JP2646659B2 - Vacuum induction melting method - Google Patents

Vacuum induction melting method

Info

Publication number
JP2646659B2
JP2646659B2 JP63127190A JP12719088A JP2646659B2 JP 2646659 B2 JP2646659 B2 JP 2646659B2 JP 63127190 A JP63127190 A JP 63127190A JP 12719088 A JP12719088 A JP 12719088A JP 2646659 B2 JP2646659 B2 JP 2646659B2
Authority
JP
Japan
Prior art keywords
casting
torr
vacuum
induction melting
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63127190A
Other languages
Japanese (ja)
Other versions
JPH01299758A (en
Inventor
高橋  元
隆亘 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63127190A priority Critical patent/JP2646659B2/en
Publication of JPH01299758A publication Critical patent/JPH01299758A/en
Application granted granted Critical
Publication of JP2646659B2 publication Critical patent/JP2646659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の目的】[Object of the invention]

(産業上の利用分野) この発明は、ガスタービン,大型蒸気タービン,航空
宇宙機器,原子力設備などの各種構造体の素材として使
用される耐熱材料や、工具鋼,高速度工具鋼,ロール
鋼,軸受鋼などの鋼においてとくに優れた耐用寿命など
が要求される材料など、高度の品質を要求される高級金
属を溶解鋳造するのに利用される真空誘導溶解鋳造法に
関するものである。 (従来の技術) 従来、この種の高品質の高級金属を溶解鋳造する方法
としては、真空誘導溶解鋳造法、真空アーク再溶解鋳造
法,エレクトロスラグ再溶解鋳造法などがあり、それぞ
れに長所および短所を有していた。 これらのうち、真空誘導溶解鋳造法は、真空タンク内
に設置した真空誘導溶解炉により、真空(10-1〜10-3To
rr)ないし減圧不活性ガス雰囲気(100〜200Torr)下で
原材料を溶解し、同真空タンク内において真空(10-1
10-3Torr)ないし減圧不活性ガス雰囲気(100〜200Tor
r)下でパウダー類を使用しないまま裸湯鋳造するのが
一般的である。 (発明が解決しようとする課題) このような真空誘導溶解鋳造法では、上述したように
パウダー類を使用しないまま裸湯鋳造を行うのが一般的
であったため、溶湯と鋳型内面とが直接的に接触するこ
ととなり、鋳型内面との接触による温度低下等によって
湯じわや湯かむりなどの鋳造欠陥が発生しやすく、また
鋳型劣化等によって鋳肌不良などの鋳造欠陥が発生しや
すく、表面品質の劣ったものになりやすいという問題点
があった。 そこで、通常の大気鋳造で行われているように、パウ
ダー類を使用して、上述した鋳造欠陥の発生を防止しよ
うとすることも考えられなくはないが、真空(10-1〜10
-3Torr)ないし減圧不活性ガス雰囲気(100〜200Torr)
下の鋳造においてパウダー類を使用すると、C−O反応
あるいは[H]起因と思われるブローホールがパウダー
付着部に発生し、肌荒れを生じやすく、表面品質および
内部品質は逆に低下してしまうという問題点があった。 このように、従来の真空誘導溶解鋳造法では、表面品
質の劣ったものになりやすく、鋳造後のグラインダ等に
よる削り量が多くなり、減耗率が高いものになりやすい
という課題を有していた。 (発明の目的) この発明は、このような従来の課題を解決するために
なされたもので、鋳造後の鋳塊の表面品質および内部品
質がともに良好であり、グラインダ等による削り量が少
なくてすむため減耗率を低いものにすることが可能であ
る真空溶解鋳造法を提供することを目的としている。
(Industrial application field) The present invention relates to heat-resistant materials used as materials for various structures such as gas turbines, large-sized steam turbines, aerospace equipment, nuclear facilities, tool steel, high-speed tool steel, roll steel, The present invention relates to a vacuum induction melting and casting method used for melting and casting high-grade metals that require high quality, such as materials requiring particularly excellent service life in steels such as bearing steel. (Prior art) Conventionally, methods of melting and casting this kind of high-quality high-grade metal include a vacuum induction melting casting method, a vacuum arc remelting casting method, an electroslag remelting casting method, and the like. Had disadvantages. Among these, the vacuum induction melting casting method uses a vacuum induction melting furnace installed in a vacuum tank to form a vacuum (10 -1 to 10 -3 To
rr) or the raw materials are dissolved in a reduced pressure inert gas atmosphere (100 to 200 Torr), and a vacuum (10 -1 to
10 -3 Torr) or reduced pressure inert gas atmosphere (100 to 200 Torr)
r) It is common to cast bare water without using powders below. (Problems to be Solved by the Invention) In such a vacuum induction melting and casting method, as described above, it is common to perform bare-metal casting without using powders, so that the molten metal and the inner surface of the mold directly. , And casting defects such as hot water wrinkles and hot water are likely to occur due to temperature drop etc. due to contact with the inner surface of the mold, and casting defects such as poor casting surface due to mold deterioration etc. However, there is a problem that it tends to be inferior. Therefore, it is not conceivable to try to prevent the above-mentioned casting defects from occurring by using powders as in the case of ordinary atmospheric casting. However, vacuum (10 -1 to 10
-3 Torr) or reduced pressure inert gas atmosphere (100-200 Torr)
When powders are used in the lower casting, blowholes, which are considered to be due to the C—O reaction or [H], are generated in the powder-attached portion, and the surface is likely to be rough, and the surface quality and the internal quality are degraded. There was a problem. As described above, the conventional vacuum induction melting casting method has a problem that the surface quality tends to be inferior, the amount of shaving by a grinder or the like after casting increases, and the wear rate tends to be high. . (Object of the Invention) The present invention has been made to solve such a conventional problem, and the surface quality and internal quality of an ingot after casting are both good, and the amount of shaving by a grinder or the like is small. Accordingly, it is an object of the present invention to provide a vacuum melting casting method capable of reducing a wear rate.

