JP2646083B2 - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JP2646083B2
JP2646083B2 JP61283390A JP28339086A JP2646083B2 JP 2646083 B2 JP2646083 B2 JP 2646083B2 JP 61283390 A JP61283390 A JP 61283390A JP 28339086 A JP28339086 A JP 28339086A JP 2646083 B2 JP2646083 B2 JP 2646083B2
Authority
JP
Japan
Prior art keywords
resistance
temperature
silicon nitride
electrode
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61283390A
Other languages
Japanese (ja)
Other versions
JPS63136485A (en
Inventor
憲男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61283390A priority Critical patent/JP2646083B2/en
Priority to US07/079,255 priority patent/US4804823A/en
Publication of JPS63136485A publication Critical patent/JPS63136485A/en
Application granted granted Critical
Publication of JP2646083B2 publication Critical patent/JP2646083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般家庭用、電子部品用、産業機器用及び自
動車等の広汎に利用し得る耐熱衝撃性および高温強度に
優れたセラミックヒータに関するものである。
Description: TECHNICAL FIELD The present invention relates to a ceramic heater excellent in thermal shock resistance and high-temperature strength that can be widely used for general households, electronic parts, industrial equipment, automobiles and the like. It is.

〔背景技術〕(Background technology)

一般に、セラミックを基体とするヒータとしてはアル
ミナ(Al2O3)焼結体中にタングステン(W)やモリブ
デン(Mo)を主体とする抵抗体を施したヒータが主流で
ある。
Generally, as a heater based on ceramic, a heater in which a resistor mainly composed of tungsten (W) or molybdenum (Mo) is provided in an alumina (Al 2 O 3 ) sintered body is mainstream.

この様なセラミックヒータは電気絶縁性、耐薬品性お
よび耐摩耗性に優れているという利点がある。しかしな
がら、一方アルミナは水中投下急冷の耐熱衝撃温度差が
200℃程度であり、また800℃までにおける高温強度(4
点曲げ抗折強度)が30Kg/mm2程度と、耐熱衝撃性および
高温強度が劣っている。
Such a ceramic heater has the advantage of being excellent in electrical insulation, chemical resistance and abrasion resistance. However, on the other hand, the thermal shock temperature difference of alumina
About 200 ℃, and high temperature strength up to 800 ℃ (4
(Point bending flexural strength) of about 30 kg / mm 2 , poor thermal shock resistance and high-temperature strength.

そこで、この耐熱衝撃性及び高温強度が他のセラミッ
クよりも著しく優れた窒化けい素質焼結体をヒータの基
板として使用することが注目された。この様な窒化けい
素質焼結体の耐熱衝撃温度差は600℃程度、800℃までの
高温強度(4点曲げ抗折強度)は60Kg/mm2とアルミナに
比べ著しく優位である。
Therefore, attention has been paid to the use of a silicon nitride sintered body which is significantly superior in thermal shock resistance and high-temperature strength to other ceramics as a substrate for a heater. The thermal shock temperature difference of such a silicon nitride sintered body is about 600 ° C., and the high temperature strength (four-point bending strength) up to 800 ° C. is 60 kg / mm 2 , which is remarkably superior to alumina.

このような窒化けい素質焼結体を基体とするセラミッ
クヒータはアルミナ基板と同様、一般にタングステン
(W)やモリブデン(Mo)の発熱抵抗金属線を基体中に
埋設するものが既に提供され、またこれらのタングステ
ン(W)やモリブデン(Mo)を主体とする発熱抵抗ペー
ストを窒化けい素質グリーンシート上に印刷配線し、こ
れを積層して一体焼成してなるものが特開昭55−126989
号公報により提案されている。
Ceramic heaters using such a silicon nitride sintered body as a base are generally provided with a heating resistance metal wire of tungsten (W) or molybdenum (Mo) embedded in the base, similarly to an alumina substrate. Japanese Patent Application Laid-Open No. 55-122698 discloses a method in which a heat-generating resistor paste mainly composed of tungsten (W) or molybdenum (Mo) is printed on a silicon nitride green sheet, laminated, and integrally fired.
Has been proposed.

