JP2645251C - - Google Patents

Info

Publication number
JP2645251C
JP2645251C JP2645251C JP 2645251 C JP2645251 C JP 2645251C JP 2645251 C JP2645251 C JP 2645251C
Authority
JP
Japan
Prior art keywords
zeolite
air
gas
sheet
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Publication date

Links

Description

【発明の詳細な説明】 技術分野 本発明は不活性ガスたとえば空気中に含まれる活性ガス特に有機溶剤蒸気、悪
臭物質等有害ガスを選択吸着して除去し、清浄な不活性ガスたとえば空気を得る
ガス吸着素子に関するものである。 背景技術 ゼオライトはアルミノ珪酸塩を主成分とし、その結晶水を離脱して生じる細孔
の径の差によつて水分その他有機溶剤蒸気等気体分子をその分子径に応じて選択
吸着するためモレキユラシ−ブ(分子篩)として吸着剤に使用されている。 除湿機用素子としてはたとえば特開昭54−19548号公報に、石綿紙、ガ
ラス繊維紙等のシ−トにモレキユラシ−ブ(4A,13X等)を付着し、波付け
、積層加工を施した円筒形のハニカム構造体よりなる回転再生型除湿体が提案さ
れ、また特開昭63−240921号にはA型、X型、Y型等の合成ゼオライト
またはモルデナイトその他の天然ゼオライトの粉末に結合剤を加え、押出成形、
プレス成形等によりハニカム構造とした除湿材が提案されている。一方、有機溶
剤蒸気、悪臭ガス等を空気中から吸着分離する回転吸着素子としてはたとえば特
開昭53−50068号公報に繊維状活性炭を含有する紙によりハニカム構造に
した素子が提案されている。 上記のゼオライトはモレキユラシ−ブと呼ばれるように気体分子をその分子径
に応じて選択吸着し得るものであるが、有機溶剤蒸気、悪臭ガス等を空気中から
吸着分離しようとする場合には、該空気中には必ず水蒸気が共存するため、有機
溶剤蒸気、悪臭ガス等とともに水蒸気も必ず吸着される。水分子の径は2.8Å、
これに対し有機溶剤あるいは悪臭ガスの分子径はたとえばベンゼンが6.7Å、シ
クロヘキサンが6.1Å等とすべて水分子の径より大きく、ゼオライトは水のみを
吸着分離することはできても水蒸気の共存下に有機溶剤蒸気あるいは悪臭ガスの
みを吸着分離す ることはできず、むしろ水蒸気を優先的に吸着し、有機溶剤蒸気あるいは悪臭ガ
スの吸着は優先的に吸着された水分子によつて阻害され、従つて処理空気の絶対
湿度が高い場合には有機溶剤蒸気あるいは悪臭物質を効率よく吸着分離すること
はできない。活性炭は疎水性吸着剤であり、炭化水素等非極性分子を優先的に吸
着するが、可燃性のため再生に130℃以上の温度の熱風を使用すれば発火の危
険がある。また吸着した溶剤の種類によつては吸着発熱が大きく吸着素子が発火
するおそれがあり、使用が極めて困難である。更にこの素子をある期間使用して
油分の附着等により活性が低下したときにこれを賦活する場合には300℃前後
の高温処理をしなければならないが、この高温処理には熱風は使用できず過熱水
蒸気を用いて賦活する必要がある等の欠陥があつた。 発明の開示 本発明は吸着剤としてシリカ成分含量を高くして疎水性を与えたゼオライトを
吸着剤として使用し、両端面に透通した多数の小透孔を有するブロツク状即ちハ
ニカム状積層体に成形してなり該小透孔表面に上記高シリカゼオライトがあらわ
れているガス吸着素子を提供することによつて、前記の水蒸気と共存して有機溶
剤蒸気、臭気物質を含有する不活性気体たとえば空気中の水蒸気を吸着せず、有
機溶剤蒸気、臭気物質を効率よく吸着するガス吸着素子を得たものである。 ゼオライトの組成は一般式 x M2/n O・Al2O3・ySiO2・zH2O (但しM はアルカリ金属またはアルカリ土類金属で nはその原子価、y ≧ 1) であらわせるが、y は通常1〜10である。たとえば東洋曹達工業株式会社から
吸着剤「ゼオラムA−4」として販売されている4A型ゼオライトは1.0±0.2Na
2O・Al2O3・1.85±0.5 SiO2・zH2O の組成である。ここでy がほぼ200以上に
なるようにシリカ成分含量を高めた高シリカゼオライトを使用すると疎水性とな
り水分子等極性の大きい物質に対する吸着能力が低下し、有機溶剤蒸気、悪臭物
質等無極性または極性の小さい物質をよりよく吸着するようになる。 疎水性の高シリカゼオライトを得る方法には従来の y = 1〜6 のゼオライトを
脱 アルミニウムする方法と直接 Na2O − Al2O3−SiO2-H2O系から合成する方法とが
あり、前者の脱アルミニウム法には(1)y=3 のエリオナイト、y=5 のモルデナイ
ト、y=6 のLゼオライト等を鉱酸に浸して加熱する方法、(2)y=3 〜6 のY型ゼ
オライト、y=5 のモルデナイト等をホスゲン気体中で熱処理する方法、(3)M=NH
4または H、y=3〜6 のY型ゼオライトを好ましくはスチ−ム共存下で焼成する方
法、(4)y=2 のA型ゼオライト、y=2 〜3 のX型ゼオライト、y=3 〜6 のY型ゼ
オライト等に四塩化珪素の蒸気を高温で接触させ SiCl4 + Al2O3→SiO2 + AlCl3 の反応によりゼオライト中のアルミニウムの一部を珪素で置換する方法等があり
、本発明で使用し得る疎水性の高シリカゼオライトは yの値がほぼ8以上であれ
ばよい。勿論上記の何れの方法においてもモレキユラシ−ブとしての必須要件と
して概略3Å以上の細孔が保持されていることが必要である。 本発明では上記の疎水性の高シリカゼオライトが効率よく有機溶剤蒸気および
悪臭物質を吸着分離するように両端面に透通した多数の小透孔を有するブロツク
状即ちハニカム形状にガス吸着素子を形成する。ハニカム構造のブロツクに成形
する方法としてはたとえば上記の高シリカゼオライトの粉末をカオリナイトその
他の無機結合剤と混和して押出成形、プレス成形等の方法によりハニカム状に成
形する方法も用いられるが、紙、布等シ−ト状の担体をハニカム状に成形し、
形後に高シリカゼオライトの粉末を無機バインダ−とともにシ−ト状担体の表面
および内部に結合付着せしめる方が使用した高シリカゼオライトが処理気体に接
触する面積が大きく有効に活用される。シ−ト状の担体としては金属薄板、プラ
スチツクスシ−ト等表面が平滑で滲透性のないものより紙、布、不織布等繊維を
聚合して空隙のあるように形成したシ−トの方が高シリカゼオライトがシ−ト表
面のみならずその繊維間隙においても担持されるので好ましく、特に繊維がかさ
高で空隙率の大きい繊維シ−トが望ましい。またガス吸着に当つては脱着再生の
必要があり、脱着には加熱を必要としない圧力スイング法も使用し得るが加熱に
よる脱着再生の方が装置が簡単で操作も便利であり、この加熱再生には素子の耐
熱性、不燃性が求められ、従って発火のおそれのない無機繊維紙たとえばセラミ
ツクス繊維、ロツクフアイバ−、ス ラグフアイバ−、ガラス繊維等またはこれ等の混合繊維を主成分とする紙を使用
する。アスベスト繊維も無機繊維で発火性はないが健康上問題があるので使用を
避ける。更に上記の無機繊維を主成分とする紙を用いてガス吸着素子を製造する
工程の適宜の段階において紙を焼成し、これに含まれている少量の有機成分を焼
却除去する。 ハニカムの波の波長1は2.5 〜 4.5mm、波高hは1.0 〜3.0mm の範囲が好まし
く、波長および波高が大き過ぎるとガス吸着素子の展開表面積が小さくなつてガ
