JP2646003B2 - Decompression steam heating device - Google Patents

Decompression steam heating device

Info

Publication number
JP2646003B2
JP2646003B2 JP8922788A JP8922788A JP2646003B2 JP 2646003 B2 JP2646003 B2 JP 2646003B2 JP 8922788 A JP8922788 A JP 8922788A JP 8922788 A JP8922788 A JP 8922788A JP 2646003 B2 JP2646003 B2 JP 2646003B2
Authority
JP
Japan
Prior art keywords
water
steam
vacuum pump
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8922788A
Other languages
Japanese (ja)
Other versions
JPH01262948A (en
Inventor
公博 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOKAWARA SEISAKUSHO KK
Original Assignee
OOKAWARA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOKAWARA SEISAKUSHO KK filed Critical OOKAWARA SEISAKUSHO KK
Priority to JP8922788A priority Critical patent/JP2646003B2/en
Publication of JPH01262948A publication Critical patent/JPH01262948A/en
Application granted granted Critical
Publication of JP2646003B2 publication Critical patent/JP2646003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被加熱物を比較的低温(通常100℃以下)
で安全かつ効果的に加熱処理することのできる減圧スチ
ーム加熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for heating an object to be heated at a relatively low temperature (normally 100 ° C. or lower).
The present invention relates to a reduced-pressure steam heating device capable of performing a heat treatment safely and effectively.

[従来の技術] 反応、乾燥等の工程において、例えば医薬品等におい
ては被加熱物を100℃以下の比較的低い温度で加熱する
ケースが非常に多い。
[Related Art] In the steps of reaction and drying, for example, in the case of pharmaceuticals and the like, there are very many cases where an object to be heated is heated at a relatively low temperature of 100 ° C or lower.

このような場合、従来は温水加熱が主流であったけれ
ども、温水加熱では偏流による温度むらが発生し易い、
装置設置のスペースが大きくなる、加熱温度100℃付近
での操作が困難である等の問題があるため、最近は減圧
スチームによる加熱システムが実用化されつゝある。
In such a case, although hot water heating has conventionally been the mainstream, in hot water heating, uneven temperature due to drift is likely to occur,
Since there are problems such as an increase in the space for installing the apparatus and difficulty in operation at a heating temperature of around 100 ° C., a heating system using reduced-pressure steam has recently been put into practical use.

このような減圧スチーム加熱装置の一例として第5図
に示す系が一般に知られている。この加熱装置は、間接
加熱容器2のスチーム入側に減圧弁や圧力自動調節弁又
は温度自動調節弁2(以下これらを総称して調節弁とい
うことがある)を接続し、スチーム出側にはスチームト
ラップ4を介して水封式真空ポンプ3を接続したもので
ある。
As an example of such a reduced-pressure steam heating device, a system shown in FIG. 5 is generally known. In this heating device, a pressure reducing valve, a pressure automatic control valve, or a temperature automatic control valve 2 (hereinafter sometimes collectively referred to as a control valve) is connected to the steam inlet side of the indirect heating vessel 2, and the steam outlet side is connected to the steam outlet side. The water-sealed vacuum pump 3 is connected via a steam trap 4.

上記のように構成した加熱装置においては、先ず水封
式真空ポンプ3により減圧弁1の二次側以降の非凝縮性
ガスを排気して真空に保持し、減圧弁1にスチームを供
給する。供給されるスチームの量は、減圧弁1によって
二次側の圧力が所定の圧力になるように調節される。
In the heating device configured as described above, first, the non-condensable gas after the secondary side of the pressure reducing valve 1 is exhausted by the water-sealed vacuum pump 3 to be kept in a vacuum, and steam is supplied to the pressure reducing valve 1. The amount of steam to be supplied is adjusted by the pressure reducing valve 1 so that the pressure on the secondary side becomes a predetermined pressure.

