JP2646302B2 - Fluid push-in nozzle - Google Patents

Fluid push-in nozzle

Info

Publication number
JP2646302B2
JP2646302B2 JP11069091A JP11069091A JP2646302B2 JP 2646302 B2 JP2646302 B2 JP 2646302B2 JP 11069091 A JP11069091 A JP 11069091A JP 11069091 A JP11069091 A JP 11069091A JP 2646302 B2 JP2646302 B2 JP 2646302B2
Authority
JP
Japan
Prior art keywords
fluid
yarn
nozzle
stagnation
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11069091A
Other languages
Japanese (ja)
Other versions
JPH04316622A (en
Inventor
浩二 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11069091A priority Critical patent/JP2646302B2/en
Publication of JPH04316622A publication Critical patent/JPH04316622A/en
Application granted granted Critical
Publication of JP2646302B2 publication Critical patent/JP2646302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes
    • D02G1/122Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes introducing the filaments in the stuffer box by means of a fluid jet

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性合成繊維糸条
の捲縮加工装置に使用される流体押し込みノズルの改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a fluid pushing nozzle used in a crimping apparatus for thermoplastic synthetic fiber yarn.

【0002】[0002]

【従来の技術】近年、糸条の捲縮加工に際し、その高速
加工性および装置のコンパクト化が可能なことから、糸
条を加熱流体噴射ノズルを用い、加熱流体により圧縮室
に押し込んで捲縮を付与する、いわゆる流体押し込み加
工方法が検討されている。すなわち、流体押し込み加工
方法によれば、加熱流体噴射ノズル内の加熱流体による
糸条の可塑化、および流体により圧縮室に押し込まれる
際の賦形により糸条を効率よく捲縮加工することができ
るため、高速加工が可能となり、また捲縮加工装置も加
熱流体噴射ノズルに連設したものであるため、設備も極
めてコンパクトになる。
2. Description of the Related Art In recent years, at the time of crimping of a yarn, the yarn is pushed into a compression chamber by a heating fluid using a heating fluid injection nozzle, because the yarn can be processed at high speed and the apparatus can be made compact. , A so-called fluid indentation processing method is being studied. That is, according to the fluid indentation method, the yarn can be efficiently crimped by plasticizing the yarn by the heating fluid in the heating fluid injection nozzle and shaping when the yarn is pushed into the compression chamber by the fluid. Therefore, high-speed processing becomes possible, and since the crimping apparatus is also connected to the heated fluid injection nozzle, the equipment becomes extremely compact.

【0003】しかし、かかる流体押し込み法において
は、圧縮室内での糸条の押し込み開始点(ノズルより圧
縮室内にすでに押し込まれている糸条塊までの距離)、
充填密度、滞留解舒点あるいは糸条の冷却状態によって
得られる捲縮糸条の品質(捲縮率、染着率など)が変化
するため、安定した均一な製品を得ることが難しい。こ
れらの観点に基づいて、糸条の引き出し方向に逆行する
ごとく冷却流体(空気)を圧縮室に吹き込むことによ
り、糸条の捲縮固定と冷却媒体の背圧による圧縮室内で
の糸条の捲縮を促進する方法(および装置)が提案され
ている(特開昭47−25450号公報、同49−71
242号公報、同50−123962号公報、特公昭5
0−33176号公報など参照)。
However, in such a fluid pushing method, the starting point of pushing the yarn in the compression chamber (the distance from the nozzle to the thread mass already pushed into the compression chamber),
Since the quality (crimp rate, dyeing rate, etc.) of the obtained crimped yarn changes depending on the packing density, the stay unwinding point or the cooling state of the yarn, it is difficult to obtain a stable and uniform product. Based on these viewpoints, the cooling fluid (air) is blown into the compression chamber in such a way as to go back in the direction in which the yarn is pulled out, so that the yarn is crimped and fixed, and the yarn is wound in the compression chamber by the back pressure of the cooling medium. A method (and apparatus) for promoting shrinkage has been proposed (JP-A-47-25450, 49-71).
No. 242, No. 50-123962, Japanese Patent Publication No. 5
0-33176).