〔先行技術〕(Prior art)

しかしながら、発熱抵抗体としてタングステン(W)
やモリブデン(Mo)を使用すると高温焼成時や長時間の
昇降温繰り返し使用時にこれら発熱抵抗体周囲と窒化珪
素との界面において、タングステン(W)やモリブデン
(Mo)は窒化珪素(Si3N4)と反応してWSi2,MoSi2の層
を生成し易く、また酸素と反応してWO3,MoO3の層を生成
し易い。このように生成された反応層は物理的に脆弱で
あるため抵抗値の変化が生じたり特に高抵抗ヒータの場
合反応層生成界面に亀裂が生じ易くなり、亀裂による発
熱抵抗体の断線が生じる等の欠点のために、特に発熱抵
抗ペーストを使用する方式については実用化に供されて
いないのが現状である。さらに、タングステン(W)や
モリブデン(Mo)から成る発熱抵抗体はこれらの抵抗温
度係数(TCR)が比較的高く、4〜5×103程度(0〜80
0℃)である。
However, tungsten (W) is used as a heating resistor.
When molybdenum (Mo) or molybdenum (Mo) is used, tungsten (W) or molybdenum (Mo) is converted to silicon nitride (Si 3 N 4 ) at the interface between these heating resistors and silicon nitride during high-temperature firing or repeated use of the temperature for a long time. ) Easily forms a WSi 2 or MoSi 2 layer, and reacts with oxygen to form a WO 3 or MoO 3 layer. The reaction layer thus formed is physically fragile, causing a change in resistance value, and particularly in the case of a high-resistance heater, the reaction layer formation interface is apt to be cracked, and the heating resistor is disconnected due to the crack. Due to the drawbacks described above, the method using a heating resistor paste has not been put to practical use at present. Further, a heating resistor made of tungsten (W) or molybdenum (Mo) has a relatively high temperature coefficient of resistance (TCR) of about 4-5 × 10 3 (0-80).
0 ° C).

従って、既に実用化されているタングステン(W)や
モリブデン(Mo)の発熱抵抗金属線を基体に埋設する方
式においても電圧印加時の突入電流が大きくなり、電流
容量の大きいヒータの通電制御装置を必要とするなどの
欠点があった。
Therefore, even in the method of embedding a heating resistance metal wire such as tungsten (W) or molybdenum (Mo), which has already been put into practical use, the inrush current at the time of applying a voltage becomes large, and a current supply control device for a heater having a large current capacity is required. There were drawbacks such as necessity.