一方、減圧弁1を通して間接加熱容器2に供給された
スチームは、熱交換されて間接加熱容器2を所定の温度
に保持し、ドレンとなってスチームトラップ4を経由
し、水封式真空ポンプ3から排出される。
On the other hand, the steam supplied to the indirect heating vessel 2 through the pressure reducing valve 1 is heat-exchanged to maintain the indirect heating vessel 2 at a predetermined temperature, becomes a drain, passes through the steam trap 4 and passes through the water ring vacuum pump 3. Is discharged from

[発明が解決しようとする課題] 上記のような従来の減圧スチーム加熱装置において
は、スチームトラップ4を使用しているため、減圧によ
って発生する洩れ込み非凝縮性ガス及び蒸気中に含まれ
る非凝縮性ガスの排出が間欠的となり、スムーズに排出
できないため伝熱係数の低下を引きおこし、またスチー
ムトラップ動作特有の温度変化が避け難く、温度の安定
性に欠けるという問題がある。
[Problems to be Solved by the Invention] In the above-described conventional reduced-pressure steam heating apparatus, since the steam trap 4 is used, non-condensable gas generated by pressure reduction and non-condensation contained in steam are used. The intermittent discharge of the oxidizing gas cannot be performed smoothly, causing a decrease in the heat transfer coefficient. Further, there is a problem that a temperature change peculiar to the steam trap operation is unavoidable and the temperature stability is lacking.

また、減圧ポンプとして出封式真空ポンプ3を使用
し、封液として水を使用した場合、その封液の温度によ
り排気量や到達真空度が大きく変化するという問題があ
る。したがって、負荷変動の大きい系では、ドレイン量
が大きく変動するとその結果封水温度が大きく変動し、
排気能力も変化する。即ち、負荷の大きい場合、封水温
度が上って排気量が少なくなり、その結果、非凝縮性ガ
スの排出がスムーズにできなくなって伝熱係数の低下を
引きおこし、また、逆に負荷が小さくなると、封水温度
が下って排気量が多くなり、そのため生蒸気を吹込むこ
とになって熱効率の低下を来たすなど、種々解決すべき
課題があった。
Further, when the unsealed vacuum pump 3 is used as the depressurizing pump and water is used as the sealing liquid, there is a problem that the exhaust amount and the ultimate vacuum degree greatly change depending on the temperature of the sealing liquid. Therefore, in a system with large load fluctuations, if the drain amount fluctuates greatly, the sealing water temperature will fluctuate as a result,
Exhaust capacity also changes. That is, when the load is large, the sealing water temperature rises and the amount of exhaust gas decreases, and as a result, the non-condensable gas cannot be discharged smoothly, causing a decrease in the heat transfer coefficient. When the size is reduced, there are various problems to be solved, such as a decrease in the sealing water temperature and an increase in the amount of exhaust gas, which results in the injection of live steam and a decrease in thermal efficiency.

[課題を解決するための手段] 本発明は上記の課題を解決すべくなされたもので、間
接加熱容器のスチーム入側に調節弁を、またスチーム出
側に水封式真空ポンプを設けてなり、前記間接加熱容器
により被加熱物を比較的低い温度で加熱する装置におい
て、前記間接加熱容器と水封式真空ポンプとの間に絞り
機構を設けた減圧スチーム加熱装置。及び 前記水封式真空ポンプの封水温度を制御する制御装置
を設けた減圧スチーム加熱装置を提供するものである。
Means for Solving the Problems The present invention has been made to solve the above problems, and is provided with a control valve on the steam inlet side of the indirect heating vessel and a water ring vacuum pump on the steam outlet side. A reduced-pressure steam heating device, wherein a heating mechanism is used to heat an object to be heated at a relatively low temperature by the indirect heating container, wherein a throttle mechanism is provided between the indirect heating container and a water ring vacuum pump. And a reduced-pressure steam heating device provided with a control device for controlling the sealing temperature of the water-sealed vacuum pump.

[作用] 絞り機構を設けたことにより、蒸気中に含まれる非凝
縮性ガスや系外より系内に漏洩した非凝縮性ガスをスム
ーズかつ連続的に排出し、さらに生蒸気が水封式真空ポ
ンプに多量に吸込まれるのを防止する。
[Operation] By providing a throttle mechanism, non-condensable gas contained in steam and non-condensable gas leaking into the system from outside the system can be smoothly and continuously discharged, and furthermore, the live steam is water-sealed vacuum. Prevents pumps from being sucked in large quantities.

また、封水式真空ポンプの封水温度を制御することに
より、生蒸気の吸い込みを少なくすると共に、系内に発
生する非凝縮性ガスをよりスムーズかつ連続的に排出す
ることができる。
Further, by controlling the water sealing temperature of the water sealing type vacuum pump, it is possible to reduce the suction of live steam and to discharge the non-condensable gas generated in the system more smoothly and continuously.