ス吸着の効率が低くなり、逆に波長および波高が小さ過ぎると処理空気および再
生空気の流れによる圧力損失が大きくなり経済的な運転ができなくなる。
Description: TECHNICAL FIELD The present invention selectively removes an inert gas such as an active gas contained in air, particularly a harmful gas such as an organic solvent vapor or a malodorous substance, to obtain a clean inert gas such as air. It relates to a gas adsorption element. BACKGROUND ART Since zeolite is mainly composed of aluminosilicate and selectively adsorbs gas molecules such as water vapor and organic solvent vapor according to the molecular diameter due to the difference in the diameter of pores generated by releasing water of crystallization. Used as an adsorbent as a molecular sieve. As an element for a dehumidifier, for example, Japanese Patent Application Laid-Open No. 54-19548 discloses a sheet made of asbestos paper, glass fiber paper, or the like, to which a molecular sieve (4A, 13X, etc.) is adhered, corrugated, and laminated. A rotary regeneration type dehumidifier comprising a cylindrical honeycomb structure has been proposed. Japanese Patent Application Laid-Open No. 63-240921 discloses a binder for powders of synthetic zeolites such as A type, X type and Y type or mordenite and other natural zeolites. , Extrusion molding,
A dehumidifying material having a honeycomb structure by press molding or the like has been proposed. On the other hand, as a rotary adsorption element for adsorbing and separating an organic solvent vapor, an odorous gas and the like from the air, for example, Japanese Patent Application Laid-Open No. 53-50068 proposes an element having a honeycomb structure made of paper containing fibrous activated carbon. The above-mentioned zeolite is capable of selectively adsorbing gas molecules according to its molecular diameter, as is called "moleculase". Since water vapor always coexists in the air, water vapor is surely adsorbed together with organic solvent vapor, odorous gas and the like. The diameter of the water molecule is 2.8 mm,
On the other hand, the molecular diameter of organic solvents or odorous gases is, for example, 6.7Å for benzene and 6.1Å for cyclohexane, which are all larger than the diameter of water molecules.Zeolite can adsorb and separate only water, but it is in the presence of water vapor. It is not possible to adsorb and separate only organic solvent vapor or odorous gas, but rather adsorb water vapor preferentially, and the adsorption of organic solvent vapor or odorous gas is hindered by the preferentially adsorbed water molecules. When the absolute humidity of the processing air is high, it is not possible to efficiently adsorb and separate organic solvent vapor or odorous substances. Activated carbon is a hydrophobic adsorbent and preferentially adsorbs non-polar molecules such as hydrocarbons, but there is a danger of ignition if hot air at a temperature of 130 ° C. or higher is used for regeneration because of its flammability. Further, depending on the type of the adsorbed solvent, the heat generated by the adsorption is large and the adsorbing element may be ignited, which makes it extremely difficult to use. Further, when the device is used for a certain period and its activity is reduced due to attachment of oil or the like, if it is to be activated, a high temperature treatment of about 300 ° C. must be performed. However, hot air cannot be used