そこで、本願出願人は特願昭61−20722号において窒
化チタン(TiN)を抵抗材料とした発熱抵抗体を窒化け
い素質焼結体中に形成することにより、発熱抵抗体の経
時的抵抗値変化及び断線を防止でき、また抵抗温度係数
(TCR)の比較的小さいセラミックヒータを提供した。
この種のセラミックヒータは一般に第1図に示す如く窒
化けい素質グリーンシート1面上に発熱抵抗ペースト2
(不図示)をスクリーン印刷し、それに他の窒化けい素
質グリーンシート3を積層して一体焼成したものであ
る。前記発熱抵抗ペースト2(不図示)により形成され
る発熱抵抗体は発熱部4と、この発熱部4よりも発熱量
を少なくするために抵抗印刷パターン幅を大きくした電
極取出リード部5と、電極取出露出部6とから構成され
ている。電極取出露出部6は前記グリーンシート1,3を
一体焼成した後、研磨して抵抗体を露出させて形成され
るものであり、この露出部6上には第2図に示す如くガ
ラスとNi粉末との混合物からなるメタライズ層7を形成
し、一方電極リード線8を固定する金属キャップ9を該
メタライズ層7上に銀ロウ10を介して固着するようにし
ている。そして、前記出願のセラミックヒータにおいて
は発熱部4及び電極取出リード部5共にTiN質抵抗ペー
ストを使用していた。
Accordingly, the applicant of the present application has disclosed in Japanese Patent Application No. 61-20722 that a heating resistor using titanium nitride (TiN) as a resistance material is formed in a silicon nitride sintered body, whereby the resistance value of the heating resistor changes with time. And a ceramic heater which can prevent disconnection and has a relatively small temperature coefficient of resistance (TCR).
As shown in FIG. 1, a ceramic heater of this type generally has a heating resistor paste 2 on a surface of a silicon nitride green sheet 1.
(Not shown) is screen-printed, and another silicon nitride green sheet 3 is laminated thereon and integrally fired. The heating resistor formed by the heating resistor paste 2 (not shown) includes a heating portion 4, an electrode lead portion 5 having a larger resistance print pattern width in order to reduce the amount of heat generation from the heating portion 4, and an electrode. And a take-out exposure section 6. The electrode extraction exposed portion 6 is formed by integrally firing the green sheets 1 and 3 and then polishing to expose the resistor. On the exposed portion 6, as shown in FIG. A metallized layer 7 made of a mixture with a powder is formed, and a metal cap 9 for fixing an electrode lead wire 8 is fixed on the metallized layer 7 via a silver braze 10. In the ceramic heater of the above-mentioned application, both the heating part 4 and the electrode lead-out part 5 use a TiN-based resistance paste.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記の如き構成においては抵抗体の発
熱部4と電極取出リード部5とが同一の窒化チタン(Ti
N)質材料であるため、発熱部4より電極取出リード部
5のパターン幅を大きくしてリード部の抵抗値を小さく
し、その部位の発熱温度を下げようとしても、未だ充分
にその温度が下がらず、露出部6のメタライズ層7及び
銀ロウ10による電極リード線8の金属キャップ9と窒化
けい素質焼結体の電極取出露出部6との接着強度が高温
にさらされることにより劣化する欠点がある。即ち、前
記窒化けい素質焼結体の発熱部4に相当する部位の最高
許容発熱温度は約1300℃まで(これ以上の温度では焼結
体にクロックが生じる)であり、この温度まで昇温させ
た場合の前記電極取出露出部6に相当する部位の温度は
約500〜700℃である。これに対し電極取出露出部6と電
極リード線8の金属キャップ9とを接合するためのメタ
ライズ層7及び銀ロウ10の融点は約600〜850℃である。
また、TiNそれ自体の比抵抗は約10μΩ・cmと高く、電
極取出リード部のパターン幅や厚みを多少変更して抵抗
を下げても充分に温度を下げることができなかった。
However, in the above-described configuration, the heating portion 4 of the resistor and the electrode lead 5 are made of the same titanium nitride (Ti).
N) Since it is a quality material, even if it is attempted to reduce the resistance value of the lead portion by making the pattern width of the electrode lead-out portion 5 larger than that of the heat-generating portion 4 and lower the heat generation temperature of that portion, the temperature is still sufficiently high. A disadvantage that the adhesive strength between the metallized layer 7 of the exposed portion 6 and the metal cap 9 of the electrode lead wire 8 by the silver braze 10 and the exposed electrode portion 6 of the silicon nitride sintered body is deteriorated due to exposure to a high temperature. There is. That is, the maximum allowable heat generation temperature of a portion corresponding to the heat generating portion 4 of the silicon nitride sintered body is up to about 1300 ° C. (at a temperature higher than this, a clock is generated in the sintered body). In this case, the temperature of the part corresponding to the electrode extraction exposure part 6 is about 500 to 700 ° C. On the other hand, the melting point of the metallized layer 7 and the silver solder 10 for joining the electrode extraction exposed portion 6 and the metal cap 9 of the electrode lead wire 8 is about 600 to 850 ° C.
Also, the specific resistance of TiN itself was as high as about 10 μΩ · cm, and the temperature could not be sufficiently lowered even if the resistance was lowered by slightly changing the pattern width or thickness of the electrode lead.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者等は上記問題点に鑑み鋭意研究の結果、窒化
けい素質焼結体中もしくはその表面に形成する抵抗体の
発熱部を窒化チタン(TiN)を主体とする抵抗材料で形
成し、該発熱部から前記電極取出露出部へ連結する電極
取出リード部を前記TiN抵抗材料より抵抗値の低い材料
を使用して抵抗温度係数(TCR)が4.4×10-3より小とす
ると共に、前記電極取出露出部に相当する部位の温度を
下げることにより前記問題点を解消した。
The present inventors have conducted intensive studies in view of the above problems, and as a result, formed a heating portion of a resistor formed in or on a surface of a silicon nitride sintered body with a resistance material mainly composed of titanium nitride (TiN). The electrode extraction lead portion connected from the heating portion to the electrode extraction exposure portion is made of a material having a lower resistance value than the TiN resistance material to have a temperature coefficient of resistance (TCR) smaller than 4.4 × 10 −3 and the electrode The above problem was solved by lowering the temperature of the portion corresponding to the take-out exposure portion.