[発明の実施例] 第1図は本発明実施例の系統図で、間接加熱容器2の
スチーム入側に減圧弁1が、またスチーム出側に水封式
真空ポンプ3が取付けられ、間接加熱容器2と水封式真
空ポンプ3との間に絞り機構5(本実施例ではオリフィ
ス)を設けたものである。なお、6は水封式真空ポンプ
3の封液の供給口で、本実施例ではこの供給口6から水
を供給し、真空を維持させる。
Embodiment of the Invention FIG. 1 is a system diagram of an embodiment of the present invention, in which a pressure reducing valve 1 is attached to a steam inlet side of an indirect heating vessel 2 and a water ring vacuum pump 3 is attached to a steam outlet side. A throttle mechanism 5 (orifice in this embodiment) is provided between the container 2 and the water-sealed vacuum pump 3. Reference numeral 6 denotes a supply port of the sealed liquid of the water-sealed vacuum pump 3. In this embodiment, water is supplied from the supply port 6 to maintain the vacuum.

上記のように構成した減圧スチーム加熱装置におい
て、先ず、水封式真空ポンプ3により減圧弁1の二次側
以降の非凝縮性ガスを排気して真空を保持すると共に、
減圧弁1にスチームを供給する。供給されるスチームの
量は、減圧弁1によって二次側の圧力が所定の圧力にな
るように調節される。即ち、間接加熱容器2の熱負荷が
大きくなると減圧弁1の二次側の圧力が下るため、減圧
弁1は所定の圧力を維持しようとして弁が開き、逆に熱
負荷が小さくなると減圧弁1の二次側の圧力が上り、減
圧弁1は所定の圧力を維持しようとして弁が絞られ、圧
力を常に一定に保持する。
In the reduced-pressure steam heating device configured as described above, first, the non-condensable gas after the secondary side of the reduced-pressure valve 1 is exhausted by the water-sealed vacuum pump 3 to maintain the vacuum,
Steam is supplied to the pressure reducing valve 1. The amount of steam to be supplied is adjusted by the pressure reducing valve 1 so that the pressure on the secondary side becomes a predetermined pressure. That is, when the heat load of the indirect heating vessel 2 increases, the pressure on the secondary side of the pressure reducing valve 1 decreases. Therefore, the pressure reducing valve 1 opens to maintain a predetermined pressure, and conversely, when the heat load decreases, the pressure reducing valve 1 decreases. The pressure on the secondary side rises, and the pressure reducing valve 1 is throttled to maintain a predetermined pressure, and the pressure is always kept constant.

一方、減圧弁1を通して間接加熱容器2に供給された
スチームは、熱交換されて間接加熱容器2を所定の温度
に保持し、封水に混入されたドレンは絞り機構5を経由
して水封式真空ポンプ3から排出される。こゝで、絞り
機構5は蒸気中に含まれる非凝縮性ガスや、系外より系
内に漏洩した非凝縮性ガスをスムーズかつ連続的に排出
することを可能にし、さらに、生蒸気が水封式真空ポン
プ3に多量に吸込まれるのを防止する。
On the other hand, the steam supplied to the indirect heating vessel 2 through the pressure reducing valve 1 is subjected to heat exchange to maintain the indirect heating vessel 2 at a predetermined temperature. It is discharged from the vacuum pump 3. Here, the throttle mechanism 5 enables smooth and continuous discharge of non-condensable gas contained in steam and non-condensable gas leaked from outside the system into the system. A large amount is prevented from being sucked into the sealed vacuum pump 3.

第2図は本発明の別の実施例を示す系統図である。本
実施例においては、3台の間接加熱容器2a,2b,2cを並設
してそのスチーム入側にそれぞれ温度自動調節弁1a,1b
及び圧力自動調節弁1cを取付け、各間接加熱容器2a〜2c
のスチーム出側はそれぞれ絞り機構(本実施例ではニー
ドル弁)5a,5b,5cを介してデイストリビュータ7の一次
側に接続され、デイストリビュータ7の二次側には水封
式真空ポンプ3を接続したものである。
FIG. 2 is a system diagram showing another embodiment of the present invention. In the present embodiment, three indirect heating vessels 2a, 2b, 2c are juxtaposed, and automatic temperature control valves 1a, 1b are respectively provided on the steam inlet side.
And an automatic pressure control valve 1c, and each indirect heating vessel 2a-2c
Are connected to the primary side of a distributor 7 via throttle mechanisms (needle valves in this embodiment) 5a, 5b, 5c, respectively, and a water ring vacuum pump is connected to the secondary side of the distributor 7. 3 are connected.