for this high temperature treatment. There were defects such as the need to activate using superheated steam. DISCLOSURE OF THE INVENTION The present invention uses a zeolite having a high silica component content to impart hydrophobicity as an adsorbent, to a block-shaped or honeycomb-shaped laminate having a large number of small through holes on both end surfaces. An inert gas containing an organic solvent vapor and an odorant coexisting with the water vapor, such as air, is provided by forming the gas adsorption element in which the high silica zeolite is exposed on the surface of the small pore. A gas adsorbing element which does not adsorb water vapor therein and efficiently adsorbs organic solvent vapor and odorous substances is obtained. The composition of zeolite can be represented by the general formula x M 2 / n O.Al 2 O 3 .y SiO 2 .zH 2 O (where M is an alkali metal or alkaline earth metal and n is its valence, y ≧ 1) , Y is usually 1 to 10. For example, 4A type zeolite sold as an adsorbent “Zeolam A-4” by Toyo Soda Kogyo Co., Ltd. is 1.0 ± 0.2Na
2 is a O · Al 2 O 3 · 1.85 ± 0.5 The composition of SiO 2 · zH 2 O. Where y is the adsorption capacity is reduced for high silica zeolite material having a large becomes water molecules, polar Using hydrophobic with increased silica component content to be substantially more than 200, an organic solvent vapor, malodorous substances such as non-polar or Better adsorption of less polar substances. There is a method of synthesizing the Al 2 O 3 -SiO 2 -H 2 O system - hydrophobicity of the method for obtaining a high-silica zeolite conventional y = 1 to 6 the zeolite directly with how to dealumination Na 2 O In the former dealumination method, (1) a method of immersing y = 3 erionite, y = 5 mordenite, y = 6 L zeolite or the like in a mineral acid and heating, (2) a method of y = 3 to 6 Heat treatment of Y-type zeolite, mordenite with y = 5 in phosgene gas, (3) M = NH
4 or H, a method of calcining Y-type zeolite with y = 3 to 6 preferably in the presence of steam; (4) A-type zeolite with y = 2, X-type zeolite with y = 2 to 3, y = 3 6 to 6 Y-type zeolite, etc., by contacting the vapor of silicon tetrachloride at a high temperature, and replacing a part of the aluminum in the zeolite with silicon by a reaction of SiCl 4 + Al 2 O 3 → SiO 2 + AlCl 3 . The hydrophobic high silica zeolite that can be used in the present invention may have a value of y of about 8 or more. Of course, in any of the above-mentioned methods, it is necessary that pores of about 3 mm or more are held as an essential requirement as a molecu-larisive. In the present invention, the above-mentioned hydrophobic high silica zeolite forms a gas-adsorbing element in a block shape, that is, a honeycomb shape, having a large number of small holes penetrating through both end faces so that the organic solvent vapor and the malodorous substance can be efficiently adsorbed and separated. I do. As a method of forming a block having a honeycomb structure, for example, a method of mixing the powder of the high silica zeolite described above with kaolinite or another inorganic binder and forming the mixture into a honeycomb shape by a method such as extrusion molding or press molding is also used. A sheet-shaped carrier such as paper or cloth is formed into a honeycomb shape, and formed.
When the high silica zeolite powder is bonded and adhered to the surface and inside of the sheet-like carrier together with the inorganic binder after shaping , the area where the high silica zeolite used comes into contact with the processing gas is greatly utilized. As a sheet-shaped carrier, a sheet formed by combining fibers such as paper, cloth, non-woven fabric and the like so as to have a void is more preferable than a sheet having a smooth and non-permeable surface such as a thin metal plate or a plastic sheet. The high silica zeolite is preferable because it is supported not only on the sheet surface but also in the fiber gap, and a fiber sheet having a bulky fiber and a high porosity is particularly desirable. In addition, desorption regeneration is necessary for gas adsorption, and a pressure swing method that does not require heating can be used for desorption, but desorption regeneration by heating is simpler and more convenient in operation. Inorganic fiber paper which is required to have heat resistance and non-combustibility of the element and is not liable to catch fire, such as ceramic fiber, rock fiber, slag fiber, glass fiber, etc. I do. Asbestos fibers are also inorganic fibers and are not ignitable, but should be avoided because of health problems. Further, the paper is baked at an appropriate stage of the process of manufacturing the gas adsorption element using the paper containing the above-mentioned inorganic fiber as a main component, and a small amount of organic components contained in the paper are burned off. The wavelength 1 of the honeycomb wave is preferably in the range of 2.5 to 4.5 mm, and the wave height h is preferably in the range of 1.0 to 3.0 mm. If the wavelength and wave height are too large, the developed surface area of the gas adsorption element becomes small, and the gas adsorption efficiency becomes low. If the wavelength and the wave height are too small, the pressure loss due to the flow of the processing air and the regeneration air becomes large, and economic operation cannot be performed.

【図面の簡単な説明】 第1図は本発明のガス吸着素子の例を示す斜視図、第2図は片波成形積層体を
示す断面図、第3図はガス吸着濃縮装置の例を示す一部欠截斜視図、第4図は本
発明のガス吸着素子の性能の処理入口空気湿度による変化を示すグラフ、第5図
は対照例のガス吸着素子の性能の処理入口空気湿度による変化を示すグラフ、第
6図は本発明のガス吸着素子の性能の素子回転速度による変化を示すグラフ、第
7図は本発明のガス吸着素子の性能の小透孔の長さによる変化を示すグラフであ
る。 第3図において4はガス吸着素子、5はケ−シング、6はセパレ−タ、7は処
理ゾ−ン、8は再生ゾ−ン、9はギヤドモ−タ、11は処理空気、12は再生空
気を示す。 発明を実施するための最良の形態 シリカ・アルミナ系のセラミツクス繊維に少量の有機質合成繊維および少量の
無機または有機のバインダ−を加え見掛け比重0.3 〜 0.45 程度の低密度(坪量
60〜150g/m2程度)、厚さ0.10〜0.30mm程度に抄造した無機繊維紙を幅40
0mm、波の波長3.4mm、波高1.8mm になるようにコルゲ−ト成形し、合成樹脂た
とえばポリ酢酸ビニ−ルと無機質バインダ−とを混合した接着剤を用いて第2図
に示す如く平面紙1と波形紙2とを該波形紙2の波の稜線において接着して片波
成形体を得、 第1図に示す如く芯材Cに該片波成形体を捲付けて両端面に透通した多数の小透
孔3を有する径320mmの円筒状のハニカム積層体に成形した。高シリカゼオラ
イトとしてNaY ゼオライト即ち xNa2O・Al2O3・ySiO2・zH2O(但し x≒1,y≒5
,z≒9,細孔径ほぼ10Å)を四塩化珪素で処理しそのAl2O3の一部をSiO2で置換
したゼオライト xNa2O・Al2O3・ySiO2・zH2O(但し x≒1,y≒200,z≒9,細孔径
ほぼ10Å)(たとえばドイツ連邦共和国デグサ社のDAYゼオライト)を微粉
砕してシリカまたはアルミナの水性ゾル中に分散し、得られたゾルに上記成形品
を浸漬し、無機繊維紙1,2の繊維間隙および無機繊維紙の表面にヒドロゾル中
のシリカまたはアルミナの微粒子を結合剤として高シリカゼオライトを付着せし
め、乾燥後450℃で3〜4時間焼成してシ−ト中の有機物を除去しゼオライト
を脱水しガス吸着素子を得た。高シリカゼオライトの無機繊維紙に対する附着率
は約35wt%であつた。この焼成はゼオライトの含浸前に行ってもよい。 第1図の如く円筒状で得られた本発明のガス吸着素子はたとえば第3図に示す
如く該ガス吸着素子4をケ−シング5内に駆動回転可能に保持しセパレ−タ6に
