axial direction of a rectangular cylinder .
筒体の軸方向に間隙をおいて前記外方筒体に穿った吸入
口及び吐出口、及び前記第2流路の延長部を前記吸入口
と吐出口との中間で区切る前記内方筒体と外方筒体との
間の環状仕切り壁を設け、前記歯車箱を前記環状仕切り
壁の片側における前記内方筒体の内部位置に保持してな
る熱電対利用の温排水発電装置。5. The power generator according to claim 4, wherein the suction port and the discharge port formed in the outer cylinder with a gap in the axial direction of the inner cylinder, and an extension of the second flow path. An annular partition wall is provided between the inner cylindrical body and the outer cylindrical body that is divided between the suction port and the discharge port, and the gear box is positioned inside the inner cylindrical body on one side of the annular partition wall. Thermal wastewater power generator using thermocouples held in
側筒体の外側に間隙を介して同心的に設けた中間筒体、
前記間隙内に配置されて前記内側筒体の外周面に電気的
に絶縁して接触する一端と前記中間筒体の内周面に電気
的に絶縁して接触する他端と発生した起電力の出力部と
を有する熱電対、前記中間筒体の外側に第2流路を隔て
て同心的に設けた外側筒体を備えてなる熱電対利用の発
電装置において、前記内側筒体及び外側筒体と同軸的に
結合され前記第1流路及び第2流路の延長部を形成する
内方筒体及び外方筒体;前記内方筒体の一部分を、前記
内方筒体上に軸方向間隔をおいて形成した円周方向の水
密軸受けの支持により、回転自在とした回転筒体;前記
回転筒体の内側に固定した羽根;及び前記回転筒体の外
周面上に形成した水送り羽根を備え、前記第1流路の延
長部に流体が流れる時に前記羽根付き回転筒体を回転さ
せ、前記回転筒体外周面上の水送り羽根の回転によって
前記第2流路の延長部内の流体を前記軸方向に駆動して
なる熱電対利用の温排水発電装置。 6. An inner cylinder body having a first flow passage therein.
An intermediate cylinder provided concentrically outside the side cylinder via a gap,
It is arranged in the gap and electrically connected to the outer peripheral surface of the inner cylinder.
The one end that insulates and contacts the inner cylinder and the inner peripheral surface of the intermediate cylinder
The other end that is electrically insulated and in contact with the output of the generated electromotive force
Having a second flow path outside the intermediate cylindrical body
Of a thermocouple using a concentric outer cylinder
An inner cylinder and an outer cylinder that are coaxially coupled to the inner cylinder and the outer cylinder to form extensions of the first flow path and the second flow path; A rotatable cylinder that is rotatable by supporting a part of the inner cylinder with a circumferential water-tight bearing formed at an axial interval; a blade fixed inside the rotatable cylinder; and the rotation a water feed blade formed on an outer peripheral surface of the cylindrical body, rotating the bladed rotary cylinder body when the fluid flow in the extension of the first flow path, the water feed vanes on the rotary tubular member outer peripheral surface A hot-water drainage power generation device using a thermocouple, wherein a fluid in an extension of the second flow path is driven in the axial direction by rotation.
筒体の軸方向に間隙をおいて前記外方筒体に穿った吸入
口及び吐出口、及び前記第2流路の延長部を前記吸入口
と吐出口との中間で区切る前記内方筒体と外方筒体との
間の環状仕切り壁を設け、前記回転筒体を前記環状仕切
り壁の少なくとも片側に形成してなる熱電対利用の温排
水発電装置。7. The power generating apparatus according to claim 6, wherein the suction port and the discharge port formed in the outer cylinder with a gap in the axial direction of the inner cylinder, and an extension of the second flow path. A thermocouple formed by providing an annular partition wall between the inner cylindrical body and the outer cylindrical body that is divided at an intermediate portion between the suction port and the discharge port, and forming the rotary cylindrical body on at least one side of the annular partition wall; Exhaust use
Water power generator.
記水送り羽根をらせん状羽根としてなる熱電対利用の温
排水発電装置。The power generation system of claim 8 according to claim 6 or 7, the water feed blade thermocouple use comprising a spiral blade temperature
Drainage power generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4331373A JP2648272B2 (en) | 1992-12-11 | 1992-12-11 | Thermal wastewater power generation method and apparatus using thermocouple |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4331373A JP2648272B2 (en) | 1992-12-11 | 1992-12-11 | Thermal wastewater power generation method and apparatus using thermocouple |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06177437A JPH06177437A (en) | 1994-06-24 |
JP2648272B2 true JP2648272B2 (en) | 1997-08-27 |
Family
ID=18242964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4331373A Expired - Lifetime JP2648272B2 (en) | 1992-12-11 | 1992-12-11 | Thermal wastewater power generation method and apparatus using thermocouple |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2648272B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002101912A1 (en) | 2001-06-07 | 2002-12-19 | Kabushiki Kaisha Meidensha | Thermoelectric effect device, direct energy conversion system, and energy conversion system |
JP4261890B2 (en) * | 2002-12-06 | 2009-04-30 | 義臣 近藤 | Thermoelectric device, direct energy conversion system, energy conversion system |
JP4534060B2 (en) * | 2005-04-08 | 2010-09-01 | 国立大学法人京都大学 | Thermoelectric generator, heat exchanger |
JP2009081970A (en) * | 2007-09-27 | 2009-04-16 | Ihi Marine United Inc | Thermoelectric generation set, and power generation system using thermoelectric generation set |
JP5095881B2 (en) | 2010-07-30 | 2012-12-12 | パナソニック株式会社 | Pipe-shaped thermoelectric power generation device and manufacturing method thereof, thermoelectric generator, method of generating electricity using thermoelectric generator, and method of generating electricity using thermoelectric generator |
JP6130171B2 (en) * | 2013-03-07 | 2017-05-17 | 理想計測株式会社 | Seawater salt removal system and method |
TWI851410B (en) * | 2023-09-13 | 2024-08-01 | 陳品升 | Thermocouple generating units, components and devices |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6085206A (en) * | 1983-10-17 | 1985-05-14 | Nissan Motor Co Ltd | Valve operation transfer device of internal-combustion engine |
-
1992
- 1992-12-11 JP JP4331373A patent/JP2648272B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06177437A (en) | 1994-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3936652A (en) | Power system | |
EP3212925B1 (en) | Combined wind and solar power generating system | |
JP2648272B2 (en) | Thermal wastewater power generation method and apparatus using thermocouple | |
BRPI1100587A2 (en) | heating system for a turbine | |
CN103401474A (en) | Magneto-calorific system | |
JPS63138166A (en) | Rotary joint | |
US4343291A (en) | Friction heat generator | |
WO2004054008A1 (en) | Thermoelectric effect apparatus, energy direct conversion system, and energy conversion system | |
KR101471530B1 (en) | Hydraulic turbine for power generation of geothermal energy system | |
CN115118088A (en) | Generator circulative cooling structure | |
CN212744223U (en) | Aerogenerator is with aircraft bonnet that is convenient for heat dissipation | |
CN207960971U (en) | It is vortexed heat-exchanger pump | |
JPS59173686A (en) | Heat exchanger for hot water storage tank | |
CN105781888A (en) | Efficient and safe wind driven generator | |
CN113294919A (en) | Positive displacement solar cavity heat absorber with rotary heat absorber | |
RU2412405C1 (en) | Wind-driven heat electric generator | |
CN220368566U (en) | Permanent magnet synchronous motor with good cooling and energy saving effects | |
CN212718644U (en) | Precooling combined flange plate | |
CN205377575U (en) | Two return circuit three -phase asynchronous motor of water -cooling | |
CN212033945U (en) | Hydropower station unit liquid cooling system | |
RU2319910C1 (en) | Device for solar hot water supply | |
RU36705U1 (en) | MECHANICAL HEAT GENERATOR | |
CN211405697U (en) | Heat dissipation formula dive motor | |
JPS58124676U (en) | Circulation pump for solar water heater | |
JP2021093877A (en) | Power generator |