【0004】しかし、これらの方法では、いずれも圧縮
室から加熱流体および冷却流体の両者を共に排出するよ
うになっているため、圧縮室内での両流体の圧力バラン
スを調整することが困難であり、該室内における糸条の
押し込み開始点、充填密度、滞留解舒点などの変動を来
しやすい。これらの現象を防止するため、圧縮室の流体
排出口に圧力調整弁を設けて圧縮室内における両流体の
圧力を調整する手段もで提案されているが(特開昭47
−25450号公報参照)、装置が複雑で実用上問題が
ある。これらの問題点については、長手方向にスリット
状の加熱流体排出口を有する圧縮室と冷却流体供給装置
との間に、冷却流体を半径方向に排出するための複数の
細孔を長手方向に多段に設けた滞留調節室を設置し、該
室より冷却流体を排出するようになすと、極めて安定し
た良好な捲縮糸条が得られることを見出だし、加熱流体
噴射ノズル、加熱流体排出口を有する圧縮室、冷却流体
排出口を有する滞留調整室、および冷却流体を加熱流体
の噴射方向とは反対方向に供給する冷却流体供給装置を
順次組み合わせた糸条の捲縮加工装置がすでに提案され
ている(特公昭56−37339号公報参照)。さら
に、これらの流体押し込みノズルを半割れにして、糸掛
け性を容易にしたノズルも、特公昭58−42292号
公報で提案されている。
However, in each of these methods, since both the heating fluid and the cooling fluid are discharged from the compression chamber, it is difficult to adjust the pressure balance between the two fluids in the compression chamber. In addition, the starting point of the yarn pushing in the chamber, the packing density, the retention unwinding point, and the like tend to fluctuate. In order to prevent these phenomena, a means for adjusting the pressure of both fluids in the compression chamber by providing a pressure adjusting valve at the fluid discharge port of the compression chamber has also been proposed (Japanese Patent Application Laid-Open No. Sho 47/1987).
-25450), and the apparatus is complicated and poses a practical problem. Regarding these problems, a plurality of pores for discharging the cooling fluid in the radial direction are provided in a multistage manner in the longitudinal direction between the compression chamber having the slit-shaped heating fluid discharge port in the longitudinal direction and the cooling fluid supply device. It has been found that when the cooling fluid is discharged from the chamber, a stable and good crimped yarn can be obtained, and the heating fluid ejection nozzle and the heating fluid discharge port are provided. A crimping device for a yarn has been proposed which sequentially combines a compression chamber having a cooling fluid discharge port, a stagnation adjusting chamber having a cooling fluid outlet, and a cooling fluid supply device for supplying a cooling fluid in a direction opposite to a direction in which a heating fluid is ejected. (See Japanese Patent Publication No. 56-33739). Further, a nozzle in which these fluid pushing nozzles are half-split to facilitate the yarn hooking property is proposed in Japanese Patent Publication No. 58-42292.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の従来技術による流体押し込みノズル用いて、熱可塑性
合成繊維糸条を捲縮加工した場合、滞留開始点がハンチ
ングしたり、滞留塊の移行がスムースでなかったりして
加工の安定性が悪く、そのため歩留まりの低下を来して
いた。特に、断面が中空糸であったり、単糸デニールが
細かったりした場合は、この現象が著しくなり加工不能
になる場合さえ生じていた。本発明は、かかる問題点を
改良し、細デニール糸でも中空糸でも圧縮室内の滞留塊
の移行をスムースにし、滞留開始点のハンチングを少な
くし、もって操業性に優れた流体押し込みノズルを提供
することを目的とする。
However, when the thermoplastic synthetic fiber yarn is crimped using these conventional fluid injection nozzles, the stagnation start point is hunted and the stagnation of the stagnation is smooth. In some cases, the stability of the processing was poor, resulting in a decrease in yield. In particular, when the cross section is a hollow fiber or the denier of a single yarn is small, this phenomenon becomes remarkable and even processing may not be possible. The present invention improves such a problem, and provides a fluid push-in nozzle excellent in operability by smoothing the transfer of the stagnation mass in the compression chamber of both fine denier yarn and hollow fiber, reducing hunting at the stagnation start point. The purpose is to:

【0006】[0006]