より処理ゾ−ン7と再生ゾ−ン8とに分離し、ギヤドモ−タ9、駆動ベルト10
により素子4を回転させ、処理空気11を処理ゾ−ン7に高温の再生空気12を
再生ゾ−ン8に送入し、処理空気11中の活性成分たとえば有機溶剤蒸気、悪臭
物質等を吸着して清浄な空気13を得るものである。尚第3図中14はプ−リ−
、15はテンシヨンプ−リ−、16はゴムシール、17は再生空気加熱器である
。18は再生空気の出口であり、有機溶剤蒸気その他の活性成分は処理ゾ−ン7
対再生ゾ−ン8の面積比(8/7)によって濃縮倍率が決まる。実用上は濃縮倍
率は5〜20倍で運転される。 素子4の円筒の長さ400mm、回転速度10r.p.h.、再生空気量対処理空気量
1:10、処理入口空気温度25℃±2℃、処理空気および再生空気の流速2m/
sec.、再生入口空気温度150℃±2℃の条件で トルエン 空気中の含有量 550ppm キシレン 空気中の含有量 1100ppm イソプロピルアルコ−ル 空気中の含有量 760ppm n−ブチルアセテ−ト 空気中の含有量 340ppm 夫々の絶対湿度 2〜19 g/kg の処理空気を通したときの溶剤除去率(%)を第4図に示す。ここで溶剤除去率
とは処理出口空気の溶剤含有率を処理入口空気の溶剤含有率で割った商を1から
引いた値をいう。尚処理入口空気中の溶剤の濃度がある範囲で変つても溶剤除去
率は殆ど変らない。 対照例として従来市販されている親水性のゼオライトの一例、東洋曹達工業株
式会社製「ゼオラムF−9」(細孔径10Å)を使用して上記実施例と同一方法
により製造したガス吸着素子について上記同様の試験をして得られた結果即ち溶
剤除去率を第5図に示す。第5図により明らかな如く親水性ゼオライトでは処理
空気の素子入口における絶対湿度がほぼ8g/kg’以下の場合にはすべての有機溶
剤についての除去率が90%以上であるが、処理入口空気の絶対湿度が8g/kg’
より高くなると溶剤除去率は急激に低下する。これは使用したゼオライトが親水
性のため有機溶剤の分子よりも空気中の水蒸気を優先的に吸着する結果である。
これに対し本発明で使用する高シリカゼオライトでは第4図により明らかな如く
試験したすべての有機溶剤について処理入口空気の絶対湿度の如何に係らず90
%以上の溶剤除去率を示した。尚処理入口空気の温度を5〜50℃、流速を1〜
3m/sec.、再生入口空気の温度を100〜160℃、有機溶剤蒸気の濃度を20
〜2700ppm の範囲でいろいろ変化し、有機溶剤の種類も変えて試験したが何
れの場合にも90〜100%の溶剤回収率を示した。第3図における排気18に
おける有機溶剤蒸気の濃度が高い場合にはこれを燃焼し、またはボイラ−の燃料
として使用し得る。 次に素子の回転速度による溶剤除去率の変動を見るため、前記実施例の方法で
得られた素子を第3図の装置に組込み、処理入口空気温度15℃、処理空気およ
び再生空気の流速2m/sec.、再生入口空気温度140℃、処理入口空気の絶対湿
度5.0g 500ppm の条件で素子の回転速度を6〜26r.p.h.の範囲で変動し、トルエン
の 除去率を測定した結果を第6図に示す。これにより素子の回転数の変化により溶
剤除去率が変化し、この試験に供した素子では最も溶剤除去率の高い最適回転数
はほぼ12r.p.h.であることがわかる。 次に小透孔の長さの変化による溶剤除去率の変動を見るため、前記の方法で得
られゼオライト含浸後の無機繊維紙の厚さ 0.20mm、コルゲ−トの波長 3.4mm
、波高 1.8mm とし、小透孔の長さLを100mm〜500mmの範囲で変えた素子
を第3図の装置に組込み、処理入口空気温度 15℃、再生入口空気温度 15
0℃、処理空気および再生空気の流速 2m/sec.、処理入口空気の絶対湿度 1
5g/kg、処理入口空気中の溶剤蒸気濃度:キシレン 1100ppm、素子の回転
速度 15r.p.h.の条件で運転し、キシレンの除去率を測定した結果を第7図に
示す。これにより小透孔の長さが100〜300mmの程度では溶剤の吸着除去は
充分には行われず、小透孔の長さがほぼ400mm以上になると溶剤の吸着除去は
95%以上即ちほぼ完全となり、それ以上小透孔を長くするのは無駄であること
が分る。 産業上の利用可能性 本発明は上記の如く疎水性の高シリカゼオライトを吸着剤としてガス吸着素子
を製造したので、不活性気体たとえば空気中に含まれる比較的少量の有機溶剤蒸
気または悪臭成分を吸着するに当り空気中に必ず含有される水蒸気を吸着するこ
とが極めて少なく、従つて湿度の如何にかかわらず空気その他不活性気体からそ
の中に含まれる有機溶剤蒸気または悪臭成分を高効率で吸着濃縮除去し得る効果
を有するものである。しかも素子に吸着された有機溶剤または悪臭成分は100
〜160℃程度の温度でほぼ脱着されるのでたとえば第3図に示したような回転
再生式ガス吸着装置に組立てて連続的に空気その他不活性ガス中の活性ガスを吸
着し濃縮し燃焼して除去することができ、あるいは濃縮された有機溶剤蒸気を含
有する空気を冷却して有機溶剤を液化し再利用することができる。高シリカゼオ
ライトを定着させるハニカム積層体として無機繊維を主成分とする不燃紙その他
シ−トを使用するときは、該シ−トよりなるハニカム積層体は高シリカゼオライ
トとともに高熱に耐え発火のおそれなく、この防火性は素子を構成する不燃紙ま
たはハニカム積層体を450 ℃で約3〜4時間焼成してその中に少量含有される有機物質を分解または燃焼に
より除去することによつて一層完全となり、たとえば高沸点のオイルミストが高
シリカゼオライトの細孔内に付着し素子の吸着性能が低下した場合にはこの素子
に350℃程度の熱風を通すことによりオイルミストなどを除去し素子を賦活再
生することができる。 また本発明の製造法では不燃紙等の薄いシ−ト状の担体をハニカム状に成形し
、ハニカムを450〜500℃にて焼成しこれに無機バインダ−等を使用して高
シリカゼオライトの粉末を含浸附着せしめるので、製造も特殊の機械装置を要す
ることなく簡易廉価にでき、得られたガス吸着素子において使用した高シリカゼ
オライトの大部分が吸着剤として有効に働き、担体として不燃紙の如く繊維の聚
合体よりなり空隙率の大きい材料特に低密度に抄造した無機繊維紙を使用すると
きは高シリカゼオライトが無機繊維紙の表面のみならずその繊維間隙にも定着し
担持能力が大きくなる等種々の特徴効果を有するものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of a gas adsorption element of the present invention, FIG. 2 is a cross-sectional view showing a half-wave molded laminate, and FIG. FIG. 4 is a partial cutaway perspective view, FIG. 4 is a graph showing the change in the performance of the gas adsorption element of the present invention depending on the processing inlet air humidity, and FIG. FIG. 6 is a graph showing a change in the performance of the gas adsorption element of the present invention with the element rotation speed, and FIG. 7 is a graph showing a change in the performance of the gas adsorption element of the present invention with the length of the small through-hole. is there. In FIG. 3, 4 is a gas adsorbing element, 5 is a casing, 6 is a separator, 7 is a processing zone, 8 is a regeneration zone, 9 is a geared motor, 11 is processing air, and 12 is regeneration. Indicates air. BEST MODE FOR CARRYING OUT THE INVENTION A low density (approximately 60 to 150 g / m2 basis weight) of a specific gravity of about 0.3 to 0.45 is added to a silica-alumina ceramic fiber by adding a small amount of an organic synthetic fiber and a small amount of an inorganic or organic binder. 2 ), inorganic fiber paper made to a thickness of about 0.10 to 0.30 mm, width 40
As shown in FIG. 2, a flat paper is formed by corrugating to a thickness of 0 mm, a wave wavelength of 3.4 mm and a wave height of 1.8 mm and using an adhesive obtained by mixing a synthetic resin such as polyvinyl acetate and an inorganic binder. 1 and the corrugated paper 2 are adhered at the ridge line of the wave of the corrugated paper 2 to obtain a half-wave molded body, and the single-wave molded body is wound around a core material C as shown in FIG. It was formed into a cylindrical honeycomb laminated body having a diameter of 320 mm and having many small through holes 3. NaY zeolite That xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O as a high-silica zeolite (where x ≒ 1, y ≒ 5
, Z ≒ 9, pore diameter of about 10Å) treated with silicon tetrachloride and a part of the Al 2 O 3 was replaced with SiO 2 zeolite xNa 2 O OAl 2 O 3・ ySiO 2 zzH 2 O (where x {1, y ≒ 200, z ≒ 9, pore size almost 10Å) (for example, DAY zeolite from Degussa, Germany) is finely pulverized and dispersed in an aqueous sol of silica or alumina. The product is immersed, high silica zeolite is attached to the fiber gap of inorganic fiber papers 1 and 2 and the surface of the inorganic fiber paper using silica or alumina fine particles as a binder, and after drying, calcined at 450 ° C. for 3 to 4 hours. The organic matter in the sheet was removed, and the zeolite was dehydrated to obtain a gas adsorption element. The attachment ratio of the high silica zeolite to the inorganic fiber paper was about 35% by weight. This calcination may be performed before the impregnation of the zeolite. The gas adsorption element of the present invention obtained in a cylindrical shape as shown in FIG. 1 is, for example, as shown in FIG. And a regeneration zone 8 and a geared motor 9 and a drive belt 10.
The element 4 is rotated to send the processing air 11 to the processing zone 7 and the high-temperature regeneration air 12 to the regeneration zone 8 to adsorb active components such as organic solvent vapor and odorous substances in the processing air 11. And clean air 13 is obtained. In FIG. 3, 14 is a pulley.
, 15 is a tension pulley, 16 is a rubber seal, and 17 is a regeneration air heater. Reference numeral 18 denotes an outlet of the regeneration air, and the organic solvent vapor and other active components are treated in the treatment zone 7.
The concentration ratio is determined by the area ratio of the regeneration zone 8 (8/7). In practice, the operation is performed at a concentration ratio of 5 to 20 times. The length of the cylinder of the element 4 is 400 mm, the rotation speed is 10 r.ph, the amount of regenerating air to the amount of processing air is 1:10, the processing inlet air temperature is 25 ° C. ± 2 ° C., and the flow rate of the processing air and the regenerating air is 2 m /
sec., regeneration inlet air temperature 150 ℃ ± 2 ℃, toluene content in air 550ppm xylene content in air 1100ppm isopropyl alcohol content in air 760ppm n-butyl acetate content in air 340ppm FIG. 4 shows the solvent removal rate (%) when the processing air having the absolute humidity of 2 to 19 g / kg was passed. Here, the solvent removal rate is a value obtained by subtracting a quotient obtained by dividing the solvent content of the processing outlet air by the solvent content of the processing inlet air from one. The solvent removal rate hardly changes even if the concentration of the solvent in the processing inlet air changes within a certain range. As a control example, an example of a hydrophilic zeolite conventionally commercially available, a gas adsorbing element manufactured by the same method as in the above example using "Zeolam F-9" (pore diameter 10 mm) manufactured by Toyo Soda Kogyo Co., Ltd. FIG. 5 shows the results obtained in the same test, that is, the solvent removal rate. As apparent from FIG. 5, in the case of the hydrophilic zeolite, when the absolute humidity at the inlet of the processing air at the element inlet is about 8 g / kg 'or less, the removal rate of all organic solvents is 90% or more. Absolute humidity is 8g / kg '
At higher levels, the solvent removal rate drops sharply. This is a result of the fact that the zeolite used preferentially adsorbs water vapor in the air over molecules of the organic solvent due to its hydrophilicity.
In contrast, for the high silica zeolite used in the present invention, 90% regardless of the absolute humidity of the process inlet air for all organic solvents tested as evident from FIG.
% Or more. The temperature of the processing inlet air is 5 to 50 ° C, and the flow rate is 1 to
3 m / sec., Temperature of regeneration inlet air is 100-160 ° C., concentration of organic solvent vapor is 20
It varied in the range of 22700 ppm and was tested with different kinds of organic solvents. In each case, 90-100% solvent recovery was shown. When the concentration of the organic solvent vapor in the exhaust gas 18 in FIG. 3 is high, it can be burned or used as fuel for a boiler. Next, in order to observe the change in the solvent removal rate due to the rotation speed of the element, the element obtained by the method of the above embodiment was incorporated into the apparatus shown in FIG. 3, and the inlet temperature of the processing inlet was 15 ° C., and the flow rates of the processing air and the regeneration air were 2 m. / sec., regeneration inlet air temperature 140 ° C, processing inlet air absolute humidity 5.0g FIG. 6 shows the results obtained by measuring the removal rate of toluene by varying the rotation speed of the element in the range of 6 to 26 r.ph under the condition of 500 ppm. As a result, the solvent removal rate changes due to the change in the rotation speed of the element, and it can be seen that the optimum rotation speed with the highest solvent removal rate is about 12 r.ph in the element subjected to this test. Next, in order to observe the change in the solvent removal rate due to the change in the length of the small pores, the thickness of the inorganic fiber paper obtained by the above method and impregnated with zeolite was 0.20 mm, and the wavelength of corrugate was 3.4 mm.
An element having a wave height of 1.8 mm and a length L of the small through hole in the range of 100 mm to 500 mm was incorporated into the apparatus shown in FIG. 3, and the processing inlet air temperature was 15 ° C. and the regeneration inlet air temperature was 15 ° C.
0 ° C, flow rate of process air and regeneration air 2m / sec., Absolute humidity of process inlet air 1
FIG. 7 shows the results of measuring the xylene removal rate by operating under the conditions of 5 g / kg, the solvent vapor concentration in the processing inlet air: xylene 1100 ppm, and the element rotation speed 15 r.ph. Thus, when the length of the small through-hole is about 100 to 300 mm, the adsorption and removal of the solvent is not sufficiently performed. When the length of the small through-hole becomes about 400 mm or more, the adsorption and removal of the solvent becomes 95% or more, that is, almost complete. It turns out that it is useless to make the small through holes longer. INDUSTRIAL APPLICABILITY As the present invention has manufactured a gas adsorption element using a hydrophobic high silica zeolite as an adsorbent as described above, a relatively small amount of an organic solvent vapor or an odor component contained in an inert gas such as air is removed. Very little adsorption of water vapor that is always contained in air during adsorption, and therefore highly efficient adsorption of organic solvent vapor or odor components contained in air or other inert gas regardless of humidity regardless of humidity. It has the effect of being able to be concentrated and removed. In addition, the organic solvent or odor component adsorbed on the element is 100
Since it is almost desorbed at a temperature of about 160 ° C., it is assembled in a rotary regenerative gas adsorber as shown in FIG. 3 to continuously adsorb, concentrate and burn active gas in air or other inert gas. The air containing the concentrated organic solvent vapor can be cooled or the organic solvent can be liquefied and recycled by cooling. When a non-combustible paper or other sheet containing inorganic fibers as a main component is used as a honeycomb laminate for fixing the high silica zeolite, the honeycomb laminate made of the sheet withstands high heat together with the high silica zeolite without fear of ignition. The fire resistance is further improved by firing the non-combustible paper or the honeycomb laminate constituting the element at 450 DEG C. for about 3 to 4 hours to remove a small amount of organic substances contained therein by decomposition or combustion. For example, when high boiling oil mist adheres to the pores of high silica zeolite and the adsorption performance of the element is reduced, hot air of about 350 ° C. is passed through the element to remove the oil mist and activate and reproduce the element. can do. In the production method of the present invention, a thin sheet-like carrier such as noncombustible paper is formed into a honeycomb shape, the honeycomb is fired at 450 to 500 ° C., and a high silica zeolite powder is formed by using an inorganic binder or the like. Impregnated, so that the production can be simplified and inexpensive without the need for special mechanical equipment, and most of the high silica zeolite used in the obtained gas adsorption element works effectively as an adsorbent, and as a carrier, such as non-combustible paper When using inorganic fiber paper made of a composite of fibers and having a high porosity, especially low-density inorganic fiber paper, the high-silica zeolite is fixed not only on the surface of the inorganic fiber paper but also in the fiber gaps, increasing the carrying capacity. It has various characteristic effects.

Claims (1)

【特許請求の範囲】 1.主成分が無機繊維であるシ−トを片波成形体とし、この片波成形体を積層し
て多数の小透孔を有するハニカム積層体を形成し、シリカまたはアルミナの水性
ゾル中にシリカ対アルミナのモル比が約8:1以上の疎水性の高シリカゼオライ
トの粉末を分散し、得られたゾルに前記ハニカム積層体を浸漬し該小透孔の繊維
間隙および壁面に定着することを特徴とするガス吸着素子の製造法。 2.高シリカゼオライトが大部分のアルミニウム分を除去したゼオライトである
特許請求の範囲第1項記載のガス吸着素子の製造法。 3.シ−トが低密度に抄造したものである特許請求の範囲第1項記載のガス吸着
素子の製造法。 4.ハニカム積層体を成形する前または後に無機繊維紙を焼成する特許請求の範
囲第1項記載のガス吸着素子の製造法。 5.無機繊維シ−トの厚さを0.10〜0.30mm程度、コルゲ−トの波長を2.5 〜 4.5
mm程度、波高を1.0 〜3.0mm 程度、小透孔の長さを100〜500mm程度とする
特許請求の範囲第1項記載のガス吸着素子の製造法。
[Claims] 1. Main component is an inorganic fibrous sheet - to the door and half-wave shaped body of the half-wave by a shaped body by laminating to form the honeycomb stacked body having many small holes, a silica or alumina aqueous
A hydrophobic high silica zeolite powder having a molar ratio of silica to alumina of about 8: 1 or more is dispersed in the sol, and the honeycomb laminate is immersed in the obtained sol. A method for manufacturing a gas adsorption element, comprising fixing. 2. 2. The method according to claim 1, wherein the high silica zeolite is a zeolite from which most of the aluminum content has been removed. 3. 2. The method according to claim 1, wherein the sheet is formed at a low density. 4. The method for producing a gas adsorption element according to claim 1, wherein the inorganic fiber paper is fired before or after forming the honeycomb laminate. 5. The thickness of the inorganic fiber sheet is about 0.10 to 0.30 mm, and the wavelength of the corrugate is 2.5 to 4.5.
2. The method according to claim 1, wherein the length of the small through-hole is about 100 to 500 mm, the wave height is about 1.0 to 3.0 mm, and the length of the small through hole is about 100 to 500 mm.

Family

ID=

Similar Documents

Publication Publication Date Title
JP2645251B2 (en) Gas adsorption element
JPH0628173Y2 (en) Moisture exchange element
JP2579767B2 (en) Ultra-low concentration gas adsorption element and gas adsorption removal device
KR101303189B1 (en) Novel solid materials and method for co2 removal from gas stream
AU2017208389A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
SE508363C2 (en) Process for producing a gas adsorbing element or catalyst support
US5269140A (en) Exhaust gas purifier for methanol-fueled engines
KR100879312B1 (en) A Manufacturing Method of the CO2 Gas Absorbent
JP2925126B2 (en) Gas adsorption element, method for producing the same, and gas adsorption device
EP0492879B1 (en) A gas adsorbing element, its manufacture method and usage
JP2681381B2 (en) Gas adsorption element manufacturing method
JP2950448B2 (en) Method and apparatus for preferentially adsorbing and removing organic solvent vapor and moisture in gas
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
JP4819367B2 (en) Manufacturing method of air filter sheet
JPH0871352A (en) Filter, production thereof and filter apparatus
JP2645251C (en)
JP2007268441A (en) Adsorption sheet, adsorption element, and method for preparing the same
JP3526892B2 (en) Method for purifying formaldehyde-containing gas
JP2003103165A (en) Chemical filter and regeneration method thereof
JPH04104813A (en) Adsorbing body for adsorption treatment of gas
JP2005111331A (en) Catalyst carrier and catalyst filter
JPH07313825A (en) Honeycomb adsorbing body provided with filter
JP7081776B2 (en) Ozone, acetaldehyde, toluene removal filter
JPH10263395A (en) Gaseous organic solvent adsorbing element
JP2003093818A (en) Air filter material