〔本発明の目的〕(Object of the present invention)

本発明においては抵抗体の発熱部の経時的抵抗変化及
び断線を防止でき、且つ抵抗温度係数(TCR)を比較的
小さくして、電極取出露出部近傍の発熱温度を下げて電
極リード線の接続部分の強度を劣化させることなく優れ
たセラミックヒータを提供することを目的とする。
In the present invention, it is possible to prevent a change in resistance and disconnection of the heat generating portion of the resistor with time and to make the temperature coefficient of resistance (TCR) relatively small, to lower the heat generating temperature near the exposed portion of the electrode, and to connect the electrode lead wires. An object is to provide an excellent ceramic heater without deteriorating the strength of the portion.

〔実施例〕〔Example〕

第1表に示す抵抗体ペースト組成物を夫々窒化けい素
質グリーンシート1上の発熱部4及び該発熱部4の両端
部と接続するように電極取出リード部5を所定位置に印
刷し、これに同様の窒化けい素質グリーンシートを積層
した後一体焼成した。得られた焼結体の電極取出露出部
6が存在する焼結体側面を研磨又は表面処理することに
より前記露出部6を充分側面に露出させた後、ガラスと
Niとの混合粉末からなるメタライズ層7をその露出部6
面上に形成し、電極リード8を有する金属キャップ9を
銀ロウ10を介してこのメタライズ層7上に固着させた。
The resistor paste compositions shown in Table 1 were printed at predetermined positions on the silicon nitride green sheet 1 so as to be connected to the heat generating portion 4 and both ends of the heat generating portion 4 at predetermined positions. After stacking similar silicon nitride green sheets, they were integrally fired. After the exposed portion 6 is sufficiently exposed to the side surface by polishing or surface-treating the side surface of the obtained sintered body where the electrode extraction exposure portion 6 is present, the glass
The metallized layer 7 made of a mixed powder with Ni is exposed to the exposed portion 6
A metal cap 9 formed on a surface and having an electrode lead 8 was fixed on the metallized layer 7 via a silver solder 10.

得られた各試料は40×5×1.2mmの板状セラミックヒ
ータであり、まずこれら各試料の初期抵抗を測定した
後、該ヒータ先端の温度が1300℃となるような電圧(10
0〜120V)を連続100時間通電し、その後の抵抗値を測定
し、さらに初期抵抗との変化率を調べた。また、この際
セラミックヒータ先端の温度が1300℃の時の電極取出露
出部6近傍の温度を調べた。これらの結果を第1表に示
す。
Each of the obtained samples was a plate-shaped ceramic heater of 40 × 5 × 1.2 mm. First, after measuring the initial resistance of each of these samples, a voltage (10 ° C.) at which the temperature at the tip of the heater became 1300 ° C.
0 to 120 V) was continuously applied for 100 hours, and then the resistance was measured, and the rate of change from the initial resistance was examined. At this time, the temperature in the vicinity of the electrode extraction exposed portion 6 when the temperature at the tip of the ceramic heater was 1300 ° C. was examined. Table 1 shows the results.