こゝで、各自動調節弁1a〜1c及び水封式真空ポンプ3
の動作は、前記第1図の実施例の場合と同様であるが、
各間接加熱容器2a〜2cごとに絞り機構5a〜5cを設けたこ
とにより、各々の間接加熱容器2a〜2cを異なる加熱温度
に設定しても、生蒸気の吸込みを少なくすることが可能
になり、経済的運転を行なうことができる。これは、絞
り機構5a〜5cにニードル弁を用いたことにより、任意の
温度設定及び負荷変動に対して、最適な絞り開度に設定
することができるからである。
Here, each automatic control valve 1a-1c and water ring type vacuum pump 3
Is the same as that of the embodiment of FIG.
By providing the squeezing mechanism 5a to 5c for each of the indirect heating vessels 2a to 2c, it becomes possible to reduce the intake of live steam even if each of the indirect heating vessels 2a to 2c is set to a different heating temperature. , Economical operation can be performed. This is because the use of the needle valves in the throttle mechanisms 5a to 5c allows the optimum throttle opening to be set for any temperature setting and load fluctuation.

第3図は本発明のさらに別の実施例を示す系統図であ
る。本実施例は基本的構成は前記第1図の実施例の場合
と同じであるが、水封式真空ポンプ3の封水温度を制御
することにより、より生蒸気の吸い込みを少なくしたも
のである。
FIG. 3 is a system diagram showing still another embodiment of the present invention. In this embodiment, the basic configuration is the same as that of the embodiment shown in FIG. 1. However, by controlling the water sealing temperature of the water ring vacuum pump 3, the suction of live steam is further reduced. .

図において、8は気液分離タンクで、水封式真空ポン
プ3の二次側に接続されており、水封式真空ポンプ3か
ら排出されたドレン及び封水を気液に分離し、分離され
た非凝縮性ガスは気体排出口9から体気中に放出され、
ドレンが混った封水は下部から排出されて封水供給口6
から供給された封水に混入され、再び封水式真空ポンプ
3に供給される。またオーバーフローしたドレインが混
った封水はドレイン排出口10から排出される。11は流量
自動調節弁で、気液分離タンク8内の封水の温度を検出
し、設定値との偏差に応じた信号によって流量自動調節
弁11を開閉し、供給口6から封水式真空ポンプ3に供給
される封水の流量を制御する。
In the figure, reference numeral 8 denotes a gas-liquid separation tank, which is connected to the secondary side of the water-sealed vacuum pump 3 and separates the drain and the sealed water discharged from the water-sealed vacuum pump 3 into gas-liquid and is separated. The non-condensable gas is released into the body through the gas outlet 9,
The sealed water mixed with drain is discharged from the lower part and the sealed water supply port 6
And supplied to the water-sealed vacuum pump 3 again. Further, the sealed water mixed with the overflowed drain is discharged from the drain discharge port 10. An automatic flow control valve 11 detects the temperature of the sealed water in the gas-liquid separation tank 8, opens and closes the automatic flow control valve 11 by a signal corresponding to a deviation from a set value, and opens a sealed vacuum from the supply port 6. The flow rate of the sealed water supplied to the pump 3 is controlled.

上記のように構成した本実施例においては、水封式真
空ポンプ3から排出されるドレンと混合された封水と非
凝縮性ガスとを気液分離タンク7で分離し、分離したド
レンが混った封水を水封式真空ポンプ3の封水として循
環させると共に、発生するドレン量に相当するドレンと
混った封水を、気液分離タンク10よりオバーフローさせ
て排出するようにしたものである。
In this embodiment configured as described above, the non-condensable gas and the sealed water mixed with the drain discharged from the water-sealed vacuum pump 3 are separated in the gas-liquid separation tank 7, and the separated drain is mixed. The sealed water circulated as the sealed water of the water-sealed vacuum pump 3 and the sealed water mixed with the drain corresponding to the amount of drain generated is overflowed from the gas-liquid separation tank 10 and discharged. It is.

ところで、このまゝ封水を循環させると、封水温度は
圧力自動調節弁(減圧弁)1cの二次側圧力と平衡する温
度にまで達し、最終的にガス排気能力が全くなくなって
生蒸気の吸い込みは零になるが、反面系内に発生する非
凝縮性ガスの排気ができなくなる。
By the way, when the sealing water is circulated, the sealing water temperature reaches a temperature equilibrium with the secondary pressure of the automatic pressure control valve (pressure reducing valve) 1c, and finally the gas exhaust capacity is completely lost, so that live steam is lost. , But the non-condensable gas generated in the system cannot be exhausted.

本実施例においては、気液分離タンク8と水封式真空
ポンプ3とを結ぶ封水循環路に冷却水の供給口6を設け
ると共に、冷却水供給経路に流量自動調節弁11を設け、
この流量自動調節弁11によって封水温度が間接加熱容器
2の加熱温度(操作圧力と平衡な水蒸気の温度)より若
干低い温度になるように、封水の水量を調節することに
よって水封式真空ポンプ3の排気能力を復帰させ、かつ
その排気能力を自由に制御しうるようにしたものであ
る。これによって生蒸気の吸い込みを少なくすると共
に、系内に発生する非凝縮性ガスをスムーズかつ連続的
に排出することができる。
In the present embodiment, a cooling water supply port 6 is provided in a water sealing circuit connecting the gas-liquid separation tank 8 and the water ring vacuum pump 3, and an automatic flow rate control valve 11 is provided in the cooling water supply path.
The water-sealing vacuum is adjusted by adjusting the amount of the water to be sealed so that the water-sealing temperature is slightly lower than the heating temperature of the indirect heating vessel 2 (the temperature of steam which is in equilibrium with the operating pressure) by the automatic flow rate control valve 11. The exhaust capacity of the pump 3 is restored, and the exhaust capacity can be freely controlled. This makes it possible to reduce the intake of live steam and smoothly and continuously discharge the non-condensable gas generated in the system.

第4図は本発明の他の実施例の系統図で、本実施例は
第3図の実施例で示した封水の温度制御を間接的に行な
うようにしたものである。即ち、本実施例においては、
封水循環路に冷却水入口6aと冷却水出口13間に接続され
た熱交換器12を設けると共に、冷却水入口6aに流量自動
調節弁11を設けたもので、封水循環路を通る封水を間接
的に冷却し、また封水の温度に応じて流量自動調節弁11
を開閉して流量を調節し、熱交換器12に供給される冷却
水の温度を制御するようにしたものである。
FIG. 4 is a system diagram of another embodiment of the present invention. In this embodiment, the temperature control of the sealed water shown in the embodiment of FIG. 3 is indirectly performed. That is, in this embodiment,
A heat exchanger 12 connected between the cooling water inlet 6a and the cooling water outlet 13 is provided in the water sealing circuit, and an automatic flow rate control valve 11 is provided at the cooling water inlet 6a. Indirect cooling and automatic flow control valve 11
Is opened and closed to adjust the flow rate and control the temperature of the cooling water supplied to the heat exchanger 12.

[発明の効果] 以上の説明から明らかなように、本発明は間接加熱容
器のスチーム入側に調節弁を取付け、スチーム出側に水
封式真空ポンプを取付けてなる減圧スチーム加熱装置に
おいて、間接加熱容器と水封式真空ポンプとの間に絞り
機構を設けたので、運転中に系内に発生する非凝縮性ガ
スをスムーズに排出して伝熱熱係数の低下を防止すると
共に、生蒸気の水封式真空ポンプへの吸込みを防止する
ことができた。また、このように構成したことにより、
加熱温度の異なる複数の間接加熱容器を1台の水封式真
空ポンプで引込むことが可能になった。さらに、水封式
真空ポンプの水封温度を制御することにより、生蒸気の
吸込みをより少なくし、効率のよい経済的な運転が可能
になる等、実施による効果大である。
[Effects of the Invention] As is apparent from the above description, the present invention relates to a decompression steam heating device in which a control valve is attached to the steam inlet side of the indirect heating vessel and a water ring vacuum pump is attached to the steam outlet side. A throttle mechanism is provided between the heating vessel and the water ring vacuum pump, so that non-condensable gas generated in the system during operation is smoothly discharged to prevent a decrease in heat transfer heat coefficient, Was prevented from being sucked into the water ring vacuum pump. Also, with this configuration,
A plurality of indirect heating vessels having different heating temperatures can be drawn in by one water-sealed vacuum pump. Further, by controlling the water seal temperature of the water seal vacuum pump, the suction of live steam can be reduced, and efficient and economical operation can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第4図はそれぞれ本発明実施例の系統図、第5
図は従来の減圧スチーム加熱装置の一例の系統図であ
る。 1:減圧弁、1a,1b:温度自動調節弁、1c:圧力自動調節
弁、2〜2c:間接加熱容器、3:水封式真空ポンプ、5〜5
c:絞り機構、8:気液分離タンク、11:流量自動調節弁、1
1:熱交換器。
1 to 4 are a system diagram of an embodiment of the present invention and FIG.
The figure is a system diagram of an example of a conventional reduced pressure steam heating device. 1: pressure reducing valve, 1a, 1b: automatic temperature control valve, 1c: automatic pressure control valve, 2-2c: indirect heating vessel, 3: water ring vacuum pump, 5-5
c: throttle mechanism, 8: gas-liquid separation tank, 11: automatic flow control valve, 1
1: heat exchanger.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】間接加熱容器のスチーム入側に調節弁を、
またスチーム出側に水封式真空ポンプを設けてなり、前
記間接加熱容器により被加熱物を比較的低い温度で加熱
する装置において、 前記間接加熱容器と水封式真空ポンプとの間に絞り機構
を設けたことを特徴とする減圧スチーム加熱装置。
1. A control valve is provided on a steam inlet side of an indirect heating vessel.
Further, in a device which is provided with a water ring vacuum pump on the steam outlet side and heats an object to be heated at a relatively low temperature by the indirect heating container, a throttle mechanism is provided between the indirect heating container and the water ring vacuum pump. A reduced pressure steam heating device characterized by comprising:
【請求項2】前記水封式真空ポンプの封水温度を制御す
る制御装置を設けたことを特徴とする請求項(1)記載
の減圧スチーム加熱装置。
2. A reduced-pressure steam heating apparatus according to claim 1, further comprising a control device for controlling a sealing temperature of said water-sealed vacuum pump.
JP8922788A 1988-04-13 1988-04-13 Decompression steam heating device Expired - Lifetime JP2646003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8922788A JP2646003B2 (en) 1988-04-13 1988-04-13 Decompression steam heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8922788A JP2646003B2 (en) 1988-04-13 1988-04-13 Decompression steam heating device

Publications (2)

Publication Number Publication Date
JPH01262948A JPH01262948A (en) 1989-10-19
JP2646003B2 true JP2646003B2 (en) 1997-08-25

Family

ID=13964855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8922788A Expired - Lifetime JP2646003B2 (en) 1988-04-13 1988-04-13 Decompression steam heating device

Country Status (1)

Country Link
JP (1) JP2646003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560594B1 (en) * 2014-11-19 2015-10-16 문수연 Steam boiler structure with waterring vacuum pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170348B (en) * 2019-05-26 2020-08-14 徐子昕 A low-pressure cooker for heating microcentrifuge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560594B1 (en) * 2014-11-19 2015-10-16 문수연 Steam boiler structure with waterring vacuum pump

Also Published As

Publication number Publication date
JPH01262948A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
JPH0534054B2 (en)
JP2646003B2 (en) Decompression steam heating device
CN114534651B (en) Reactor temperature control method
JP2665832B2 (en) Heating and cooling device
JP3751679B2 (en) Vacuum steam generator
JP3507841B2 (en) Steam or hot water heating device
JP2724776B2 (en) Heating and cooling device
JP3455308B2 (en) Steam or hot water heating device
JP2665838B2 (en) Heating and cooling device
JP2640787B2 (en) Vacuum steam heating device
JP3608025B2 (en) Auxiliary water heater connection unit
JPH04299973A (en) Method for controlling culture device
JPS6326319B2 (en)
JPH03101830A (en) Steam heating and vaporization cooling device
JPH0271833A (en) Heat treatment apparatus
JPH02294503A (en) Apparatus for warming up high pressure governor valve steam chamber in mixed pressure turbine
US4804039A (en) Process and apparatus for alternately heating and cooling a heat exchanger
JP2696920B2 (en) Atmosphere treatment equipment
JPS60150404A (en) Circulating device of driving medium
JPS6045322B2 (en) Boiler feed water heater water level control device
JPS54145044A (en) Heat-recovery air conditioner
JPS631144Y2 (en)
JP2884747B2 (en) Heating system
SU1716494A1 (en) Device for regulating a temperature of polymeric material in the reactor
KR20020080923A (en) ventilation system of semiconductor device manufacturing equipment