【課題を解決するための手段】本発明は、加熱流体噴射
ノズイル、その下流側に設けられ、放射状に配設された
複数枚の羽根板によって取り囲まれた空間によって構成
された圧縮室、および圧縮室の下流に連設され、冷却流
体を加熱流体の噴射方向とは反対方向に流通せしめるこ
とにより、糸条塊に背圧を付与するとともに冷却を行う
滞留調整室より順次構成された流体押し込みノズルにお
いて、前記羽根板の傾斜角度を下記〜に示す3段階
に調整したことを特徴とする流体押し込みノズルであ
る。 羽根板の上流部の広がり角度が1.1度以上 羽根板の中流部の広がり角度が1.0度未満 羽根板の下流部の広がり角度が1.1度以上
According to the present invention, there is provided a compression chamber formed by a heated fluid injection nozzle, a space provided downstream of the nozzle, and surrounded by a plurality of radially arranged vanes. A fluid push-in nozzle that is connected to the downstream of the chamber and is configured sequentially from a stagnation adjustment chamber that applies a back pressure to the yarn lump and performs cooling by flowing a cooling fluid in a direction opposite to the injection direction of the heating fluid. The fluid push-in nozzle according to any one of claims 1 to 3, wherein the inclination angle of the blade plate is adjusted to the following three stages. The spread angle of the upstream part of the slat is 1.1 degrees or more The spread angle of the middle part of the slat is less than 1.0 degrees The spread angle of the downstream part of the slat is 1.1 degrees or more

【0007】以下、図面を用いて本発明を詳細に説明す
る。本発明の流体押し込みノズルNは、図1〜3に示す
ように、加熱流体噴射ノズル10、その下流側に設けら
れ、放射状に配設された複数枚の羽根板21a、21
b、・・・21lによって取り囲まれた空間によって構
成された圧縮室20、および圧縮室20の下流側に連設
され、しかも冷却流体を加熱流体の噴射方向と反対方向
に流通せしめることにより、糸条塊に背圧を付与すると
ともに糸条の冷却を行う滞留調整室30より順次構成さ
れている。
Hereinafter, the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 to 3, the fluid pushing nozzle N of the present invention is provided on the heated fluid jet nozzle 10, a plurality of blade plates 21 a, 21 provided on the downstream side and arranged radially.
b,... are connected to the compression chamber 20 defined by a space surrounded by 21 l and downstream of the compression chamber 20, and allow the cooling fluid to flow in the direction opposite to the jetting direction of the heating fluid. The stagnation control chamber 30 is configured to sequentially apply a back pressure to the ingot and cool the yarn.

【0008】この流体押し込みノズルNによれば、糸条
Yは、流体噴射ノズル10で、該ノズルへ供給される加
熱圧縮流体HL(スチーム、加熱空気など)により、加
熱、可塑化されると同時に開繊、加速され、該ノズル下
流に連設された圧縮室20に送られる。該圧縮室20
は、図2に示すように放射状に設けられた複数枚の羽根
板21(21a〜21l)で取り囲まれた円筒状の空間
を形成している。糸条Yは、圧縮室20で前に押し込ま
れ堆積している糸条塊に衝突、坐屈し捲縮が付与され
る。糸条塊は、羽根板21と加熱流体HL、滞留調整室
30より供給される冷却流体CLの背圧のバランスによ
って滞留開始点P1を形成する。滞留塊は、羽根板21
に沿っ下流側へ移動し、一方加熱流体HLは羽根21の
間隙より外へ排出される。滞留塊は、引き続いて滞留調
整室30へ移動する。この滞留調節室30は、周壁に複
数個の孔(H1〜H8)が該調整室30の長手方向に沿
って開けられ、背圧をコントロールできるようにしてあ
る中空管状体31で構成されている。冷却流体CLは、
滞留調整室30の下部より冷却流体溜め32を経て複数
個の小孔H´より吹き込まれ、糸条進行方向と反対方向
に流通される。この結果、糸条塊全体が背圧により上に
押し上げられ、滞留解舒点P2が形成される。
According to the fluid pushing nozzle N, the yarn Y is heated and plasticized by the fluid injection nozzle 10 by the heated compressed fluid HL (steam, heated air, etc.) supplied to the nozzle. The fiber is spread, accelerated, and sent to a compression chamber 20 provided downstream of the nozzle. The compression chamber 20
Forms a cylindrical space surrounded by a plurality of blades 21 (21a to 21l) provided radially as shown in FIG. The yarn Y is pushed forward in the compression chamber 20 and collides with the accumulated yarn mass, buckles and is crimped. The yarn lump forms a stagnation start point P1 by the balance of the back pressure of the blade plate 21, the heating fluid HL, and the cooling fluid CL supplied from the stagnation chamber 30. The stagnation mass is the blade 21
, And the heating fluid HL is discharged out of the gap between the blades 21. The staying mass subsequently moves to the stay adjustment chamber 30. The stagnation chamber 30 is constituted by a hollow tubular body 31 in which a plurality of holes (H1 to H8) are formed in the peripheral wall along the longitudinal direction of the adjustment chamber 30 so that the back pressure can be controlled. . The cooling fluid CL is
It is blown from the lower part of the stagnation chamber 30 through a plurality of small holes H ′ through the cooling fluid reservoir 32 and circulated in the direction opposite to the yarn traveling direction. As a result, the entire yarn lump is pushed upward by the back pressure, and the stay unwinding point P2 is formed.

【0009】糸条上流側より滞留調整室30へ移動した
滞留塊は、該室30内で冷却され、捲縮が固定され、糸
条取り出し孔40より取り出される。糸条取り出し孔4
0は、冷却流体CLが自ら糸条進行方向と逆方向に流れ
るように孔径が絞ってある。しかして、本発明では、加
熱流体噴射ノズル10から噴射された加熱圧縮流体HL
が圧縮室20においては羽根板21の間隙を圧縮室20
の半径方向より糸条進行方向に向かって順次拡散排出さ
れ、一方滞留調整室30へ供給された冷却流体CLは、
中空管状体31の周壁に複数個開けられたコントロール
用孔H1〜H8より系外に排出される。
The stagnant mass moved from the upstream side of the yarn to the stagnant adjusting chamber 30 is cooled in the chamber 30, the crimp is fixed, and is taken out from the yarn take-out hole 40. Yarn take-out hole 4
In the case of 0, the hole diameter is narrowed so that the cooling fluid CL itself flows in the direction opposite to the yarn traveling direction. Thus, in the present invention, the heated compressed fluid HL injected from the heated fluid injection nozzle 10 is used.
In the compression chamber 20, the gap between the blades 21 is
The cooling fluid CL is sequentially diffused and discharged from the radial direction of the yarn in the yarn traveling direction, while being supplied to the stagnation adjusting chamber 30.
It is discharged out of the system through a plurality of control holes H1 to H8 formed in the peripheral wall of the hollow tubular body 31.

【0010】従って、滞留調整室30内の糸条塊が滞留
解舒点P2より上流側で引き出される場合は、糸条塊に
よって孔H8〜H1が塞がれなくなるため、孔よりの冷
却流体の排出量が多くなり、冷却流体による背圧が減少
する結果、糸条塊が下がりP2まで回復する。一方、糸
条塊がP2より下流側で引き出される場合は、逆に孔が
塞がれるため、冷却流体の排出量が減少し、背圧が増大
するから、糸条塊がP2まで押し上げられ、糸条の滞留
解舒点P2が常に一定になるように自己コントロールさ
れる。このようなセルフコントロール作用によって、滞
留解舒点P2の位置が一定となる結果、背圧、糸条の冷
却条件が一定となる。従って、加熱圧縮流体と冷却流体
との圧力バランスが調整され自動的に滞留開始点P1の
位置も一定となり、圧縮室20、滞留調整室30内での
糸条塊の充填密度、充填量、滞留時間などのバラツキが
なくなり均一な捲縮糸の製造が可能となる。
Therefore, when the yarn lump in the stagnation adjusting chamber 30 is pulled out upstream from the stagnation unwinding point P2, the holes H8 to H1 are not blocked by the yarn lump, so that the cooling fluid from the hole is not removed. As the amount of discharge increases and the back pressure due to the cooling fluid decreases, the yarn lump drops and recovers to P2. On the other hand, when the yarn lump is withdrawn downstream of P2, the holes are blocked, conversely, the discharge amount of the cooling fluid decreases, and the back pressure increases. Therefore, the yarn lump is pushed up to P2, Self-control is performed so that the stay unwinding point P2 of the yarn is always constant. As a result of such a self-control action, the position of the stay unwinding point P2 becomes constant, so that the back pressure and the cooling condition of the yarn become constant. Therefore, the pressure balance between the heated compressed fluid and the cooled fluid is adjusted, and the position of the stagnation start point P1 automatically becomes constant, and the filling density, filling amount, and stagnation of the yarn mass in the compression chamber 20 and the stagnation adjusting chamber 30 are adjusted. Variations in time and the like are eliminated, and uniform crimped yarn can be manufactured.