第1表から理解されるように発熱部とリード部が同じ
TiN質抵抗ペーストからなる従来例1のものは連続通電
(100時間)後、電極取出露出部における電極取出リー
ド部とメタライズ層との界面が剥がれて断線を生じた。
これはヒータ先端が1300℃に発熱した際の電極取出露出
部近傍の温度600℃にまで昇温していたため電極取出露
出部が酸化腐蝕されたためと考えられる。また発熱部と
リード部が同じタングステン(W)抵抗ペーストからな
る従来例2のものは連続通電(100時間)途中で、発熱
部のパターンが断線した。これはヒータの一体焼成時又
は連続通電中に抵抗体であるタングステン(W)が窒化
けい素質焼結体中のSi成分と反応して脆弱なWSi2層を生
成し、そのため反応層生成界面に亀裂等が生じたためと
考えられる。
The heating part and the lead part are the same as understood from Table 1.
In the case of Conventional Example 1 made of a TiN-based resistance paste, after continuous energization (100 hours), the interface between the electrode lead-out portion and the metallized layer in the electrode lead-out exposed portion was peeled off, resulting in disconnection.
This is considered to be due to the fact that the temperature of the exposed portion of the electrode was raised to 600 ° C. in the vicinity of the exposed portion of the electrode when the heater heated to 1300 ° C., and the exposed portion of the electrode was oxidized and corroded. In the case of Conventional Example 2 in which the heating portion and the lead portion were made of the same tungsten (W) resistance paste, the pattern of the heating portion was broken during continuous energization (100 hours). This is because tungsten (W), which is a resistor, reacts with the Si component in the silicon nitride sintered body during the firing of the heater or during continuous energization to form a fragile WSi 2 layer, and therefore, at the reaction layer formation interface It is considered that cracks and the like occurred.

これに対し、発熱部にTiN質抵抗ペーストを、電極リ
ード部にWC抵抗ペーストを使用してなる本発明のものは
連続通電100時間後においても抵抗の変化がなく、かつ
ヒータ先端が1300℃に発熱した際の電極取出露出部近傍
の温度が150℃と低く、該電極取出露出部と電極リード
線の金属キャップとの固着状態に影響を及ぼさなく良好
であったことが理解される。
On the other hand, in the case of the present invention using the TiN-based resistance paste for the heating part and the WC resistance paste for the electrode lead part, the resistance does not change even after 100 hours of continuous energization, and the tip of the heater reaches 1300 ° C. It is understood that the temperature in the vicinity of the exposed portion of the electrode at the time of heat generation was as low as 150 ° C., which was favorable without affecting the state of fixation between the exposed portion of the electrode and the metal cap of the electrode lead wire.

〔比較例〕(Comparative example)

アルミナ質焼結体からなる基板上にタングステン
(W)からなる発熱抵抗ペーストを塗布して前記実施例
1と同様の形状の試料を得た。この試料Yと前記実施例
1の本発明の試料とを夫々ヒータの先端の温度を測定し
ながら電圧を変化させ、その時の温度と抵抗値の相関を
調べた。その抵抗値を常温での抵抗値との比を縦軸に,
また温度は横軸として第3図に示した。この図から明ら
かなように抵抗温度係数(TCR)がAl2O3−W系(Y)が
4.4×10-3であるのに対し、本発明のSi3N4−TiN−WC系
(X)のものは1.4×10-3と小さいことが理解される。
このことは前述の如く突入電流を小さくでき、さらにヒ
ータの温度分布は外部雰囲気に影響を受けにくくなる。
A heating resistor paste made of tungsten (W) was applied on a substrate made of an alumina sintered body to obtain a sample having the same shape as that of the first embodiment. The voltage of the sample Y and the sample of the present invention of Example 1 were changed while measuring the temperature at the tip of the heater, and the correlation between the temperature and the resistance at that time was examined. The ratio of the resistance to the resistance at room temperature is plotted on the vertical axis.
The temperature is shown in FIG. 3 as the horizontal axis. As is clear from this figure, the temperature coefficient of resistance (TCR) of the Al 2 O 3 -W system (Y)
It is understood that the ratio is 4.4 × 10 −3 , whereas that of the Si 3 N 4 —TiN—WC (X) of the present invention is as small as 1.4 × 10 −3 .
As a result, the inrush current can be reduced as described above, and the temperature distribution of the heater is less affected by the external atmosphere.

なお、上記実施例1,2においては、窒化けい素質焼結
体中に発熱抵抗体を埋設したものについて述べたが、こ
れに限らず窒化けい素質焼結体表面に上記発熱抵抗体を
配設し、必要に応じてセラミック等から成る被覆層を被
着せしめることによってセラミックヒータを構成するこ
とも可能である。
In Examples 1 and 2, the case where the heating resistor is embedded in the silicon nitride sintered body was described. However, the present invention is not limited to this, and the heating resistor is disposed on the surface of the silicon nitride sintered body. If necessary, a ceramic heater may be formed by applying a coating layer made of ceramic or the like.

また、TiNでもって線状、板状に形成した発熱抵抗体
を窒化けい素質焼結体中に埋設することによってヒータ
を構成してもよく、この場合、発熱抵抗体の抵抗値は比
較的小さいものが得られるため低電圧で発熱容量の大き
いセラミックヒータを構成することができる。
Further, the heater may be constituted by embedding a heating resistor formed in a linear or plate shape with TiN in a silicon nitride sintered body, in which case the resistance value of the heating resistor is relatively small. As a result, a ceramic heater having a low voltage and a large heat generating capacity can be formed.

(発明の効果) 窒化けい素焼結体中もしくはその表面にTiNを主体と
する発熱部、それに通電すべくWCを主体とする電極取出
リード部を設け、抵抗温度係数(TCR)を4.4×10-3より
小としたものであるので、抵抗体の発熱部の経時的変化
及び断線を防止でき、電極取出部近傍の発熱温度を下げ
て電極リード線の接続部分の強度を劣化させることなく
耐久性に優れたセラミックヒータを提供できる。
(Effect of the Invention) A heating portion mainly composed of TiN is provided in or on the surface of the silicon nitride sintered body, and an electrode lead lead mainly composed of WC is provided to supply electricity to the heating portion, and a temperature coefficient of resistance (TCR) of 4.4 × 10 Since it is smaller than 3 , it is possible to prevent the heat generation part of the resistor from changing over time and disconnection, and to reduce the heat generation temperature near the electrode extraction part and reduce the durability without deteriorating the strength of the connection part of the electrode lead wire. It is possible to provide an excellent ceramic heater.

【図面の簡単な説明】[Brief description of the drawings]