【発明の構成】Configuration of the Invention

(課題を解決するための手段) この発明は、タンク内に設置した真空誘導溶解炉によ
り、真空ないし減圧不活性ガス雰囲気下で原材料を溶解
し、同タンク内で鋳造を行う方法において、鋳造時には
前記タンク内を400Torr以上の不活性ガス雰囲気にし且
つ被覆用パウダーを使用して鋳造を行うようにしたこと
を特徴としており、このような鋳造法を従来の課題を解
決するための手段としたものである。 この発明が適用される真空誘導溶解炉の構造はとくに
限定されず、例えば、内部に溶解室と鋳型室とをもつ密
閉タンク、前記溶解室に設置され且つ誘導コイルを備え
た炉体、前記鋳型室に配置される上注鋳型または下注鋳
型、真空排気系,不活性ガス供給系,電源,原料装入装
置などを備えたものが用いられる。 また、原料の装入方法についてもとくに限定されず、
冷材装入法(コールドチャージ)や溶融金属装入法(ホ
ットチャージ)などが採用される。 さらに、原料そのものの材質においてもとくに限定さ
れず、各種の工具鋼,ロール鋼や軸受鋼あるいはその他
の鋼が適用され、かつまたNi基などの耐熱合金などにも
適用される。そして、例えばAl,Ti含有鋼などのように
大気中鋳込みでは酸化被膜が形成されやすいものに適用
すると有効である。 さらにまた、この発明に係る真空誘導溶解鋳造法にお
いては、鋳造時にはタンク内0を400Torr以上の不活性
ガス雰囲気にし且つ被覆用パウダーを使用して鋳造を行
うが、この場合、雰囲気圧力が400Torr未満であると、
被覆用パウダーの反応が生じて鋳肌の品質を低下させる
ので、400Torr以上とする必要がある。そして、鋳造時
に雰囲気圧力を400Torr以上とするのに用いる不活性ガ
スとしては、通常はアルゴンガスが用いられ、その他、
窒素ガスなどの不活性なガスが適宜選択して用いられ
る。 また、前記被覆用パウダーの鋳型内への設置に際して
は、鋳型底部への入れ置き方式としたり、鋳型内部への
吊り下げ方式としたりすることが可能であり、適宜選定
して採用することが望ましい。また、鋳造に際しては、
鋳型温度を50〜130℃程度にしておくことも必要に応じ
て望ましい。すなわち、鋳造温度が低すぎると湯じわに
よる鋳肌不良を生じやすく、鋳型温度が高すぎるとボイ
リングの跡と思われる穴状(あばた状)の欠陥ができや
すくなるためである。 この被覆用パウダーとしては、SiO2,CaO,Al2O3などを
主成分とし、その他Fe2O3などを含むものが使用され、
C−O反応によるボイリングの発生を抑制するために
は、T・C(トータル炭素)量が0.5%以下のものを使
用することが望ましい。また、被覆用パウダーの使用量
が多すぎると、無滓化残存パウダーの発生量が多くな
り、鋳塊に無滓化パウダーが付着して品質の低下したも
のとなりやすいので、被覆用パウダーは最適使用すると
が望ましい。 (作用) タンク内に設置した真空誘導溶解炉内に原材料を装入
し、真空(10-1〜10-3Torr)ないし減圧不活性ガス雰囲
気(100〜200Torr)下において原材料を溶解し、例えば
真空下での溶解の場合には解け落ち直前の突沸減少を防
ぐため、投入電力の調整,不活性ガス導入などの操作を
適宜行う。 この真空誘導溶解においては、溶鋼等の溶融金属が真
空ないし減圧下において長時間保持されるので、C−O
反応,脱ガス反応,蒸発,耐火物反応など、真空(減
圧)精錬に関係する反応が進行する。 この真空誘導溶解後には鋳型内への出鋼を行うが、こ
の出鋼に際しては、タンク内部の圧力を400Torr以上の
不活性ガス雰囲気にすると共に、鋳型内に被覆用パウダ
ーを設置しておく。 この状態で出鋼を開始して、溶鋼等の溶融金属を鋳型
内に供給し、溶融金属表面を被覆用パウダーにより被覆
しながら、そして溶融金属と鋳型内面との間に被覆用パ
ウダーを介在させながら、すなわち、溶融金属と鋳型内
面との間の直接的な接触を防止しながら、鋳型内に溶融
金属を順次供給していく。 このとき、タンク内部の圧力は、400Torr以上の不活
性ガス雰囲気となっているので、従来の真空(10-1〜10
-3Torr)ないし減圧不活性ガス雰囲気(100〜200Torr)
下での鋳造の場合のようにC−O反応や脱[H]反応な
どによるボイリングに起因する被覆用パウダーの巻き込
みがなくなり、パウダー付着部にブローホールが発生す
るという不具合がなくなり、この結果、この発明に係る
真空誘導溶解鋳造法では、鋳造時の被覆用パウダーによ
る湯面被膜が良好でかつ鋳造後における鋳塊の表面肌も
良好なものとなる。 (実施例) タンク内に設置した真空誘導溶解炉内に15.5%Cr−0.
7%Al−2.5%Ti−7.0%Fe−1.0%Nb−NiよりなるNi基合
金原材料を装入し、真空下(約10-2Torr)において前記
原材料を溶解して、1.3ton鋳塊製造用の溶融金属を溶製
した。 次いで、タンク内部にアルゴンガスを送り込んで各タ
ンク内部を第1表に示すように100Torr,200Torr,500Tor
rおよび700Torrにし、また、鋳型としては注入管を通し
て鋳型内に溶融金属を鋳込む下注ぎ鋳型を用い、一部の
鋳型内には、T・C:0.2%,SiO2:38%,Al2O3:5%,CaO:44
%,Fe2O3:2%,その他:10.8%からなる被覆用パウダー
(滓化温度;1160℃,これを「パウダーA」とする。)
と、T・C:0.1%,SiO2:54%,Al2O3:7%,CaO:30%,Fe
2O3:3%,その他:5.9%からなる被覆用パウダー(滓化
温度;1220℃,これを「パウダーB」とする。)とを入
れ置きまたは吊り下げにより同じく第1表に示す組み合
わせで設定した状態で鋳造を行い、鋳造時における湯面
被膜状況を観察すると共に、鋳造後の鋳塊肌を調べた。
この結果を同じく第1表に示す。なお、第1表におい
て、◎は著しく良好であったこと、○は良好であったこ
と、×は不良であったことを示す。 第1表に示す結果より明らかなように、真空ないし減
圧下での裸湯鋳造を行ったNo.1(従来例)の場合には、
溶融金属と鋳型内面とが直接的に接触するため、湯じわ
や湯かむり等による鋳肌不良が発生していた。 また、鋳造圧力を100Torrとしかつ被覆用パウダーを
入れ置きにより使用したNo.2(比較例)および鋳造圧力
を200Torrとしかつ被覆用パウダーを吊り下げにより使
用したNo.5(比較例)の場合にはいずれも全面ブローが
発生し、鋳塊肌の良好なものを得ることができなかっ
た。 これに対し、鋳造時圧力を500Torr,700Torrとしかつ
被覆用パウダーを使用したNo.3,4,6,7,8,の場合には、
鋳造時の湯面被覆状況が著しく良好であり、被覆用パウ
ダーの入れ置き量が多目であるNo.3では底部にパウダー
付着がみられたものの、被覆用パウダーの入れ置き量が
適切であるNo.6,7,8では鋳塊底部にパウダーの巻込みが
ないし著しく良好な鋳塊肌のものを得ることができた。
また、被覆用パウダーの入れ置きを全く実施しないNo.4
では、鋳塊最底部でのパウダー効果は認められなかっ
た。したがって、被覆用パウダーの入れ置き量が多目で
あるNo.3のように底部にパウダー付着がないようにする
とともに鋳塊底部でのパウダー効果を発揮させるために
は、No.6,7,8に示すようにパウダーの入れ置き量および
吊り下げ量をいずれにも適量にすることが好ましいこと
が確かめられた。 このようにして得た各鋳塊において、グラインダ仕上
げを行った際のNo.1鋳塊の減耗量は約7%であったのに
対し、No.4鋳塊の減耗量は約1.5%であり、グラインダ
仕上げの際の減耗量をかなり少なくでき、これに伴って
グライダ能率を大幅に向上させることが可能となった。
(Means for Solving the Problems) The present invention relates to a method in which raw materials are melted in a vacuum or a reduced-pressure inert gas atmosphere by a vacuum induction melting furnace installed in a tank and casting is performed in the tank. The method is characterized in that the inside of the tank is made an inert gas atmosphere of 400 Torr or more and casting is performed using a coating powder, and such a casting method is used as a means for solving the conventional problems. It is. The structure of the vacuum induction melting furnace to which the present invention is applied is not particularly limited. For example, a closed tank having a melting chamber and a mold chamber therein, a furnace body provided in the melting chamber and having an induction coil, the mold A mold provided with an upper casting mold or a lower casting mold placed in a chamber, a vacuum exhaust system, an inert gas supply system, a power supply, a raw material charging device, or the like is used. Also, the method of charging the raw materials is not particularly limited,
A cold material charging method (cold charge), a molten metal charging method (hot charge), and the like are employed. Furthermore, the material of the raw material itself is not particularly limited, and various tool steels, roll steels, bearing steels, and other steels are applied, and also applied to heat-resistant alloys such as Ni base. Then, it is effective to apply the present invention to a material in which an oxide film is easily formed by casting in the atmosphere, such as Al and Ti-containing steel. Furthermore, in the vacuum induction melting casting method according to the present invention, at the time of casting, the inside of the tank is set to an inert gas atmosphere of 400 Torr or more and casting is performed using a coating powder. In this case, the atmosphere pressure is less than 400 Torr. Is
Since the reaction of the coating powder occurs to lower the quality of the casting surface, the pressure needs to be 400 Torr or more. And, as the inert gas used to increase the atmospheric pressure to 400 Torr or more at the time of casting, usually, argon gas is used.
An inert gas such as a nitrogen gas is appropriately selected and used. When the coating powder is placed in the mold, it may be placed in the bottom of the mold or may be suspended in the mold. . In casting,
It is also desirable to keep the mold temperature at about 50 to 130 ° C. if necessary. That is, if the casting temperature is too low, casting surface defects due to hot water wrinkles are likely to occur, and if the mold temperature is too high, hole-like (pock-like) defects likely to be traces of boiling are likely to occur. As the coating powder, those containing SiO 2 , CaO, Al 2 O 3, etc. as a main component and other Fe 2 O 3, etc. are used.
In order to suppress the occurrence of boiling due to the CO reaction, it is desirable to use one having a TC (total carbon) amount of 0.5% or less. Also, if the amount of the coating powder used is too large, the amount of residual powder remaining without slag increases, and the slag-free powder adheres to the ingot and the quality tends to deteriorate, so the coating powder is optimal. It is desirable to use. (Operation) Raw materials are charged into a vacuum induction melting furnace installed in a tank, and the raw materials are dissolved under a vacuum (10 -1 to 10 -3 Torr) or a reduced pressure inert gas atmosphere (100 to 200 Torr). In the case of melting under vacuum, operations such as adjustment of input power and introduction of an inert gas are appropriately performed in order to prevent bumping immediately before melting. In this vacuum induction melting, since molten metal such as molten steel is held for a long time under vacuum or reduced pressure, CO
Reactions related to vacuum (reduced pressure) refining such as reaction, degassing reaction, evaporation, and refractory reaction proceed. After this vacuum induction melting, tapping into the mold is performed. In this tapping, the pressure in the tank is set to an inert gas atmosphere of 400 Torr or more, and a coating powder is set in the mold. In this state, tapping is started, molten metal such as molten steel is supplied into the mold, and the molten metal surface is coated with the coating powder, and the coating powder is interposed between the molten metal and the inner surface of the mold. In other words, the molten metal is sequentially supplied into the mold while preventing direct contact between the molten metal and the inner surface of the mold. At this time, since the pressure inside the tank is an inert gas atmosphere of 400 Torr or more, the conventional vacuum (10 -1 to 10
-3 Torr) or reduced pressure inert gas atmosphere (100-200 Torr)
As in the case of casting below, entrapment of the coating powder caused by boiling due to a C—O reaction or de [H] reaction is eliminated, and a defect that a blow hole is generated in the powder attachment portion is eliminated. As a result, In the vacuum induction melting casting method according to the present invention, the molten metal surface coating by the coating powder during casting is good, and the surface of the ingot after casting is also good. (Example) In a vacuum induction melting furnace installed in a tank, 15.5% Cr-0.
Charge a Ni-based alloy raw material consisting of 7% Al-2.5% Ti-7.0% Fe-1.0% Nb-Ni and melt it under vacuum (about 10 -2 Torr) to produce a 1.3ton ingot. Of molten metal for use. Next, argon gas was fed into the tanks, and the insides of the tanks were changed to 100 Torr, 200 Torr, and 500 Torr as shown in Table 1.
r and 700 Torr, and a casting mold for casting a molten metal through an injection tube into the casting mold is used. In some of the casting molds, T · C: 0.2%, SiO 2 : 38%, Al 2 O 3 : 5%, CaO: 44
%, Fe 2 O 3 : 2%, others: 10.8% (for slagging temperature; 1160 ° C, this is referred to as “powder A”)
When, T · C: 0.1%, SiO 2: 54%, Al 2 O 3: 7%, CaO: 30%, Fe
2 O 3 : 3%, Others: 5.9% of the coating powder (slagging temperature: 1220 ° C, which is referred to as “powder B”) consisting of 3% and others: 5.9% by placing or suspending as shown in Table 1 Casting was performed in the set state, the state of the molten metal surface coating at the time of casting was observed, and the ingot surface after casting was examined.
The results are also shown in Table 1. In Table 1, ◎ indicates extremely good, 著 し く indicates good, and × indicates bad. As is evident from the results shown in Table 1, in the case of No. 1 (conventional example) in which bare metal casting was performed under vacuum or reduced pressure,
Since the molten metal and the inner surface of the mold are in direct contact with each other, a casting surface defect due to hot water wrinkles, hot water baking, or the like has occurred. In the case of No. 2 (Comparative Example) in which the casting pressure was 100 Torr and the coating powder was placed and used, and in the case of No. 5 (Comparative Example) in which the casting pressure was 200 Torr and the coating powder was used by hanging. In each case, the entire surface was blown, and a good ingot surface could not be obtained. On the other hand, in the case of No. 3, 4, 6, 7, 8, using a casting pressure of 500 Torr, 700 Torr and using a coating powder,
No.3 where the surface coverage of the molten metal during casting was extremely good and the amount of powder to cover was large, although powder adhered to the bottom of No.3, the amount of powder to cover was appropriate. In Nos. 6, 7, and 8, there was no powder entanglement at the bottom of the ingot, and a very good ingot surface could be obtained.
No.4 which does not put powder for coating at all
Showed no powder effect at the bottom of the ingot. Therefore, in order to prevent the powder from adhering to the bottom as shown in No. 3 where the amount of powder for coating is large, and to exert the powder effect at the bottom of the ingot, No. 6, 7, As shown in FIG. 8, it was confirmed that it is preferable to set both the amount of powder to be put and the amount of suspension to an appropriate amount. In each ingot obtained in this way, the No. 1 ingot lost about 7% when the grinder finishing was performed, while the No. 4 ingot lost about 1.5%. In addition, the amount of wear at the time of finishing the grinder can be considerably reduced, and accordingly, the glider efficiency can be greatly improved.

【発明の効果】【The invention's effect】

以上説明してきたように、この発明に係る真空誘導溶
解鋳造法では、タンク内に設置した真空誘導溶解炉によ
り、真空ないし減圧不活性ガス雰囲気下で原材料を溶解
し、同タンク内で鋳造を行う方法において、鋳造時には
前記タンク内を400Torr以上の不活性ガス雰囲気にし且
つ被覆用パウダーを使用して鋳造を行うようにしたもの
であるから、鋳造後における鋳塊の表面品質および内部
品質がともに良好であり、グラインダ等による削り量が
少なくて済むため減耗率を低いものにすることが可能で
あり、グラインダ能率を向上させることができるととも
に鋳塊歩留りを大幅に向上させることができるという著
大なる効果がもたらされる。
As described above, in the vacuum induction melting and casting method according to the present invention, the raw materials are melted in a vacuum or reduced pressure inert gas atmosphere by the vacuum induction melting furnace installed in the tank, and casting is performed in the same tank. In the method, at the time of casting, the inside of the tank is set to an inert gas atmosphere of 400 Torr or more and casting is performed using coating powder, so that both the surface quality and the internal quality of the ingot after casting are good. Therefore, the amount of shaving by a grinder or the like can be reduced, so that the wear rate can be reduced, and the grinder efficiency can be improved and the ingot yield can be significantly improved. The effect is brought.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】タンク内に設置した真空誘導溶解炉によ
り、真空ないし減圧不活性ガス雰囲気下で原材料を溶解
し、同タンク内で鋳造を行う方法において、鋳造時には
前記タンク内を400Torr以上の不活性ガス雰囲気にし且
つ被覆用パウダーを使用して鋳造を行うことを特徴とす
る真空誘導溶解鋳造法。
1. A method of melting raw materials in a vacuum or reduced pressure inert gas atmosphere by means of a vacuum induction melting furnace installed in a tank and performing casting in the tank. A vacuum induction melting casting method characterized by casting in an active gas atmosphere and using a coating powder.
JP63127190A 1988-05-26 1988-05-26 Vacuum induction melting method Expired - Lifetime JP2646659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127190A JP2646659B2 (en) 1988-05-26 1988-05-26 Vacuum induction melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127190A JP2646659B2 (en) 1988-05-26 1988-05-26 Vacuum induction melting method

Publications (2)

Publication Number Publication Date
JPH01299758A JPH01299758A (en) 1989-12-04
JP2646659B2 true JP2646659B2 (en) 1997-08-27

Family

ID=14953915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127190A Expired - Lifetime JP2646659B2 (en) 1988-05-26 1988-05-26 Vacuum induction melting method

Country Status (1)

Country Link
JP (1) JP2646659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731105B2 (en) * 1993-11-02 1998-03-25 日本碍子株式会社 Manufacturing method of high purity non-porous beryllium block
CN105344949B (en) * 2015-11-20 2017-08-25 华南理工大学 A kind of manufacture of iron and steel by melting molds new technology

Also Published As

Publication number Publication date
JPH01299758A (en) 1989-12-04

Similar Documents

Publication Publication Date Title
US5226946A (en) Vacuum melting/casting method to reduce inclusions
US11124861B2 (en) Processes for producing low nitrogen essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
US7967057B2 (en) Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP2007154214A (en) METHOD FOR REFINING ULTRAHIGH PURITY Fe-BASE, Ni-BASE AND Co-BASE ALLOY MATERIALS
CN110358930B (en) Electroslag remelting slag capable of protecting sulfur and electroslag remelting method
JP3571212B2 (en) Metal and alloy melting method and melting casting method
JP2646659B2 (en) Vacuum induction melting method
CN113355584A (en) High-cobalt high-molybdenum superhard high-speed steel and method for improving hot working performance thereof
JP2011021229A (en) Method for producing ultrahigh purity alloy ingot
CA2525559A1 (en) Method for recovering metallic elements, especially metallic chromium, from slag containing metal oxides in an electric-arc furnace
US3501291A (en) Method for introducing lithium into high melting alloys and steels
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
US3993474A (en) Fluid mold casting slag
EP3941657B1 (en) A method for manufacturing a steel ingot
Aikin Jr Castings and Processing of Uranium and Uranium Alloys
KR101441302B1 (en) Stainless steel and method of manufacturing the same
US3030706A (en) Aluminum coated welding electrode and method of producing the same
CN106282611A (en) High temperature alloy slag system gas shield technology
CN114480870A (en) Electroslag remelting method for titanium-containing iron-nickel base alloy
US2096317A (en) Method of utilizing stainless steel scrap
CN116254452A (en) Smelting method for reducing gas content in Ti-containing Al-containing iron-nickel base alloy
CN115896506A (en) Preparation technology of low segregation GH3230 alloy high-quality slab
CN117802332A (en) Control and removal method for nonmetallic inclusion in nickel-based superalloy vacuum induction smelting process
Cremisio et al. Vacuum Duplexing—A Fresh Look at Existing Melting Techniques
JPH1099962A (en) Manufacture of cast ingot