【0011】しかしながら、このように優れた性能の流
体押し込みノズルNにおいても、圧縮室20で滞留塊を
形成し、次の滞留調整室30に滞留塊をスムースに搬送
するためには、羽根板21の構造が非常に重要な働きを
有し、糸条Yの種類によっては、全然加工できない場合
が生じる。すなわち、特に断面形状が丸断面の場合、中
空断面の場合、単糸デニールが8デニール以下と細い場
合、トータルデニールが600デニール以下の細い糸条
の場合など、安定した滞留塊の移行が困難である。この
点を改良するため、本発明においては、従来の図4に示
すような単純に一定の傾斜θ(θ=1〜2度)のついた
羽根板の構造を、下記〜に示す3段階に調整したも
のである。
However, even in the fluid push-in nozzle N having such excellent performance, it is necessary to form the stagnation mass in the compression chamber 20 and to smoothly transport the stagnation mass to the next stagnation adjusting chamber 30. Has a very important function, and depending on the type of the yarn Y, there may be cases where the yarn Y cannot be processed at all. That is, especially when the cross-sectional shape is a round cross-section, in the case of a hollow cross-section, when the single yarn denier is as thin as 8 deniers or less, or when the total denier is as thin as 600 deniers or less, stable transfer of the retained mass is difficult. is there. In order to improve this point, in the present invention, the structure of the conventional vane plate having a simple inclination θ (θ = 1 to 2 degrees) as shown in FIG. Adjusted.

【0012】羽根板の上流部の広がり角度を1.1度
以上とする。これは、加熱流体噴射ノズル10と滞留開
始点(押し込み開始点)P1との間の羽根板21の傾斜
角度θは出来るだけ開いた角度にして加熱流体が羽根板
の間隙より逃げやすい構造にするためである。広がり角
度が1.1度未満では、加熱流体HLが羽根板の間隙か
ら逃げにくい。広がり角度は、好ましくは1.2〜5.
0度である。
The spread angle of the upstream portion of the blade plate is set to 1.1 degrees or more. In this structure, the inclination angle θ of the blade plate 21 between the heating fluid injection nozzle 10 and the retention start point (push start point) P1 is set as wide as possible so that the heating fluid can easily escape from the gap between the blade plates. That's why. When the spread angle is less than 1.1 degrees, the heating fluid HL does not easily escape from the gap between the blades. The spread angle is preferably 1.2-5.
0 degrees.

【0013】羽根板21の中流部、すなわち滞留開始
点P1付近の広がり角度を1.0度未満とする。滞留開
始点P1付近においては、滞留塊を動き難くして滞留開
始点P1を固定し滞留塊の滞留開始点P1のハンチング
を生じにくくするためである。羽根板の中流部の広がり
角度は、望ましくは0.5度前後である。滞留開始点P
1は、羽根板21の最上端より10mm〜30mm付近より
始まり、従ってこの付近より下流側10〜30mm程度を
この角度1.0度未満にする必要がある。
The divergence angle in the middle part of the blade plate 21, that is, near the stagnation start point P1, is less than 1.0 degree. This is because in the vicinity of the stagnation start point P1, the stagnation lump is difficult to move, and the stagnation start point P1 is fixed, so that hunting of the stagnation lump start point P1 is less likely to occur. The spread angle of the midstream portion of the blade is desirably about 0.5 degrees. Retention start point P
1 starts at about 10 mm to 30 mm from the uppermost end of the slat 21, and therefore, it is necessary that the angle of about 10 to 30 mm downstream from this vicinity be less than 1.0 degree.

【0014】羽根板21の下流部の広がり角度を1.
1度以上とする。羽根板中流部において安定に得られた
滞留塊をスムースに滞留調整室30に移行させるには、
再び傾斜角度を広げた方がよいためである。この観点か
ら下流部の好ましい傾斜角度は1.2〜2.0度であ
る。
The spread angle of the downstream portion of the blade plate 21 is set as follows.
At least once. In order to smoothly transfer the stagnation mass stably obtained in the middle part of the blade to the stagnation adjustment chamber 30,
This is because it is better to increase the inclination angle again. From this viewpoint, a preferable inclination angle of the downstream portion is 1.2 to 2.0 degrees.

【0015】本発明の流体押し込みノズルNに使用され
る羽根板21の一例を図3に示す。図3に示す羽根板2
1は、羽根板21の上流部10mmが傾斜角度3.0度
で、羽根板21の中流部20mmが傾斜角度0.5度、
羽根板4の下流部70mmが傾斜角度1.25度の例で
ある。ここで、羽根板21の最下端の圧縮室20の内径
は下流側の滞留調整室30の内径より小さいことが好ま
しく、場合によっては羽根下流部の最下端の一部は滞留
調整室30の内径より内輪になるよう、さらに角度を調
整してもよい。例えば、羽根板21の下流部70mmの下
側の一部20〜30mmを0〜1.1度に調整することも
可能である。
FIG. 3 shows an example of the blade 21 used in the fluid pushing nozzle N of the present invention. The slat 2 shown in FIG.
1 is that the upstream part 10 mm of the blade plate 21 has a tilt angle of 3.0 degrees, the middle part 20 mm of the blade plate 21 has a tilt angle of 0.5 degrees,
An example in which the downstream portion 70 mm of the blade plate 4 has an inclination angle of 1.25 degrees. Here, the inner diameter of the compression chamber 20 at the lowermost end of the blade plate 21 is preferably smaller than the inner diameter of the stagnation adjustment chamber 30 on the downstream side. The angle may be further adjusted so as to form a more inner ring. For example, it is also possible to adjust a portion 20 to 30 mm below the downstream portion 70 mm of the blade plate 21 to 0 to 1.1 degrees.

【0016】[0016]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明する。 実施例1〜2、比較例1〜2 ナイロン6よりなる420デニール/136フィラメン
ト、丸断面からなる糸条Yを紡糸−延伸に引き続いて表
1に示す構造の羽根板21を有し、圧縮室20の長さが
100mmである図1のような加熱流体押し込みノズルを
用いて捲縮加工を行った。羽根板21の傾斜角度を上流
部、中流部、下流部とに分けて変更しその滞留安定性を
評価した。評価項目は滞留開始点のハンチングの大小
(安定性)、滞留解舒点の位置とその安定性、断糸の生
じ易さの程度(急に滞留開始点が上に上がり断糸する程
度)の3項目である。評価の詳細は下記のとおりであ
る。ハンチング 小;±5mm以内のハンチング まずまず良;±5〜±10mmのハンチング 大;±10mm以上のハンチング断糸の程度 ○(良好);1日あたりの断糸回数が2回以下/4錘 ×(不良);1日あたりの断糸回数が3〜10回/4錘 ××(糸掛け不能);糸を掛けると数分以内に断糸す
る。 評価結果を表1に示す。
The present invention will now be described more specifically with reference to examples. Examples 1 and 2 and Comparative Examples 1 and 2 Following the spinning-drawing of a yarn Y having a denier of 420 and a diameter of 136 made of nylon 6 and having a round cross section, a blade 21 having a structure shown in Table 1 was provided. The crimping process was performed using a heated fluid pushing nozzle having a length of 20 and 100 mm as shown in FIG. The inclination angle of the blade plate 21 was divided into an upstream part, a middle part, and a downstream part, and the retention stability was evaluated. The evaluation items were the size (stability) of the hunting of the stagnation start point, the position of the stagnation unwound point and its stability, and the degree of ease of thread breakage (the degree to which the stagnation start point suddenly rises and breaks the thread). There are three items. The details of the evaluation are as follows. Hunting small; hunting within ± 5 mm Fairly good; hunting within ± 5 ± 10 mm Large; Degree of hunting breakage of ± 10 mm or more ○ (good); Number of times of breakage per day is 2 times or less / 4 weight × ( Poor); The number of times of thread breakage per day is 3 to 10 times / 4 weight XX (thread cannot be threaded); When thread is threaded, thread breakage occurs within several minutes. Table 1 shows the evaluation results.

【0017】[0017]

【表1】 [Table 1]

【0018】本発明の3段階に角度が変化した羽根板を
用いた流体押し込みノズルを用いた実施例1および2に
おいては、極めて優れた滞留安定性が得られ、従って加
工時の断糸率が激減し操業性が大幅に向上した。これに
対し、従来の羽根板の角度が一定で1.0度と小さい比
較例1の場合、滞留開始点のハンチングは小さいが、滞
留塊の移行が困難なためか、解舒点が羽根の上まで上が
ってきて滞留塊の長さが短くなり、冷却不十分で良い捲
縮糸ができなかった。また、羽根板の傾斜角を1.5度
と大きくした比較例2の場合は、滞留塊が移行し易くな
るためか、滞留開始点が大きくハンチングして糸掛けす
らできなかった。このように、羽根板での滞留塊の形成
と移動の作用機構が考慮されていない従来の羽根板構造
では満足な滞留安定性が得られなかった。
In the first and second embodiments of the present invention using the fluid pushing nozzle using the blades whose angles are changed in three stages, extremely excellent staying stability is obtained, and therefore, the yarn breakage rate during processing is reduced. Dramatic decrease and operability has been greatly improved. On the other hand, in the case of Comparative Example 1 in which the angle of the conventional blade plate is constant and as small as 1.0 degree, the hunting at the stagnation start point is small, but it is difficult to transfer the stagnation mass. The length of the stagnation mass was raised to the top, and the length of the stagnation mass became short. Further, in the case of Comparative Example 2 in which the inclination angle of the blade plate was increased to 1.5 degrees, the stagnant starting point was largely hunted, and the yarn could not even be threaded, probably because the retained mass was easily transferred. As described above, a satisfactory stagnation stability cannot be obtained with the conventional slat structure in which the action mechanism of the formation and movement of the stagnation mass on the slats is not considered.

【0019】[0019]

【発明の効果】本発明の流体押し込みノズルを用いる
と、従来困難であった銘柄でも滞留開始点が安定で、滞
留塊の移行が極めてスムースとなる。また、従来の銘柄
でも滞留開始点のハンチングが少なくなり、格別に滞留
塊の移行安定性が向上する。さらに、特に滞留開始点が
何等かの原因で上流側に上昇した場合、従来のノズルで
は滞留開始点が直ぐに流体噴射ノズル側に上がって断糸
に至っていたが、本発明の流体押し込みノズルでは、滞
留開始点が上流側に上がっても加熱流体が羽根板上部の
空隙が大きいため外部に拡散でき、しかも上流部の傾斜
角度が大きいため滞留開始点が上流部に上昇しにくく、
断糸に至りにくいという利点もある。これによって断糸
が減り、操業性を大幅に向上させることができる。
The use of the fluid pushing nozzle of the present invention stabilizes the retention start point even for brands which have been difficult in the past, and makes the transition of the retained mass extremely smooth. In addition, even in the conventional brand, the hunting at the staying start point is reduced, and the stability of the transfer of the staying lump is particularly improved. Furthermore, in particular, when the retention start point rises to the upstream side for some reason, the retention start point immediately rises to the fluid ejection nozzle side in the conventional nozzle and the thread breaks, but in the fluid pushing nozzle of the present invention, Even if the stagnation start point rises to the upstream side, the heating fluid can diffuse outside due to the large gap at the upper part of the slat, and the stagnation start point is unlikely to rise to the upstream part due to the large inclination angle of the upstream part,
There is also an advantage that it is difficult to cause thread breakage. As a result, the number of thread breaks is reduced, and operability can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流体押し込みノズルの縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of a fluid pushing nozzle of the present invention.

【図2】図1のX−X′縦断面図である。FIG. 2 is a vertical sectional view taken along line XX ′ of FIG. 1;

【図3】本発明の羽根板の一例を示す概略図である。FIG. 3 is a schematic view showing an example of a blade plate of the present invention.

【図4】従来の羽根板の一例を示す概略図である。FIG. 4 is a schematic view showing an example of a conventional blade plate.

【符号の説明】[Explanation of symbols]

N 加熱流体噴射ノズル 21 羽根板 20 圧縮室 30 滞留調整室 P1 滞留開始点 P2 滞留解舒点 N Heated fluid injection nozzle 21 Blade 20 Compression chamber 30 Retention adjustment chamber P1 Retention start point P2 Retention unwinding point

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱流体噴射ノズル、その下流側に設け
られ、放射状に配設された複数枚の羽根板によって取り
囲まれた空間によって構成された圧縮室、および圧縮室
の下流側に連設され、しかも冷却流体を加熱流体の噴射
方向と反対方向に流通せしめることにより、糸条塊に背
圧を付与するとともに糸条の冷却を行う滞留調整室より
順次構成された流体押し込みノズルにおいて、前記羽根
板の傾斜角度を下記〜に示す3段階に調整したこと
を特徴とする流体押し込みノズル。 羽根板の上流部の広がり角度が1.1度以上 羽根板の中流部の広がり角度が1.0度未満 羽根板の下流部の広がり角度が1.1度以上
1. A compression chamber formed by a heated fluid injection nozzle, a space provided by a plurality of radially arranged vanes, and a compression chamber provided downstream of the nozzle and a downstream side of the compression chamber. In addition, in the fluid push-in nozzle, which is configured in order from a stagnation adjusting chamber that applies a back pressure to the yarn mass and cools the yarn by flowing the cooling fluid in a direction opposite to the injection direction of the heating fluid, A fluid pushing nozzle characterized in that the inclination angle of the plate is adjusted to the following three stages. The spread angle of the upstream part of the slat is 1.1 degrees or more The spread angle of the middle part of the slat is less than 1.0 degrees The spread angle of the downstream part of the slat is 1.1 degrees or more
JP11069091A 1991-04-17 1991-04-17 Fluid push-in nozzle Expired - Fee Related JP2646302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11069091A JP2646302B2 (en) 1991-04-17 1991-04-17 Fluid push-in nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11069091A JP2646302B2 (en) 1991-04-17 1991-04-17 Fluid push-in nozzle

Publications (2)

Publication Number Publication Date
JPH04316622A JPH04316622A (en) 1992-11-09
JP2646302B2 true JP2646302B2 (en) 1997-08-27

Family

ID=14541982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11069091A Expired - Fee Related JP2646302B2 (en) 1991-04-17 1991-04-17 Fluid push-in nozzle

Country Status (1)

Country Link
JP (1) JP2646302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014002318A1 (en) * 2014-02-19 2015-08-20 Oerlikon Textile Gmbh & Co. Kg Device for crimping multifilament threads

Also Published As

Publication number Publication date
JPH04316622A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
JP3611570B2 (en) Depth filter cartridge, manufacturing method and manufacturing apparatus thereof
US4520366A (en) Method and apparatus for air start/stop of an ink jet printing device
JPH02235646A (en) Thermal ink jet pen
US3778495A (en) Continuous process of manufacturing polymeric composition writing points and devices
US6224197B1 (en) Liquid jet recording head having tapered liquid passages
BRPI0621377B1 (en) HOT STRIKE COOLING DEVICE AND COOLING METHOD
EP1447221B1 (en) Liquid jet head
US4268940A (en) Process and apparatus for crimping filament yarn
JP2646302B2 (en) Fluid push-in nozzle
EP0146898B1 (en) Yarn-threading method
US3823872A (en) Nozzle for use in hot liquid ejector pumps, and related process
DK162836B (en) Process and device for producing continuous glass filaments
JP4386845B2 (en) Method and apparatus for spinning and crimping synthetic yarns
GB1570419A (en) Process and apparatus for crimping filament yarn
US4173443A (en) Spray spinning nozzle having convergent gaseous jets
US4135280A (en) Method and apparatus for texturizing continuous filaments
JPS5842292B2 (en) Yarn crimping equipment
JPH02112431A (en) Method and apparatus for wetting a yarn in a texturizing machine of an air-jet type
JP4370633B2 (en) Nozzle tip for flat glass fiber spinning and manufacturing apparatus
US20050068388A1 (en) Buffer tank for ink jet printer
US9392903B2 (en) Device for frothing a liquid
US20200291546A1 (en) System and Method for Forming NonWoven Nanofiber Material
CN108323175B (en) Method for producing resin fiber, nozzle head used for the method, and production apparatus
JP3097362B2 (en) Yarn crimping machine
JPS6317134B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970325

LAPS Cancellation because of no payment of annual fees