第1図はセラミックグリーンシート上に抵抗体ペースト
を印刷した状態を示す分解斜視図、第2図は電極取出露
出部に電極リード線を接続した状態を示す要部を拡大し
た一部断面図、第3図は比較例としてのアルミナ基板に
タングステン抵抗体を形成した比較用ヒータと、本発明
のセラミックヒータの抵抗温度係数(TCR)を示したグ
ラフである。 1,3……窒化けい素質グリーンシート 4……発熱部 5……電極取出リード部 6……電極取出露出部
FIG. 1 is an exploded perspective view showing a state in which a resistor paste is printed on a ceramic green sheet, FIG. 2 is an enlarged partial cross-sectional view showing a state where an electrode lead wire is connected to an electrode extraction exposure part, FIG. 3 is a graph showing the temperature coefficient of resistance (TCR) of a comparative heater in which a tungsten resistor is formed on an alumina substrate as a comparative example and the ceramic heater of the present invention. 1,3 ... Silicon nitride green sheet 4 ... Heating part 5 ... Electrode extraction lead part 6 ... Electrode extraction exposure part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化けい素質焼結体中もしくはその表面
に、窒化チタン(TiN)を主体とし、抵抗温度係数(TC
R)が4.4×10-3より小である発熱部を備え、該発熱部の
両端部に発熱部を成す窒化チタン(TiN)より更に低い
抵抗値を有する炭化タングステン(WC)を主体とする導
電材を被着して成る電極取出リード部を具備したことを
特徴とするセラミックヒータ。
In a silicon nitride sintered body or on its surface, titanium nitride (TiN) is mainly used and a temperature coefficient of resistance (TC)
R) is provided with a heat generating portion smaller than 4.4 × 10 -3, and conductive material mainly composed of tungsten carbide (WC) having a lower resistance value than titanium nitride (TiN) forming the heat generating portion at both ends of the heat generating portion. A ceramic heater comprising an electrode lead-out portion formed by applying a material.
JP61283390A 1986-07-31 1986-11-27 Ceramic heater Expired - Fee Related JP2646083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61283390A JP2646083B2 (en) 1986-11-27 1986-11-27 Ceramic heater
US07/079,255 US4804823A (en) 1986-07-31 1987-07-29 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283390A JP2646083B2 (en) 1986-11-27 1986-11-27 Ceramic heater

Publications (2)

Publication Number Publication Date
JPS63136485A JPS63136485A (en) 1988-06-08
JP2646083B2 true JP2646083B2 (en) 1997-08-25

Family

ID=17664897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283390A Expired - Fee Related JP2646083B2 (en) 1986-07-31 1986-11-27 Ceramic heater

Country Status (1)

Country Link
JP (1) JP2646083B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292475A (en) * 1991-03-18 1992-10-16 Shin Etsu Chem Co Ltd Double-layer ceramic heater
JP2948357B2 (en) * 1991-05-14 1999-09-13 信越化学工業株式会社 Multilayer ceramic heater
JP2579197Y2 (en) * 1991-12-19 1998-08-20 株式会社クラベ Film heater
JP2021072350A (en) * 2019-10-30 2021-05-06 日本碍子株式会社 Composite sintered body and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711488A (en) * 1980-06-24 1982-01-21 Ube Industries Ceramic heater
JPS61225801A (en) * 1985-03-29 1986-10-07 株式会社デンソー Far infrared radiation heat generating body

Also Published As

Publication number Publication date
JPS63136485A (en) 1988-06-08

Similar Documents

Publication Publication Date Title
US4804823A (en) Ceramic heater
JP3228924B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
US6900149B1 (en) Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
JPH0536470A (en) Ceramic heater
US6888106B2 (en) Ceramic heater
JP2001199769A (en) Ceramic substrate and aluminum nitride sintered article
JP2001253777A (en) Ceramic substrate
JP2646083B2 (en) Ceramic heater
KR20070048710A (en) Ceramic heater and heating iron using it
JP2537606B2 (en) Ceramic Heater
JP2534847B2 (en) Ceramic Heater
JPH09245946A (en) Ceramic heater
JP4044244B2 (en) Silicon nitride ceramic heater
JP3038039B2 (en) Ceramic heater and method of manufacturing the same
JP3885265B2 (en) Manufacturing method of ceramic circuit board
JP3016669B2 (en) Ceramic heater
JP2001319966A (en) Electrostatic chuck
JP3614764B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP2001135681A (en) Wafer prober device
JP2512818Y2 (en) Ceramic heater
JP2003243495A (en) Ceramic substrate
JP2001230309A (en) Ceramic substrate for semiconductor producing/inspecting apparatus
JP3832476B2 (en) Wafer prober
JPS62180980A (en) Ceramic heater
JP2000286042A (en) Resistance element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees