JP2647960B2 - Speed control device for moving mirror - Google Patents

Speed control device for moving mirror

Info

Publication number
JP2647960B2
JP2647960B2 JP12393789A JP12393789A JP2647960B2 JP 2647960 B2 JP2647960 B2 JP 2647960B2 JP 12393789 A JP12393789 A JP 12393789A JP 12393789 A JP12393789 A JP 12393789A JP 2647960 B2 JP2647960 B2 JP 2647960B2
Authority
JP
Japan
Prior art keywords
signal
frequency
speed
mirror
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12393789A
Other languages
Japanese (ja)
Other versions
JPH02302632A (en
Inventor
浩二 増谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI KK
Original Assignee
NIPPON DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI KK filed Critical NIPPON DENSHI KK
Priority to JP12393789A priority Critical patent/JP2647960B2/en
Publication of JPH02302632A publication Critical patent/JPH02302632A/en
Application granted granted Critical
Publication of JP2647960B2 publication Critical patent/JP2647960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、干渉計を構成する移動鏡の速度制御を行う
速度制御装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed controller for controlling the speed of a movable mirror constituting an interferometer.

〔従来の技術〕[Conventional technology]

フーリエ変換赤外分光光度計では、マイケルソン干渉
計を使用し、光源からの光をマイケルソン干渉計で2光
束に分割した後、再び重ね合わせて検出器に導き、ここ
で得られたインタフェログラムをフーリエ変換して分光
透過曲線を求めている。この場合において、干渉計の移
動鏡の移動をモニタするのにレーザを光源とした干渉計
が用いられている。
In a Fourier transform infrared spectrophotometer, a Michelson interferometer was used to divide the light from the light source into two light beams with a Michelson interferometer, and then superimposed again and led to a detector, and the interferogram obtained here Is Fourier-transformed to obtain a spectral transmission curve. In this case, an interferometer using a laser as a light source is used to monitor the movement of the movable mirror of the interferometer.

レーザ光は単色光であるため、干渉計にレーザ光を入
力し2光束に分割して固定鏡と移動鏡で反射させ合成す
ると、移動鏡の移動に追従したコサイン波が得られる。
そこで、このコサイン波を使うことによって、移動鏡の
制御を行っている。
Since the laser light is monochromatic light, when the laser light is input to the interferometer, split into two light beams, reflected by the fixed mirror and the moving mirror, and combined, a cosine wave following the movement of the moving mirror is obtained.
Therefore, the movable mirror is controlled by using the cosine wave.

従来は、コサイン波がゼロ点を切る位置を検出してこ
のゼロ点間の時間間隔を計測し、その長短で移動鏡の移
動速度を制御する方式が一般に採用されている。つま
り、ゼロ点間の時間間隔でコサイン波の周期を測定し、
この周期を基に移動速度が目標速度となるようにフィー
ドバック制御している。
Conventionally, a method of detecting a position at which a cosine wave crosses a zero point, measuring a time interval between the zero points, and controlling the moving speed of the movable mirror according to the length thereof has been generally adopted. In other words, the cosine wave period is measured at the time interval between the zero points,
Based on this period, feedback control is performed so that the moving speed becomes the target speed.

また、上記の方式の場合には、低速になりゼロ点間の
時間間隔が長くなると、ゼロ点の中間における速度変動
に対応できない。そこで、低速でも高い精度の速度制御
が可能な方式としてベックマン(Beckman)方式が提案
された。
Further, in the case of the above-mentioned method, if the speed becomes low and the time interval between the zero points becomes long, it is impossible to cope with the speed fluctuation in the middle of the zero points. Therefore, the Beckman method has been proposed as a method capable of performing high-accuracy speed control even at a low speed.

ベックマン方式は、レーザ発振器の周りから磁界をか
けると、周波数がずれしかも逆方向に円偏光したレーザ
光にスプリットするというゼーマン(Zeeman)効果が偏
光を利用したものである。その概要を説明すると、周波
数f0のレーザ光は、磁界の中でゼーマン効果により周波
数f1のずれを有し、逆方向に円偏光したレーザ光が得ら
れる。次に、これをλ/4の位相板で円偏光から 垂直(f0+f1) 平行(f0−f1) の直線偏光に変えて干渉計に導入する。干渉計の移動鏡
では、移動速度vに比例した周波数f(=2v/λ)に対
応して 垂直(f0+f1+f) 平行(f0−f1−f) のようにドプラーシフトを起こす。他方、固定鏡側では
λ/2の位相板を使って 垂直(f0+f1)→(f0−f1) 平行(f0−f1)→(f0+f1) のように垂直と平行の入れ換えを行う。続いて両者に対
して偏光子を通して垂直成分を干渉(掛算)させ、ゼー
マン効果により生じたずれと移動鏡の速度の周波数成分 を検出器から得る。さらに、この検出器の出力に対して
基準信号(2f1+f′)を掛算し、ローパスフィルタを
通すことによって高い周波数を落とした(f−f′)の
信号を得る。そして、このようにして得られた(f−
f′)をゼロにするように移動鏡の速度を制御すること
によって、周波数f′で移動鏡の移動速度を設定し、制
御している。
The Beckman method utilizes polarization based on the Zeeman effect, in which when a magnetic field is applied from around a laser oscillator, the frequency shifts and the laser beam is split into circularly polarized laser light in the opposite direction. In brief, the laser light having the frequency f 0 has a shift of the frequency f 1 due to the Zeeman effect in a magnetic field, and a laser light circularly polarized in the opposite direction can be obtained. Next, this is changed from circularly polarized light to vertical (f 0 + f 1 ) parallel (f 0 −f 1 ) linearly polarized light by a λ / 4 phase plate and introduced into the interferometer. In the moving mirror of the interferometer, a Doppler shift occurs such as vertical (f 0 + f 1 + f) parallel (f 0 −f 1 −f) corresponding to the frequency f (= 2v / λ) proportional to the moving speed v. . On the other hand, on the fixed mirror side, using a λ / 2 phase plate, vertical (f 0 + f 1 ) → (f 0 −f 1 ) parallel (f 0 −f 1 ) → (f 0 + f 1 ) Perform a parallel swap. Then, a vertical component is caused to interfere (multiply) through a polarizer for both, and the shift caused by the Zeeman effect and the frequency component of the speed of the moving mirror are obtained. From the detector. Furthermore, to obtain a signal of the reference signal to the output of the detector (2f 1 + f ') multiplied by, dropped a higher frequency by passing the low-pass filter (f-f'). Then, the thus obtained (f-
By controlling the speed of the movable mirror so that f ') becomes zero, the moving speed of the movable mirror is set and controlled at the frequency f'.

上記のようにベックマン方式は、ゼーマン効果と偏光
をうまく利用して変調周波数を高めることによって、
(2f1+f)の分離を行っている。このため、移動鏡の
速度が遅くなっても制御可能であり、往復の制御も可能
となっている。
As mentioned above, the Beckman method utilizes the Zeeman effect and polarization to increase the modulation frequency,
(2f 1 + f) separation is performed. Therefore, control is possible even when the speed of the movable mirror is reduced, and reciprocation control is also possible.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前者のコサイン波のゼロ点を検出して
周期を測定する方式では、フィードバックが周期に相当
する時間だけ遅れるため、ループゲインを上げることが
できないという問題がある。また、速度が遅くなると、
ゼロ点間の周期が長くなり、ゼロ点の中間における速度
の変動に対応できない。
However, the former method of measuring the cycle by detecting the zero point of the cosine wave has a problem that the loop gain cannot be increased because the feedback is delayed by a time corresponding to the cycle. Also, when the speed slows down,
The period between the zero points becomes long, and it is impossible to cope with the speed fluctuation in the middle of the zero points.

後者のベックマン方式では、コントロールの点からみ
ると優れているが、磁界をかけたり、偏光をさせたりす
るため装置が大掛かりとなる。また、レーザ光に磁界を
かけたときのレーザ波長のシフト量を一定に保つため、
高い安定度を持った磁界をかけなければならず、制御が
大掛かりとなり、装置が複雑で高い精度のシステムを要
するという問題がある。
The latter Beckman method is excellent from a control point of view, but requires a large-scale device for applying a magnetic field or polarizing. In addition, in order to keep the amount of shift of the laser wavelength when a magnetic field is applied to the laser light constant,
There is a problem that a magnetic field having a high degree of stability must be applied, the control becomes large, and the apparatus requires a complicated and high-precision system.

本発明は、上記の課題を解決するものであって、簡単
な構成により高い精度で移動鏡の速度を制御することが
できる移動鏡の速度制御装置を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a moving mirror speed control device capable of controlling the speed of the moving mirror with high accuracy by a simple configuration.

〔課題を解決するための手段〕 そのために本発明は、干渉計を構成する移動鏡の速度
制御を行う装置であって、レーザ光を入力した干渉計か
ら振幅変調信号を検出する検出手段、一定の周波数信号
を発生する基準信号発生手段、前記振幅変調信号の周波
数と基準信号の周波数から位相の異なる2つの差周波数
信号を発生する差周波数信号発生手段、2つの差周波数
信号の一方を微分し他方と掛け合わせ制御信号を発生す
る制御信号発生手段、制御信号の符号に応じて移動鏡の
駆動電圧を制御する駆動手段を備えたことを特徴とする
ものである。
[Means for Solving the Problems] For this purpose, the present invention is an apparatus for controlling the speed of a moving mirror constituting an interferometer, wherein a detecting means for detecting an amplitude modulation signal from the interferometer input with laser light, A differential signal generating means for generating two differential frequency signals having different phases from the frequency of the amplitude modulation signal and the frequency of the reference signal, and differentiating one of the two differential frequency signals. A control signal generating means for generating a control signal for multiplication with the other, and a driving means for controlling a driving voltage of the movable mirror according to the sign of the control signal are provided.

〔作用〕[Action]

本発明の移動鏡の速度制御装置では、移動鏡の移動速
度に応じた振幅変調信号が検出手段から得られ、この信
号の周波数と基準信号の周波数から位相の異なる2つの
差周波数信号を発生し、2つの差周波数信号の一方を微
分した他方と掛け合わせると、基準信号の周波数から求
まる速度と移動鏡の移動速度との大小により正負極性が
異なる信号となるので、この信号で駆動手段の駆動電圧
を制御することにより移動鏡の移動速度を基準信号の周
波数で決まる速度にすることができる。
In the speed control apparatus for a moving mirror according to the present invention, an amplitude modulation signal corresponding to the moving speed of the moving mirror is obtained from the detecting means, and two difference frequency signals having different phases are generated from the frequency of this signal and the frequency of the reference signal. When one of the two difference frequency signals is multiplied by the other, the positive and negative polarities differ depending on the magnitude of the speed determined from the frequency of the reference signal and the moving speed of the movable mirror. By controlling the voltage, the moving speed of the movable mirror can be made a speed determined by the frequency of the reference signal.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Hereinafter, embodiments will be described with reference to the drawings.

第1図は本発明に係る移動鏡の速度制御装置の1実施
例を示す図であり、1はリニアモータ、2は移動鏡、3
は固定光、4は半透鏡、5はレーザ発振器、6は検出
器、7は基準信号発生器、8は差周波数信号発生回路、
9は微分回路、10は掛算回路、11は駆動回路を示す。
FIG. 1 is a diagram showing one embodiment of a speed control device for a moving mirror according to the present invention, wherein 1 is a linear motor, 2 is a moving mirror, 3
Is a fixed light, 4 is a semi-transparent mirror, 5 is a laser oscillator, 6 is a detector, 7 is a reference signal generator, 8 is a difference frequency signal generation circuit,
9 denotes a differentiating circuit, 10 denotes a multiplying circuit, and 11 denotes a driving circuit.

第1図において、移動鏡2の移動速度をv、レーザ光
の波長をλとすると、検出器6では、周波数fが、 f=2v/λ の信号が得られる。差周波数信号発生回路8は、この検
出器6の出力信号と移動鏡2の設定速度に相当する周波
数f′を持った基準信号から、位相が90℃ずれた2つの
差周波数信号出力、 (f−f′) (f−f′)(π/2) を発生させるものであり、例えば掛算器とローパスフィ
ルタを備えたもので構成することができ、ヘテロダイン
方式のロックインアンプや一般のロックインアンプでも
構成することができる。そして、差周波数信号発生回路
8の2つの差周波数信号出力のうち、一方だけ微分回路
9を通した後、両者を掛算回路10で掛け合わせる。
In FIG. 1, assuming that the moving speed of the movable mirror 2 is v and the wavelength of the laser beam is λ, the detector 6 obtains a signal having a frequency f of f = 2v / λ. The difference frequency signal generating circuit 8 outputs two difference frequency signals whose phases are shifted by 90 ° C. from the output signal of the detector 6 and a reference signal having a frequency f ′ corresponding to the set speed of the movable mirror 2. −f ′) (f−f ′) (π / 2), for example, can be configured with a multiplier and a low-pass filter, and can be configured with a heterodyne lock-in amplifier or a general lock-in. It can also be configured with an amplifier. Then, one of the two difference frequency signal outputs of the difference frequency signal generation circuit 8 passes through the differentiating circuit 9, and the two are multiplied by a multiplication circuit 10.

例えばロックインアンプを使った差周波数信号発生回
路8では、位相関係がπ/2ずれた信号 O1=cos{2π(f−f′)t+φ} O2=cos{2π(f−f′)t+φ+π/2} が得られるので、これらの信号を比較すると、移動鏡の
移動速度(f)が設定速度(f′)より大きいか小さい
かで位相関係の逆転が起こる。そこで、本発明は、信号
O1とO2の一方の位相をπ/2ずらし操作を行い、他方との
相関をとるようにするものであり、一方の信号O1を微分
して掛算を行うのがその手法の1つである。
For example, in the difference frequency signal generation circuit 8 using a lock-in amplifier, a signal O 1 = cos {2π (ff ′) t + φ} O 2 = cos {2π (ff ′) with a phase relationship shifted by π / 2. Since t + φ + π / 2} is obtained, when these signals are compared, the phase relationship is reversed depending on whether the moving speed (f) of the movable mirror is higher or lower than the set speed (f ′). Therefore, the present invention provides a signal
One of the methods is to perform the operation of shifting the phase of one of O 1 and O 2 by π / 2, and to take a correlation with the other. One of the methods is to differentiate one signal O 1 and perform multiplication. It is.

まず、信号O1を微分すると、 また、信号O2は、 O2=−sin{2π(f−f′)t+φ} となるから、相関をとるために両者を掛け合わせると、 となる。このような演算を行うと、式から明らかなよう
に第1項のπ(f−f′)は直流成分となり、fがf′
より大きいか小さいかにより符号が反転する。すなわ
ち、基準信号の周波数f′で決まる速度v′を、 v′=f′λ/2 とすると、移動鏡の速度vは、この基準信号の周波数
f′で決まるv′より速いか遅いかにより上記第1項の
正負の極性が変化する。なお、正負の極性は、2つの差
周波数間の90゜位相のずれの向きで異なるので、回路に
応じて正負の符号と移動鏡の速度の増減の制御方向が決
定される。
First, differentiating the signal O 1 gives Also, the signal O 2 is given by O 2 = −sin {2π (ff ′) t + φ}. Becomes When such an operation is performed, as is apparent from the equation, π (ff ′) of the first term becomes a DC component, and f becomes f ′
The sign is inverted depending on whether it is larger or smaller. That is, assuming that the speed v 'determined by the frequency f' of the reference signal is v '= f'λ / 2, the speed v of the movable mirror depends on whether it is faster or slower than v' determined by the frequency f 'of the reference signal. The positive and negative polarities of the first term change. Since the positive and negative polarities differ depending on the direction of the 90 ° phase shift between the two difference frequencies, the positive and negative signs and the control direction for increasing or decreasing the speed of the movable mirror are determined according to the circuit.

駆動回路11は、掛算回路10の出力の正負に応じてした
がって、この正負の符号に応じて移動鏡2のリニアモー
タ1の電圧を変えることにより移動鏡2をv′の速度に
制御する。
The drive circuit 11 controls the moving mirror 2 to the speed of v 'by changing the voltage of the linear motor 1 of the moving mirror 2 according to the sign of the output of the multiplying circuit 10 and accordingly to the sign of the sign.

駆動回路11は、リニアモータ2の電圧を変えることに
より移動鏡2の速度を制御するものであり、掛算回路19
から得られる上記第1項の出力が正か負かに応じてリニ
アモータ1に加える電圧を変えると、移動鏡2の速度v
を基準信号の周波数f′によって決まる速度v′に制御
することができる。
The drive circuit 11 controls the speed of the movable mirror 2 by changing the voltage of the linear motor 2, and a multiplication circuit 19
When the voltage applied to the linear motor 1 is changed according to whether the output of the first term obtained from the above is positive or negative, the speed v
Can be controlled to a speed v ′ determined by the frequency f ′ of the reference signal.

第2図はロックインアンプを使った差周波数信号発生
回路の構成例を示す図であり、21はプリアンプ、22はロ
ーパスフィルタ、23は合成回路、24はオシレータ、25は
バンドパスフィルタ、26と27はローパスアンプ、28はベ
クトルコンピュータ、29〜31は掛算回路を示す。この差
周波数信号発生回路は、レーザ干渉計からの出力信号、
すなわち移動鏡の移動速度vに対応する周波数fの信号
を検出器6からプリアンプ21に供給し、移動鏡の設定速
度v′に対応する周波数f′の正弦波信号を合成回路23
に供給することにより、上記式で示す位相関係がπ/2ず
れた信号O1、O2を生成し、ローパスアンプ26と27から出
力するものである。オシレータ24は、例えば設定速度
v′の信号の周波数f′が5kHz程度であるとすると、1M
Hz程度の高い周波数fiの信号を発生するものであり、こ
の信号を合成回路23で周波数f′の信号と合成し、さら
に掛算回路29で周波数fのレーザ干渉計の出力と掛け合
わせて(±f+f′+fi)の信号を得、後段の掛算回路
30と31で(−f+f′+fi)から を得てローパアンプ26と27で高周波成分を落としてい
る。図示の例は、このように一度高い周波数に変換して
側帯波の除去を行うヘテロダイン方式を採用したものを
示したが、直接検出器の信号と基準信号とを掛け合わせ
る一般のロックインアンプを用いても同様の出力を得る
ことができる。
FIG. 2 is a diagram showing a configuration example of a difference frequency signal generation circuit using a lock-in amplifier, wherein 21 is a preamplifier, 22 is a low-pass filter, 23 is a synthesis circuit, 24 is an oscillator, 25 is a band-pass filter, and 26 and 27 is a low-pass amplifier, 28 is a vector computer, and 29 to 31 are multiplication circuits. This difference frequency signal generation circuit outputs an output signal from the laser interferometer,
That is, a signal of a frequency f corresponding to the moving speed v of the movable mirror is supplied from the detector 6 to the preamplifier 21, and a sine wave signal of a frequency f 'corresponding to the set speed v' of the movable mirror is synthesized.
, The signals O 1 and O 2 whose phase relations shown in the above equation are shifted by π / 2 are generated and output from the low-pass amplifiers 26 and 27. If the frequency f 'of the signal at the set speed v' is about 5 kHz, for example,
A signal having a frequency f i as high as about Hz is generated. The signal is synthesized with a signal having a frequency f ′ by a synthesis circuit 23, and further multiplied by an output of a laser interferometer having a frequency f by a multiplication circuit 29 ( ± f + f '+ f i ), and the subsequent multiplication circuit
In 30 and 31 from (-f + f '+ f i ) And the high-frequency components are dropped by the low-amplifiers 26 and 27. In the illustrated example, the heterodyne method of once converting to a high frequency and removing the sideband is shown, but a general lock-in amplifier that directly multiplies the detector signal by the reference signal is used. The same output can be obtained by using the same.

なお、本発明は、上記の実施例に限定されるものでは
なく、種々の変形が可能である。例えば上記の実施例で
は、マイケルソン干渉計の移動鏡の速度を制御する構成
を示したが、2光束干渉計であれば他の干渉計にも同様
に適用できることは勿論である。また、フーリエ変換赤
外分光光度計に用いられる干渉計でなく、他の移動速度
を制御しようとする物体に干渉計の移動鏡を取り付け、
その物体の移動を制御するのに適用してもよい。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, the configuration for controlling the speed of the moving mirror of the Michelson interferometer has been described, but it goes without saying that the present invention can be similarly applied to other interferometers as long as they are two-beam interferometers. In addition, instead of the interferometer used for the Fourier transform infrared spectrophotometer, the moving mirror of the interferometer is attached to another object whose moving speed is to be controlled,
It may be applied to control the movement of the object.

〔発明の効果〕 以上の説明から明らかなように、本発明によれば、移
動鏡の移動速度に応じた信号の周波数と基準信号の周波
数から位相の異なる2つの差周波数信号を発生し、微
分、掛算の演算を行って移動鏡の駆動電圧を制御するの
で、従来の方式のように複雑な構成や回路を用いること
なく、高い精度で差周波数による移動鏡の制御を行うこ
とができる。
[Effects of the Invention] As is apparent from the above description, according to the present invention, two difference frequency signals having different phases are generated from the frequency of the signal corresponding to the moving speed of the movable mirror and the frequency of the reference signal, and the differential signal is generated. Since the driving voltage of the movable mirror is controlled by performing a multiplication operation, the movable mirror can be controlled with a high difference frequency with high accuracy without using a complicated configuration or circuit unlike the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る移動物体の速度制御方式の1実施
例を示す図、第2図はロックインアンプを使った差周波
数信号発生回路の構成例を示す図である。 1……リニアモータ、2……移動鏡、3……固定鏡、4
……半透鏡、5……レーザ発振器、6……検出器、7…
…基準信号発生器、8……差周波数信号発生回路、9…
…微分回路、10……掛算回路、11……駆動回路。
FIG. 1 is a diagram showing an embodiment of a moving object speed control method according to the present invention, and FIG. 2 is a diagram showing a configuration example of a difference frequency signal generation circuit using a lock-in amplifier. 1 ... linear motor, 2 ... moving mirror, 3 ... fixed mirror, 4
…… Semi-transparent mirror, 5 …… Laser oscillator, 6 …… Detector, 7…
... Reference signal generator, 8 ... Difference frequency signal generation circuit, 9 ...
... differentiation circuit, 10 ... multiplication circuit, 11 ... drive circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】干渉計にレーザ光を入力して移動鏡の速度
信号を検出し制御を行う装置であって、干渉計から振幅
変調信号を検出する検出手段、一定の周波数信号を発生
する基準信号発生手段、前記振幅変調信号の周波数と基
準信号の周波数から位相の異なる2つの差周波数信号を
発生する差周波数信号発生手段、2つの差周波数信号の
一方を微分し他方と掛け合わせ制御信号を発生する制御
信号発生手段、制御信号の符号に応じて移動鏡の駆動電
圧を制御する駆動手段を備えたことを特徴とする移動鏡
の速度制御装置。
An apparatus for detecting and controlling a speed signal of a movable mirror by inputting a laser beam to an interferometer, a detecting means for detecting an amplitude modulation signal from the interferometer, a reference for generating a constant frequency signal Signal generating means for generating two difference frequency signals having different phases from the frequency of the amplitude modulation signal and the frequency of the reference signal; differentiating one of the two difference frequency signals and multiplying the other by the other; A speed control device for a moving mirror, comprising: a control signal generating means for generating the driving signal; and a driving means for controlling a driving voltage of the moving mirror according to a sign of the control signal.
JP12393789A 1989-05-17 1989-05-17 Speed control device for moving mirror Expired - Fee Related JP2647960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12393789A JP2647960B2 (en) 1989-05-17 1989-05-17 Speed control device for moving mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12393789A JP2647960B2 (en) 1989-05-17 1989-05-17 Speed control device for moving mirror

Publications (2)

Publication Number Publication Date
JPH02302632A JPH02302632A (en) 1990-12-14
JP2647960B2 true JP2647960B2 (en) 1997-08-27

Family

ID=14873049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12393789A Expired - Fee Related JP2647960B2 (en) 1989-05-17 1989-05-17 Speed control device for moving mirror

Country Status (1)

Country Link
JP (1) JP2647960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270247A (en) * 1991-07-12 1993-12-14 Fujitsu Limited Atomic layer epitaxy of compound semiconductor
US5949740A (en) 1997-06-06 1999-09-07 Litton Systems, Inc. Unbalanced fiber optic Michelson interferometer as an optical pick-off

Also Published As

Publication number Publication date
JPH02302632A (en) 1990-12-14

Similar Documents

Publication Publication Date Title
JP3273500B2 (en) Apparatus and method for measuring variation in refractive index of gas in measurement path
US10883817B2 (en) Method for full-field measurement using dynamic laser doppler imaging
JP2792315B2 (en) Birefringence measurement device
US20090147267A1 (en) Laser doppler vibrometer employing active frequency feedback
US11561081B2 (en) Method for full-field measurement using dynamic laser doppler imaging
JP2647960B2 (en) Speed control device for moving mirror
Suzuki et al. Real-time displacement measurement using synchronous detection in a sinusoidal phase modulating interferometer
US5117440A (en) Digital quadrature phase detection
JP2647959B2 (en) Speed control device for moving mirror
Wang et al. Continual mechanical vibration trajectory tracking based on electro-optical heterodyne interferometry
JPH0749922B2 (en) Optical measuring device
JP7123333B2 (en) Displacement measuring device
WO2023062891A1 (en) Optical heterodyne interference measurement device and optical heterodyne interference measurement method
JPS63128211A (en) Spacing measuring method
JP2656624B2 (en) Interferometer tilt control method
Chien Two‐frequency displacement measurement interferometer based on a double‐heterodyne technique
JPS61283812A (en) Optical fiber gyroscope having wide dynamic range
JPH01320489A (en) Method and instrument for measuring distance
Nguyen et al. Displacement measurement using direct phase determination method for heterodyne interferometers
DUONG Sinusoidal phase modulation by electro-optic modulator for concurrently achieving iodine-frequency-stabilized laser diode and high-precision displacement-measuring interferometer
JP2003227704A (en) Method and device for measuring multiwavelength optical heterodyne interference
JP2024017359A (en) Optical device and spectroscopic instrument
EP3486624A1 (en) Wavefront detector
JPH06167304A (en) Displacement sensor
JP2970817B2 (en) Laser interferometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees