JP2644949B2 - Reactor water supply method - Google Patents

Reactor water supply method

Info

Publication number
JP2644949B2
JP2644949B2 JP4203536A JP20353692A JP2644949B2 JP 2644949 B2 JP2644949 B2 JP 2644949B2 JP 4203536 A JP4203536 A JP 4203536A JP 20353692 A JP20353692 A JP 20353692A JP 2644949 B2 JP2644949 B2 JP 2644949B2
Authority
JP
Japan
Prior art keywords
water
reactor
suppression pool
pipe
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4203536A
Other languages
Japanese (ja)
Other versions
JPH0651087A (en
Inventor
誠也 立野
正義 松浦
安隆 岩田
俊雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4203536A priority Critical patent/JP2644949B2/en
Publication of JPH0651087A publication Critical patent/JPH0651087A/en
Application granted granted Critical
Publication of JP2644949B2 publication Critical patent/JP2644949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子炉の炉水の補給方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for replenishing reactor water.

【0002】[0002]

【従来の技術】従来、原子炉過渡事象による炉水位低下
時に炉水を補給する機能を有する系統、すなわち原子炉
隔離時冷却系(RCIC)の補給水源には、復水貯蔵槽
とサプレッションプールとがあり、これらを併用するこ
とにより、水源の多様化が図られている。
2. Description of the Related Art Conventionally, a system having a function of replenishing reactor water when a reactor water level drops due to a reactor transient, that is, a replenishing water source of a reactor isolation cooling system (RCIC), includes a condensate storage tank, a suppression pool, and the like. Water sources have been diversified by using these together.

【0003】また、沸騰水型原子炉(BWR)プラント
の原子炉隔離時冷却系では、復水貯蔵槽の水位が低下し
た場合、補給水源をサプレッションプールに切替えてお
り、この切替え作業は手動で行われている。
[0003] In a cooling system at the time of reactor isolation of a boiling water reactor (BWR) plant, when the water level in the condensate storage tank drops, the makeup water source is switched to a suppression pool, and this switching operation is manually performed. Is being done.

【0004】一方、改良型沸騰水型原子炉(ABWR)
プラントでは、原子炉隔離時冷却系が非常用炉心冷却系
(ECCS)ネットワークに組み込まれ、高圧系の非常
用炉心冷却系が強化されている。これに伴い、配管破断
による炉水喪失時、サプレッションプールに炉水が流入
して、サプレッションプールが水位が高くなった場合
は、格納容器の圧力が上昇している。
On the other hand, an improved boiling water reactor (ABWR)
In the plant, the reactor isolation cooling system has been incorporated into an emergency core cooling system (ECCS) network to enhance the high pressure emergency core cooling system. Accordingly, when the reactor water is lost due to a pipe break, when the reactor water flows into the suppression pool and the water level in the suppression pool rises, the pressure in the containment vessel is increasing.

【0005】この格納容器の圧力上昇を自動的に抑制す
るため、改良型沸騰水型原子炉の当初の設計では、従来
の沸騰水型原子炉プラントにおける高圧系の非常用炉心
冷却系と同様に、水源切替えは、次の自動切替えロジッ
クの採用が計画されていた。この自動切替えロジックの
説明図を図5に示す。
In order to automatically suppress the pressure increase in the containment vessel, the original design of the improved boiling water reactor is similar to that of the high pressure system emergency core cooling system in the conventional boiling water reactor plant. For water source switching, the following automatic switching logic was planned. An explanatory diagram of this automatic switching logic is shown in FIG.

【0006】すなわち、図5は、炉水の補給水源に復水
貯蔵槽を用いている場合、復水貯蔵槽が水位低、又はサ
プレッションプールが水位高となったとき、炉水の補給
水源が復水貯蔵槽からサプレッションプールに切替わる
ことを示している。
That is, FIG. 5 shows that when a condensate storage tank is used as a replenishment water source for reactor water, when the condensate storage tank has a low water level or the suppression pool has a high water level, the replenishment water source for the reactor water is changed. This indicates that the condensate storage tank is switched to the suppression pool.

【0007】また、上記の自動切替えロジックは、柏崎
・刈羽原子力発電所、原子炉設置変更許可申請書(3、
4号原子炉の増設)〔昭和60年4月(昭和61年4月
一部補正)(昭和62年2月一部補正)添付書類八、東
京電力株式会社の5.2.4.3項〕に明記されており、
公知な技術である。
[0007] The above automatic switching logic is based on the Kashiwazaki-Kariwa Nuclear Power Station, Reactor Installation Change Permission Application (3,
Unit 4 Reactor) [April 1985 (partially amended in April 1986) (partially amended in February 1987) Appendix 8, Section 5.2.4.3 of Tokyo Electric Power Company ]
This is a known technique.

【0008】原子炉隔離時冷却系は、非常用炉心冷却系
の機能のほかに、従来の沸騰水型原子炉プラントに設置
されている原子炉過渡事象時の炉水の補給機能をも有し
ている。すなわち、炉水喪失時のほかに原子炉過渡事象
時においても、サプレッションプールが高水位となった
場合は、図5の自動切替えロジックに示すように、補給
水源が切替わり、補給水として水質上好ましくないサプ
レッションプールの貯蔵水が炉内に補給されていた。
The reactor isolation cooling system is an emergency core cooling system.
Installed in a conventional boiling water reactor plant
Also has a function of replenishing reactor water during a reactor transient event
ing. In other words, in addition to reactor water loss,
Even at times, the suppression pool has reached a high water level
If replenished, as shown in the automatic switching logic of FIG.
The water source is switched, and supplements that are
The water in the lesson pool was being replenished into the furnace.

【0009】なお、特公昭64−2233号公報には、
次のような関連技術が開示されている。すなわち、通常
時は復水貯蔵タンクを給水源とする原子炉隔離時冷却系
及び高圧炉心スプレイ系と、復水貯蔵タンクの水位低信
号、又はサプレッションプールの水位高信号によって給
水源をサプレッションプールに切り換える手段とを有す
る原子炉プラントにおいて、サプレッションプールの水
位高信号が与えられた場合、更に冷却材喪失事故の検出
信号があったときにのみ切り換え手段が動作する構成に
なるものが開示されている。
Japanese Patent Publication No. 64-2233 discloses that
The following related technologies are disclosed. That is, usually
Cooling system at the time of reactor isolation using condensate storage tank as water supply
And high pressure core spray system and low water level of condensate storage tank
Signal or high signal from the suppression pool.
Means for switching water source to suppression pool
Water in a suppression pool at a nuclear reactor plant
If a height signal is given, further loss of coolant detection
The switching means operates only when there is a signal.
Are disclosed.

【0010】従来では、原子炉過渡事象時でもサプレッ
ションプールが高水位であれば、一般には、上述のよう
に、補給水源として水質上好ましくないサプレッション
プールが使用されていた。
Conventionally, even during a reactor transient event,
If the pool is at a high water level,
And unfavorable water quality as a makeup water source
The pool was being used.

【0011】しかし、サプレッションプールの貯蔵水は
Feクラッドなどを多く含んでおり、Feクラッドが多
量に炉内に流入した場合は、原子炉過渡事象の無事終息
後において、水抜きなどの煩雑な作業が必要となり、通
常運転への回復が容易でない。また、サプレッションプ
ール水が少量の場合でも、運転及び保守の面からは好ま
しいとは言えない。
However, the water stored in the suppression pool contains a large amount of Fe clad and the like, and when a large amount of Fe clad flows into the reactor, complicated work such as drainage is performed after the reactor transient event has been completed successfully. And it is not easy to recover to normal operation. Further, even when the amount of suppression pool water is small, it cannot be said that it is preferable in terms of operation and maintenance.

【0012】本発明の目的は、原子炉過渡事象時に、炉
水の補給水源として復水貯蔵槽を使用することにより、
原子炉過渡事象の終息後における通常運転への回復を容
易とすることにある。
It is an object of the present invention to use a condensate storage tank as a source of make-up water for reactor water during a reactor transient.
It is intended to facilitate a return to normal operation after the termination of a reactor transient.

【0013】[0013]

【課題を解決するための手段】上記の目的は、次のよう
にして達成することができる。
The above object can be attained as follows.

【0014】[0014]

【0015】[0015]

【0016】原子炉過渡事象による炉水の水位低下時及
び配管破裂による前記炉水の喪失時に前記炉水を補給す
る炉水補給機能を有し、前記炉水の補給水源として前記
炉水と同質の水を貯蔵している復水貯蔵槽及び前記炉水
としては水質上好ましくない水を貯蔵しているサプレッ
ションプールを設置した原子炉の炉水補給方法におい
て、前記サプレッションプールの貯蔵水を前記炉心に供
給する配管の途中から前記貯蔵水の一部を排水する分岐
管を設け、前記配管及び前記分岐管に電動弁を付設し、
前記サプレッションプールの水位が規定値以上になり、
前記サプレッションプールの貯蔵水の排水が必要となっ
たとき、前記サプレッションプールの貯蔵水を残留熱除
去系のポンプ及び熱交換器を介して排水するように前記
電動弁を動作させること。
When reactor water level drops due to reactor transient
Replenish the reactor water when the reactor water is lost due to pipe rupture
Having a reactor water supply function,
A condensate storage tank storing water of the same quality as the reactor water, and the reactor water
Suppressors that store unfavorable water
Replenishment method for reactor water with reactor pool
Supply water from the suppression pool to the core.
A branch that drains part of the storage water from the middle of the supply pipe
A pipe is provided, and an electric valve is attached to the pipe and the branch pipe,
The water level of the suppression pool is equal to or higher than a specified value,
It is necessary to drain the water stored in the suppression pool.
When the stored water in the suppression pool is
So that water is drained through the downstream pump and heat exchanger.
Operate a motor-operated valve.

【0017】[0017]

【作用】本発明では、補給水源を復水貯蔵槽からサプレ
ッションプールに切替えるためのロジック回路を組んで
ある。すなわち、サプレッションプールの水位高信号と
炉水喪失信号とをAND回路で組み、更にこのAND回
路と復水貯蔵槽の水位低信号とをOR回路で組んであ
る。
According to the present invention, a logic circuit for switching the makeup water source from the condensate storage tank to the suppression pool is provided. That is, the high water level signal of the suppression pool and the reactor water loss signal are combined by an AND circuit, and the AND circuit and the low water level signal of the condensate storage tank are combined by an OR circuit.

【0018】上記の回路であれば、原子炉過渡事象時に
おいてサプレッションプール水位高の信号が出ても、炉
水喪失信号又は復水貯蔵槽水位低の信号が出ない限り、
炉心への補給水源は復水貯蔵槽からサプレッションプー
ルへは切替わらない。
According to the above-mentioned circuit, even if a suppression pool water level high signal is output during a reactor transient event, unless a reactor water loss signal or a condensate storage tank water level low signal is output,
The supply of make-up water to the core is not switched from the condensate storage tank to the suppression pool.

【0019】したがって、原子炉過渡事象時において、
サプレッションプールの高信号のみで、水質上好ましく
ないサプレッションプールの貯蔵水が炉内に流入するこ
とはない。なお、これらの作用と同様のことが、特公昭
64−2233号公報に開示されている。
Therefore, during a reactor transient,
Only high signal of suppression pool, favorable for water quality
Water from the suppression pool does not flow into the furnace.
And not. It should be noted that the same effects as those described above
64-2233.

【0020】上述のような作用が満足される構成におい
て、本発明では、サプレッションプールの貯蔵水を、必
要に応じて排水する設備を備えている。したがって、サ
プレッションプール上部に、適時、空間を保つことが可
能となり、サプレッションプールの高水位によって生じ
る格納容器の圧力容器を抑制する機能を維持することが
できる。
In a configuration satisfying the above-described functions.
Therefore, in the present invention, the water stored in the suppression pool is
Equipped with drainage facilities as needed. Therefore,
Timely space can be maintained above the compression pool
Caused by high water levels in the suppression pool
To maintain the function of suppressing the pressure vessel of the containment vessel.
it can.

【0021】[0021]

【実施例】本発明の実施例を、図1〜図4を用いて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0022】図1は本発明の一実施例の説明図、図2は
本発明の一実施例に関連する、原子炉隔離時冷却系にお
ける水源切替えロジックの説明図である。
FIG . 1 is an explanatory view of an embodiment of the present invention, and FIG.
The reactor isolation cooling system related to one embodiment of the present invention
FIG. 4 is an explanatory diagram of a water source switching logic according to the embodiment.

【0023】図2において、原子炉格納容器2内には、
原子炉圧力容器1、ドライウエル3及びサプレッション
プール4を有しており、原子炉過渡事象による炉水低下
時には、電動弁A5が開、及び電動弁B6が閉の状態
で、復水貯蔵槽7の貯蔵水を、ポンプA8により、原子
炉圧力容器に補給している。
In FIG . 2, inside the containment vessel 2,
Reactor pressure vessel 1, dry well 3, and suppression
Having pool 4, reactor water drop due to reactor transient
Sometimes, the electric valve A5 is open and the electric valve B6 is closed
Then, the water stored in the condensate storage tank 7 is atomized by the pump A8.
Refilling furnace pressure vessel.

【0024】また、配管破断による炉水喪失時にも同様
に、電動弁A5が開、及び電動弁B6が閉の状態で、復
水貯蔵槽7の貯蔵水を用いている。
Similarly, when the reactor water is lost due to a pipe break, the water stored in the condensate storage tank 7 is used with the electric valve A5 open and the electric valve B6 closed.

【0025】そして、復水貯蔵槽用水位計10を用いて
復水貯蔵槽7の水位を測定し、復水貯蔵槽7の水位が規
定値未満になった場合は、これを感知して、復水貯蔵槽
7の水位低を報知する信号を発信し、この信号により、
ロジック回路によって、電動弁A5が閉、電動弁B6が
開となつて補給水源が切替わり、サプレッションプール
4の貯蔵水が、ポンプA8により原子炉圧力容器1内に
流入する。
Then, the water level of the condensate storage tank 7 is measured using the condensate storage tank water level meter 10, and when the water level of the condensate storage tank 7 falls below a specified value, this is sensed. A signal to notify the low water level of the condensate storage tank 7 is transmitted, and this signal
The logic circuit closes the motor-operated valve A5 and opens the motor-operated valve B6 to switch the makeup water source, and the water stored in the suppression pool 4 flows into the reactor pressure vessel 1 by the pump A8.

【0026】上記のロジック回路を図3及び図4に示
す。図3は補給水源切替えロジックの流れ図、図4は電
動弁切替えロジックの流れ図である。
The above logic circuit is shown in FIGS.
You. FIG. 3 is a flowchart of the makeup water source switching logic, and FIG.
It is a flow chart of valve train switching logic.

【0027】図3及び図4の各場合とも、サプレッショ
ンプールの水位高信号と炉水喪失信号とをAND回路で
組み、更にこのAND回路と復水貯蔵槽7の水位低信号
とをOR回路で組んであり、図3は補給水源を復水貯蔵
槽7からサプレッションプール4に変える場合、図4
は、図3の状態にするために実際に行われること、すな
わち電動弁A5が開、及び電動弁B6が閉の状態を、電
動弁A5が閉、及び電動弁B6が開の状態に変える場合
を、それぞれ示している。
In each of FIGS. 3 and 4, the suppression
The high level signal of the pool and the reactor water loss signal are
In addition, this AND circuit and the water level low signal of the condensate storage tank 7
Fig. 3 shows the replenishment water source is condensed and stored.
When changing from the tank 7 to the suppression pool 4, FIG.
What is actually done to achieve the state of FIG.
That is, the state where the electric valve A5 is open and the electric valve B6 is closed
When the valve A5 is closed and the motor-operated valve B6 is opened
Are respectively shown.

【0028】サプレッションプール用水位計9により、
サプレッションプール4の水位が規定値以上となったこ
とを感知した場合、サプレッションプール4の水位高を
報知する信号が発信される。しかし、この状態におい
て、配管破断による炉水喪失を報知する信号(図2のL
OCA信号)が発信された場合にのみ、図4のロジック
回路により、電動弁A5が閉となり電動弁B6が開とな
り、図3のロジック回路に示すように、補給水源が復水
貯蔵槽7からサプレッションプール4に切替わる。
According to the suppression pool water level meter 9,
Check that the water level in the suppression pool 4 has exceeded the specified value.
Is detected, the water level of the suppression pool 4 is raised.
A notification signal is transmitted. But in this state
To notify the loss of reactor water due to pipe breakage (L in FIG. 2).
Only when the OCA signal is transmitted, the logic of FIG.
The circuit closes the motor-operated valve A5 and opens the motor-operated valve B6.
As shown in the logic circuit of FIG.
The storage tank 7 is switched to the suppression pool 4.

【0029】図3の条件を満たして補給水源の切替えを
行う場合、図4のロジック回路を用いているので、電動
弁B6が開とならなければ、電動弁A5は閉とはならな
い。したがって、補給水源のルートが遮断されることは
なく、補給水を補給し続けることができる。
Switching of the makeup water source while satisfying the conditions of FIG .
When performing the operation, the logic circuit shown in FIG. 4 is used.
If valve B6 does not open, motorized valve A5 will not close.
No. Therefore, the supply water source route will not be blocked
No water can be supplied continuously.

【0030】また、本実施例のロジック回路における各
信号(復水貯蔵槽の水位低、サプレッションプールの水
位高、配管破断による炉水喪失信号)について、計器を
多重化して、例えば、2OUT OF 3ロジックなどを
各信号ごとに組むことにより、計器の単一故障による誤
作動を回避することができる。
For each signal in the logic circuit of the present embodiment (low water level in the condensate storage tank, high water level in the suppression pool, loss of reactor water due to pipe breakage), an instrument is multiplexed, for example, 2OUT OF 3 By assembling logic or the like for each signal, malfunction due to a single failure of the instrument can be avoided.

【0031】本発明の一実施例は、上述のような構成か
らなるものに付帯させて実施したものである。図1は本
発明の一実施例の説明図であり、図2に示しているサプ
レッションプールから炉心への補給水の補給系統におけ
る、排水系へのつながりを示している。
In one embodiment of the present invention, the configuration as described above is used.
This was carried out in conjunction with the following. Figure 1 is a book
FIG. 3 is an explanatory view of an embodiment of the invention, and shows a sub-type shown in FIG.
In the replenishment system from the water pool to the core
The connection to the drainage system.

【0032】図1において、復水貯蔵槽7(図2参照)
を補給水源に使用している状態において、サプレッショ
ンプール4が水位高となったとき、サプレッションプー
ル4の貯蔵水は、電動弁C13が開、電動弁D16が
開、及び電動弁E17が閉の状態で、ポンプB14によ
り熱交換器15を通して排水される。
In FIG . 1, the condensate storage tank 7 (see FIG. 2)
While using as a makeup water source,
When the pool 4 becomes high, the suppression pool
The stored water of the fuel tank 4 has the electric valve C13 open and the electric valve D16
When the pump B14 is open and the electric valve E17 is closed.
The water is discharged through the heat exchanger 15.

【0033】上記の状態において、配管破断による炉水
喪失の信号が発信された場合、サプレッションプール4
の貯蔵水の排水口へ通じるライン上の電動弁D16は閉
になり、これと同期して電動弁E17は開となり、サプ
レッションプール4の貯蔵水は、ポンプB14によって
熱交換器15を通して原子炉圧力容器1内へ送られる。
In the above state, when a signal indicating a loss of reactor water due to a pipe break is transmitted, the suppression pool 4
The motor-operated valve D16 on the line leading to the drain of the stored water is closed, the motor-operated valve E17 is opened in synchronism with this, and the stored water in the suppression pool 4 is pumped through the heat exchanger 15 through the heat exchanger 15 by the pump B14. It is sent into the container 1.

【0034】上記のように本発明は、原子炉過渡事象時
のサプレッションプール4の貯蔵水の排水手段に残留熱
除去系を利用し、この残留熱除去系のポンプ14、熱交
換器15を介してサプレッションプール4の貯蔵水を排
出するものであり、サップレッションプール4の貯蔵水
を排水するための熱交換器を新たに設置する必要がな
い。
As described above, the present invention is applicable to a reactor transient event.
Heat in the drainage means of the storage water in the suppression pool 4
The pump 14 of the residual heat removal system
The water stored in the suppression pool 4 is drained through the exchanger 15.
And the storage water of the suppression pool 4
It is not necessary to install a new heat exchanger for draining
No.

【0035】[0035]

【発明の効果】本発明によれば、原子炉過渡事象時の炉
水への補給水源として、復水貯蔵槽の水位が規定値未満
になるまでは、水質上好ましい復水貯蔵槽の貯蔵水を使
用できるので、原子炉過渡事象の無事終息後における通
常運転への回復が容易となる。
According to the present invention, as a source of make-up water for reactor water during a reactor transient event, the water stored in the condensate storage tank is preferable in terms of water quality until the water level in the condensate storage tank falls below a specified value. Can be used to facilitate a return to normal operation after a safe termination of the reactor transient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の説明図である。 FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】本発明の一実施例に関連する補給水源切替えロ
ジックの説明図である。
FIG. 2 shows a makeup water source switching system according to an embodiment of the present invention .
It is an explanatory view of a trick.

【図3】図2の補給水源切替えロジックの流れ図であ
る。
FIG. 3 is a flowchart of a makeup water source switching logic of FIG . 2;
You.

【図4】図2の電動弁の切替えロジックの流れ図であ
る。
FIG. 4 is a flowchart of the switching logic of the motor-operated valve of FIG . 2;
You.

【図5】従来の補給水源切替えロジックの説明図であ
る。
FIG. 5 is an explanatory diagram of a conventional makeup water source switching logic.
You.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 俊雄 茨城県日立市幸町三丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 平2−222878(JP,A) 特開 昭61−271497(JP,A) 特公 昭64−2233(JP,B2) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshio Kikuchi 3-1-1 Kochi-cho, Hitachi-shi, Ibaraki Pref. Sho 61-271497 (JP, A) JP-B 64-2-233 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子炉過渡事象による炉水の水位低下時
及び配管破裂による前記炉水の喪失時に前記炉水を補給
する炉水補給機能を有し、前記炉水の補給水源として前
記炉水と同質の水を貯蔵している復水貯蔵槽及び前記炉
水としては水質上好ましくない水を貯蔵しているサプレ
ッションプールを設置した原子炉の炉水補給方法におい
て、前記サプレッションプールの貯蔵水を前記炉心に供
給する配管の途中から前記貯蔵水の一部を排水する分岐
管を設け、前記配管及び前記分岐管に電動弁を付設し、
前記サプレッションプールの水位が規定値以上になり、
前記サプレッションプールの貯蔵水の排水が必要となっ
たとき、前記サプレッションプールの貯蔵水を残留熱除
去系のポンプ及び熱交換器を介して排水するように前記
電動弁を動作させることを特徴とする原子炉の炉水補給
方法。
1. When the reactor water level drops due to a reactor transient event
And replenish the reactor water when the reactor water is lost due to pipe rupture
The reactor has a reactor water supply function to perform
Condenser storage tank storing water of the same quality as the storage water, and the furnace
Supplements that store unfavorable water in terms of water quality
Replenishment of reactor water with reactor pool
Supply water from the suppression pool to the core.
A branch that drains part of the storage water from the middle of the supply pipe
A pipe is provided, and an electric valve is attached to the pipe and the branch pipe,
The water level of the suppression pool is equal to or higher than a specified value,
It is necessary to drain the water stored in the suppression pool.
When the stored water in the suppression pool is
So that water is drained through the downstream pump and heat exchanger.
Reactor water replenishment characterized by operating a motorized valve
Method.
JP4203536A 1992-07-30 1992-07-30 Reactor water supply method Expired - Fee Related JP2644949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4203536A JP2644949B2 (en) 1992-07-30 1992-07-30 Reactor water supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4203536A JP2644949B2 (en) 1992-07-30 1992-07-30 Reactor water supply method

Publications (2)

Publication Number Publication Date
JPH0651087A JPH0651087A (en) 1994-02-25
JP2644949B2 true JP2644949B2 (en) 1997-08-25

Family

ID=16475780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4203536A Expired - Fee Related JP2644949B2 (en) 1992-07-30 1992-07-30 Reactor water supply method

Country Status (1)

Country Link
JP (1) JP2644949B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274532A (en) 2004-03-26 2005-10-06 Toshiba Corp Method and device for suppression of pressure and decontamination in reactor containment vessel
US9847148B2 (en) * 2011-03-30 2017-12-19 Westinghouse Electric Company Llc Self-contained emergency spent nuclear fuel pool cooling system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271497A (en) * 1985-05-28 1986-12-01 株式会社東芝 Residual heat removing system for nuclear reactor
JPH02222878A (en) * 1989-02-21 1990-09-05 Toshiba Corp Residual heat removal system of nuclear power plant

Also Published As

Publication number Publication date
JPH0651087A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
US5426681A (en) Boiling water reactor with combined active and passive safety systems
EP0389231B1 (en) Containment heat removal system
JP2002122689A (en) Boiling water type nuclear power plant
JP4956267B2 (en) Emergency core cooling system
JP2010085282A (en) Nuclear power plant of pressurized water type
CN109545401A (en) A kind of lead base fast reactor out-pile passive residual heat removal system
JP5642091B2 (en) Reactor transient mitigation system
JP2009031079A (en) Emergency core cooling system
JP2644949B2 (en) Reactor water supply method
JP2003270374A (en) Containment spray control device
JP2009180526A (en) Fuel pool water supply system
CN108447570A (en) Naval reactor and its Passive residual heat removal system
JP2004198118A (en) Installation and method for cooling reactor containment vessel
CN208271569U (en) Naval reactor and its Passive residual heat removal system
Park et al. An investigation of an in-vessel corium retention strategy for the Wolsong pressurized heavy water reactor plants
JP2000275380A (en) Emergency core cooling system and its water intake equipment
JPH09159782A (en) Reactor containment
JP2000206284A (en) Condensate reservoir equipment and its operation control method
JP2001183487A (en) Water filling facilities for reactor jessel
JPH0317598A (en) Removal system for residual heat of nuclear reacter
JPH03100496A (en) Nuclear reactor having emergency cooling water replenishing equipment
Modro The next generation of power reactors-safety characteristics
JP2918353B2 (en) Reactor containment vessel
JP2696041B2 (en) Fuel pool makeup water equipment
Ma et al. System Study: Isolation Condenser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees