JP2644113B2 - Operation method of heat storage system - Google Patents

Operation method of heat storage system

Info

Publication number
JP2644113B2
JP2644113B2 JP3199017A JP19901791A JP2644113B2 JP 2644113 B2 JP2644113 B2 JP 2644113B2 JP 3199017 A JP3199017 A JP 3199017A JP 19901791 A JP19901791 A JP 19901791A JP 2644113 B2 JP2644113 B2 JP 2644113B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage tank
source device
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3199017A
Other languages
Japanese (ja)
Other versions
JPH0545008A (en
Inventor
駸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3199017A priority Critical patent/JP2644113B2/en
Publication of JPH0545008A publication Critical patent/JPH0545008A/en
Application granted granted Critical
Publication of JP2644113B2 publication Critical patent/JP2644113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱源装置と蓄熱槽とに
わたり熱媒を循環させて、熱源装置の発生温熱又は発生
冷熱を蓄熱槽に蓄熱する蓄熱システムの運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a heat storage system in which a heat medium is circulated between a heat source device and a heat storage tank to store the generated heat or cold heat of the heat source device in the heat storage tank.

【0002】[0002]

【従来の技術】従来、上記の蓄熱システムにおいては、
熱源装置の出力として、計算上、所定時間の熱媒循環に
より蓄熱槽に所定熱量を蓄熱できる出力を設定し、そし
て、上記の所定時間にわたる蓄熱運転期間中、熱源装置
をその設定出力で継続運転することにより、蓄熱槽に所
定熱量を蓄熱するようにしていた。
2. Description of the Related Art Conventionally, in the above-mentioned heat storage system,
As an output of the heat source device, an output capable of storing a predetermined amount of heat in the heat storage tank by circulating the heat medium for a predetermined time is set as the output of the heat source device, and the heat source device is continuously operated at the set output during the heat storage operation period over the predetermined time. Thus, a predetermined amount of heat is stored in the heat storage tank.

【0003】[0003]

【発明が解決しようとする課題】しかし、蓄熱槽におけ
る単位時間当たりの蓄熱可能量qsは、図4に示すよう
に、蓄熱が進行して蓄熱槽の蓄熱状態が飽和状態に近づ
くに伴い次第に低下するため、熱源装置を一定出力で運
転する従来の運転方法では、例えば、計算上、所定時間
Tの熱媒循環により蓄熱槽に所定熱量を蓄熱できる熱源
装置の出力(換言すれば、熱源装置の単位時間当たりの
発生熱量qh)として、所定時間Tにわたる熱源装置発
生熱量qhの積算値(図4において面積abcdに相
当)と、所定時間Tにわたる蓄熱可能量qsの積算値と
しての目標蓄熱量Qs(図4において面積aedに相
当)とが丁度等しくなるような出力qh1を設定する
と、蓄熱運転の前期においては熱源装置の発生熱量qh
1が蓄熱可能量qsよりも小となることにより、面積b
efに相当する熱量の蓄熱が未完のまま蓄熱運転が進行
し、反面、蓄熱運転の後期においては蓄熱可能量qsの
現実の低下で熱源装置の発生熱量qh1が蓄熱可能量q
sよりも大となることにより、温熱蓄熱の場合には循環
熱媒の異常高温化、また、冷熱蓄熱の場合には循環熱媒
の異常低温化を招いて、装置保護の面で熱源装置の運転
を中断する必要が生じ、これらのことから結果的には、
面積aedに相当する目標蓄熱量Qsの蓄熱を所定時間
Tの経過時点では実際に完了できず、ひいては、蓄熱運
転後の蓄熱熱量消費運転(例えば、蓄熱温熱による暖房
運転や蓄熱冷熱による冷房運転等)を含めた全体として
の運転計画の実施に支障を来す問題があった。
However, the heat storage capacity qs per unit time in the heat storage tank gradually decreases as the heat storage progresses and the heat storage state of the heat storage tank approaches a saturated state, as shown in FIG. Therefore, in the conventional operating method of operating the heat source device at a constant output, for example, in calculation, the output of the heat source device capable of storing a predetermined amount of heat in the heat storage tank by the circulation of the heat medium for a predetermined time T (in other words, the output of the heat source device) As the generated heat amount per unit time qh), the integrated value of the heat source device generated heat amount qh over the predetermined time T (corresponding to the area abcd in FIG. 4) and the target heat storage amount Qs as the integrated value of the heat storage capacity qs over the predetermined time T (Equivalent to the area aed in FIG. 4), the output qh1 is set to be exactly equal to the heat quantity qh generated by the heat source device in the first half of the heat storage operation.
1 is smaller than the heat storage capacity qs, the area b
The heat storage operation proceeds while the heat storage of the heat amount corresponding to ef is not completed. On the other hand, in the latter half of the heat storage operation, the heat storage amount qs is actually reduced, and the generated heat amount qh1 of the heat source device becomes the heat storage amount q
s, the temperature of the circulating heat medium becomes abnormally high in the case of heat storage, and the temperature of the circulating heat medium becomes abnormally low in the case of cold heat storage. You need to stop driving, and as a result,
The heat storage of the target heat storage amount Qs corresponding to the area aed cannot be actually completed after the elapse of the predetermined time T, and thus the heat storage heat consumption operation after the heat storage operation (for example, the heating operation using the storage heat and the cooling operation using the storage cold) There was a problem that hindered the implementation of the operation plan as a whole, including

【0004】尚、熱源装置の出力qhに上記qh1より
も大きい値(例えばqh2)を設定したとしても、熱源
装置の運転を中断する頻度が高くなるばかりで、やはり
上記問題は解消されず、また、熱源装置の出力qhに上
記qh1よりも小さい値(例えばqh3)を設定すれ
ば、所定時間Tにわたる熱源装置発生熱量qh3の積算
値が、所定時間Tにわたる蓄熱可能量qsの積算値とし
ての目標蓄熱量Qsを下回ることから、その目標蓄熱量
Qsの蓄熱を所定時間Tで完了することは、そもそも計
算上からも不可能である。
[0004] Even if the output qh of the heat source device is set to a value larger than qh1 (for example, qh2), the frequency of interrupting the operation of the heat source device increases only, and the above problem still remains. If the output qh of the heat source device is set to a value smaller than the above qh1 (for example, qh3), the integrated value of the heat source device generated heat amount qh3 over the predetermined time T becomes the target as the integrated value of the heat storage capacity qs over the predetermined time T. Since the heat storage amount is lower than the heat storage amount Qs, it is impossible to complete the heat storage of the target heat storage amount Qs in the predetermined time T from the viewpoint of calculation.

【0005】本発明の目的は、合理的な運転形態を採用
することにより上記問題の解消を図る点にある。
An object of the present invention is to solve the above problem by employing a rational operation mode.

【0006】[0006]

【課題を解決するための手段】本発明による蓄熱システ
ムの運転方法の特徴構成は、熱源装置と蓄熱槽とにわた
り熱媒を循環させて、前記熱源装置の発生温熱又は発生
冷熱を前記蓄熱槽に蓄熱するに、前記蓄熱槽に対する熱
媒の目標供給温度として、前記熱源装置を運転しながら
前記熱源装置と前記蓄熱槽との間で熱媒循環させる所定
時間の蓄熱運転により、前記蓄熱槽へ所定熱量を蓄熱で
きる温度を設定し、蓄熱運転の運転過程において、前記
蓄熱槽における単位時間当たりの蓄熱可能量が変化する
ことに対し、前記熱源装置からの熱媒送出温度を前記の
目標供給温度に維持するように、循環熱媒の検出温度に
基づき前記熱源装置の出力を調整して、前記蓄熱槽にお
ける単位時間当たりの蓄熱可能量と前記熱源装置の単位
時間当たりの発生熱量とが平衡する状態を保つことにあ
り、その作用・効果は次の通りである。
A feature of the method of operating a heat storage system according to the present invention is that a heat medium is circulated between a heat source device and a heat storage tank so that generated heat or cold generated by the heat source device is transferred to the heat storage tank. When storing heat, the target heat supply medium is supplied to the heat storage tank as the target temperature while operating the heat source device.
A predetermined heat medium circulating between the heat source device and the heat storage tank;
By the heat storage operation for a time, a temperature at which a predetermined amount of heat can be stored in the heat storage tank is set, and in the operation process of the heat storage operation , the heat storage capacity per unit time in the heat storage tank changes. In order to maintain the heating medium delivery temperature at the target supply temperature, the detected temperature of the circulating heating medium is
Adjusting the output of the heat source device on the basis of the heat storage tank so that the heat storage capacity per unit time in the heat storage tank and the amount of heat generated per unit time of the heat source device are kept in an equilibrium state. It is as follows.

【0007】[0007]

【作用】つまり、熱源装置をある一定出力で運転してい
る状況で熱源装置の単位時間当たりの発生熱量と蓄熱槽
における単位時間当たりの蓄熱可能量とが平衡している
状態から、その蓄熱可能量が変化すると、熱源装置の単
位時間当たりの発生熱量が蓄熱槽における単位時間当た
りの蓄熱可能量に対して過不足となることにより、蓄熱
槽から熱源装置に戻る熱媒の温度が変化し、また、それ
に伴い、一定出力で運転している熱源装置からの熱媒送
出温度が変化する。
[Function] In other words, when the heat source device is operated at a certain output, the heat storage capacity of the heat source device is equal to the heat storage capacity per unit time in the heat storage tank. When the amount changes, the amount of heat generated per unit time of the heat source device becomes more or less than the heat storage capacity per unit time in the heat storage tank, so that the temperature of the heat medium returning from the heat storage tank to the heat source device changes, Along with this, the temperature of the heat medium delivered from the heat source device operating at a constant output changes.

【0008】したがって、蓄熱運転の運転過程におい
て、蓄熱槽における単位時間当たりの蓄熱可能量が変化
することに対し、熱源装置からの熱媒送出温度を一定温
度に維持するように熱源装置の出力を調整すれば、単位
時間当たりの蓄熱可能量が逐次変化することにかかわら
ず、その蓄熱運転期間を通じて、熱源装置の単位時間当
たりの発生熱量と蓄熱槽における単位時間当たりの蓄熱
可能量とが平衡する状態を保つことができ、また、循環
熱媒の異常高温化や異常低温化も回避できて、それら循
環熱媒の異常高温化や異常低温化に対する熱源装置の運
転中断も回避できる。
Therefore, in the operation process of the heat storage operation,
Therefore, if the heat storage capacity per unit time in the heat storage tank changes, by adjusting the output of the heat source device so that the heat medium delivery temperature from the heat source device is maintained at a constant temperature, heat storage per unit time can be achieved. the amount regardless to changes sequentially through its thermal storage operation period, it is possible to maintain a state in which the heat generation amount per unit time of the heat source unit and the heat storage can amount per unit time in the heat storage tank is balanced, also, the circulation It is also possible to avoid abnormally high and abnormally low temperatures of the heat medium, and also to avoid interrupting the operation of the heat source device due to abnormally high and abnormally low temperatures of the circulating heat medium.

【0009】このことから、蓄熱槽に対する熱媒の目標
供給温度として、所定時間の蓄熱運転により蓄熱槽へ所
定熱量を蓄熱できる温度を設定し、そして、蓄熱運転の
運転過程において、熱源装置からの熱媒送出温度をその
目標供給温度に維持するように、循環熱媒の検出温度に
基づき熱源装置の出力を調整すれば、その蓄熱運転過程
単位時間当たりの蓄熱可能量が変化することに対し熱
源装置の単位時間当たりの発生熱量を追従変化させる形
態で、熱源装置の単位時間当たりの発生熱量と蓄熱槽に
おける単位時間当たりの蓄熱可能量とを平衡させながら
蓄熱を進めて、すなわち、先述の図4の例で言えば、蓄
熱槽における単位時間当たりの蓄熱可能量qsがed線
に沿って経時変化するのに対し、熱源装置の単位時間当
たりの発生熱量qhも同様にed線に沿って変化させな
がら蓄熱を進めて、所定時間Tの経過時点で、目標の所
定熱量Qsの蓄熱を的確に完了できる。
[0009] Therefore, as the target supply temperature of the heat medium for the heat storage tank, the temperature was set to be heat accumulating a predetermined amount of heat to the heat storage tank by thermal storage operation for a predetermined time, and, the thermal storage operation
During the operation process, the detected temperature of the circulating heat medium is adjusted so that the temperature of the heat medium delivered from the heat source device is maintained at its target supply temperature.
Based by adjusting the output of the heat source device, the thermal storage operation process
In which the amount of heat generated per unit time of the heat source device follows the change in the amount of heat that can be stored per unit time
In this state, the heat storage is advanced while balancing the amount of heat generated per unit time of the heat source device with the heat storage capacity per unit time in the heat storage tank. That is, in the example of FIG. While the heat storage capacity per unit qs changes with time along the ed line, the heat storage unit also advances the heat storage while changing the generated heat amount per unit time qh similarly along the ed line, and the predetermined time T elapses. At this point, the heat storage of the target predetermined amount of heat Qs can be accurately completed.

【0010】[0010]

【発明の効果】本発明によれば、以上の作用をもって、
所定時間の蓄熱運転で的確に目標の所定熱量を蓄熱でき
ことにより、蓄熱運転及びその後の蓄熱熱量消費運転
を含めたシステム全体としての運転計画を従前に比べよ
り正確、かつ円滑に遂行できるようになる。ちなみに、
この種の蓄熱システムおける熱源装置の出力調整につい
ては、別の方式として、特開平2−64334号公報に
見られるように、熱源装置としてのヒートポンプの出力
(能力)を外気温度に応じて調整する方式がある。 つま
り、この別方式は、温熱の蓄熱の場合、ヒートポンプの
特性として、外気温度が高いほど熱源装置としてのヒー
トポンプの実質出力(実質能力)が大きくなることに原
因して、ヒートポンプの実質出力が蓄熱槽の蓄熱容量に
比べ過大となり、この為、温熱の蓄熱運転において、循
環熱媒の単位時間当たりの温度上昇に対し蓄熱槽におけ
る蓄熱材の単位時間当たりの温度上昇が追随しきれない
状態となって、循環熱媒の温度がヒートポンプ運転可能
上限温度(すなわち、装置保護の面でヒートポンプの運
転を自動停止する温度)に早期に達し、蓄熱が未だ不十
分であるにもかかわらずヒートポンプの運転が停止され
てしまうといった不都合に対し、外気温度に応じヒート
ポンプの出力を調整(すなわち、外気温度が高いほどヒ
ートポンプ出力を低下側に調整)することで、循環熱媒
の温度上昇を緩和して循環熱媒温度がヒートポンプ運転
可能上限温度に達するのを遅延させ、これにより、上記
不都合を抑止しようとするものである。 しかし、この別
方式では、外気温度によるヒートポンプ実質出力の変化
に原因してのヒートポンプ出力と蓄熱容量とのバランス
の崩れは抑止できるものの、外気温度に応じての熱源装
置の出力調整であるため、蓄熱が進行して蓄熱槽の蓄熱
状態が飽和状態に近づくに伴い蓄熱槽における単位時間
当たりの蓄熱可能量が次第に低下するといった蓄熱槽そ
のものの蓄熱特性が原因で、熱源装置の単位時間当たり
の発生熱量と蓄熱槽における単位時間当たりの蓄熱可能
量とが不平衡になることに対してまでは対応できず、例
えば、温熱の蓄熱において、蓄熱運転の初期で未だ蓄熱
槽における単位時間当たりの蓄熱可能量が大きいにもか
かわらず、 そのときの外気温度が高いために熱源装置の
出力が低下側に調整されることで、かえって、熱源装置
の単位時間当たり発生熱量が蓄熱槽の単位時間当たりの
蓄熱可能量よりも小さくなるといった不平衡状態を招い
たり、また逆に、蓄熱運転の終期で蓄熱槽における単位
時間当たりの蓄熱可能量が小さいにもかかわらず、その
ときの外気温度が低いために熱源装置の出力が増大側に
復帰調整されることで、かえって、熱源装置の単位時間
当たり発生熱量が蓄熱槽の単位時間当たりの蓄熱可能量
よりも大きくなるといった不平衡状態を招いたりする虞
がある。 この点、本発明によれば、前述の如く、熱源装
置からの熱媒送出温度を前記の目標供給温度に維持する
ように、循環熱媒の検出温度に基づき熱源装置の出力を
調整することで、蓄熱槽における単位時間当たりの蓄熱
可能量と熱源装置の単位時間当たりの発生熱量とを平衡
させるから、蓄熱槽そのものの蓄熱特性として蓄熱槽の
単位時間当たりの蓄熱可能量が変化することに対し、ま
た、熱源装置としてヒートポンプを用いる場合には、外
気温度によるヒートポンプ実質出力の変化にも合わせ対
応した状態で、蓄熱運転過程において、熱源装置の単位
時間当たりの発生熱量と蓄熱槽の単位時間当たりの蓄熱
可能量とが平衡する状態を確実に維持することができ、
これにより、上記の別方式に比べ、一層的確に、所定時
間の経過時点で目標の所定熱量の蓄熱を完了させること
ができる。
According to the present invention, with the above-described actions,
By Ru accurately can heat accumulation predetermined heat target <br/> in thermal storage operation for a predetermined time, the heat storage operation and the operation plan of the entire system, including the subsequent thermal storage heat consumption operation more accurate than previously, and smoothly Will be able to accomplish it. By the way,
Regarding the output adjustment of the heat source device in this type of heat storage system
As another method, Japanese Patent Application Laid-Open No. 2-64334 discloses
As can be seen, the output of the heat pump as a heat source device
There is a method of adjusting (capacity) according to the outside air temperature. Toes
This alternative method uses a heat pump to store heat.
As a characteristic, the higher the outside air temperature, the heavier the heat source device.
Increase in the real output (real capacity) of the pump
As a result, the actual output of the heat pump
As a result, it becomes too large,
In the heat storage tank against the temperature rise per unit time of the ring heat medium
Temperature rise of heat storage material per unit time cannot follow
In the state, the temperature of the circulating heat medium can be operated by the heat pump.
The upper temperature limit (ie, the operation of the heat pump in terms of equipment protection)
(The temperature at which the rotation stops automatically), and the heat storage is still insufficient.
Heat pump shuts down in spite of minutes
Heat depending on the outside air temperature
Adjust the pump output (i.e., the higher the outside air temperature,
The heat pump output to the lower side)
Heat pump operation by circulating heat transfer medium temperature
Delay reaching the maximum possible temperature, which
They try to deter inconvenience. But this another
In the method, the actual output of the heat pump changes according to the outside air temperature.
Between heat pump output and heat storage capacity due to
Deformation can be suppressed, but heat source equipment according to the outside air temperature
Because the output of the storage is adjusted, the heat storage progresses and the heat storage in the heat storage tank
Unit time in the heat storage tank as the state approaches saturation
Heat storage tanks, such that the heat storage capacity per unit gradually decreases
Due to the heat storage characteristics of
Heat generation and heat storage per unit time in the heat storage tank
It is not possible to cope with the imbalance between the quantity and
For example, in the storage of warm heat, the heat storage
Even if the heat storage capacity per unit time in the tank is large
Nevertheless, because the outside air temperature at that time was high,
By adjusting the output to the lower side, the heat source device
Heat generated per unit time per unit time
An unbalanced condition such as smaller than the heat storage capacity is caused.
Or conversely, the unit in the heat storage tank at the end of the heat storage operation
Despite the small amount of heat storage per hour,
The output of the heat source device increases due to the low outside air temperature
By adjusting the return, the unit time of the heat source device
The amount of heat generated per unit is the amount of heat that can be stored in the heat storage tank per unit time.
May cause an unbalanced condition such as larger than
There is. In this regard, according to the present invention, as described above, the heat source device
Maintain the heating medium delivery temperature from the unit at the target supply temperature described above.
In this way, the output of the heat source device is
By adjusting, heat storage per unit time in the heat storage tank
Equilibrium between possible amount and heat generated per unit time of heat source device
Therefore, the heat storage characteristics of the heat storage tank
Changes in the amount of heat that can be stored per unit time
If a heat pump is used as the heat source device,
It is also possible to match changes in the actual heat pump output due to air temperature.
In the heat storage operation process, the unit of the heat source device
Heat generation per hour and heat storage per unit time of heat storage tank
It is possible to reliably maintain the state of equilibrium with the possible amount,
This makes it possible to achieve more accurate
To complete the storage of the specified amount of heat at the point in time
Can be.

【0011】[0011]

【実施例】次に実施例を説明する。図1は蓄熱システム
のシステム構成を示し、冷媒ポンプ1を介装した主冷媒
路2に、潜熱蓄熱式の蓄熱槽3と空冷式のヒートポンプ
4とを直列に介装し、そして、負荷側熱交換器5を介装
した負荷側冷媒路6を主冷媒路2に対し、ヒートポンプ
4、負荷側熱交換器5、及び、蓄熱槽3の順に回る冷媒
循環路を形成するように接続してある。
Next, an embodiment will be described. FIG. 1 shows a system configuration of a heat storage system, in which a latent heat storage type heat storage tank 3 and an air-cooled heat pump 4 are interposed in series in a main refrigerant path 2 in which a refrigerant pump 1 is interposed. The load-side refrigerant path 6 with the exchanger 5 interposed is connected to the main refrigerant path 2 so as to form a refrigerant circulation path that goes around the heat pump 4, the load-side heat exchanger 5, and the heat storage tank 3 in this order. .

【0012】また、負荷側冷媒路6に対する迂回冷媒路
7、すなわち、主冷媒路2に対して負荷側冷媒路6と並
列に接続した冷媒路を設けるとともに、主冷媒路2にお
いて蓄熱槽3に対するバイパス路8を設けてある。
A bypass refrigerant path 7 for the load-side refrigerant path 6, that is, a refrigerant path connected in parallel with the load-side refrigerant path 6 to the main refrigerant path 2 is provided. A bypass 8 is provided.

【0013】負荷側冷媒路6、及び迂回冷媒路7には、
ヒートポンプ4による発生冷熱を蓄熱槽3に蓄熱する蓄
熱運転と、蓄熱槽3から蓄熱冷熱を取り出して負荷側熱
交換器5を介し冷熱消費装置側に冷熱を付与する冷熱消
費運転とにおいて冷媒循環経路を切り換える手段とし
て、負荷側冷媒路6を開閉する負荷側電磁弁9、及び迂
回冷媒路7を開閉する迂回電磁弁10を介装してあり、
また、バイパス路8の主冷媒路2に対する合流部には、
蓄熱槽3の通過冷媒量とバイパス路8の通過冷媒量との
比を調整して蓄熱槽3からの冷熱取り出し量を調整する
合流三方弁11を設けてある。
The load-side refrigerant path 6 and the bypass refrigerant path 7 include:
A refrigerant circulation path in a heat storage operation in which the cold heat generated by the heat pump 4 is stored in the heat storage tank 3 and a cold heat consumption operation in which the heat storage cold heat is taken out of the heat storage tank 3 and applied to the cold heat consuming device via the load side heat exchanger 5. As a means for switching, a load-side solenoid valve 9 for opening and closing the load-side refrigerant passage 6 and a bypass solenoid valve 10 for opening and closing the bypass refrigerant passage 7 are provided.
Also, at the junction of the bypass passage 8 with the main refrigerant passage 2,
A merging three-way valve 11 is provided for adjusting the ratio of the amount of refrigerant passing through the heat storage tank 3 to the amount of refrigerant passing through the bypass passage 8 to adjust the amount of cold heat taken out of the heat storage tank 3.

【0014】12は運転制御を司る制御器であり、13
は夫々、逆止弁である。
Reference numeral 12 denotes a controller for controlling the operation, and 13
Are check valves, respectively.

【0015】冷熱消費装置側の構成としては、空調機1
4と上記負荷側熱交換器5とを結ぶ冷水循環路15を設
け、冷熱消費運転時には、冷水ポンプ16により冷水循
環路15において冷水循環させることにより、負荷側熱
交換器5において負荷側冷媒路6の循環冷媒から循環冷
水に付与される冷熱を冷熱消費装置としての空調機14
に対し運搬供給するようにしてある。
The configuration of the cooling and heat consuming device includes an air conditioner 1
A cold water circulation path 15 is provided between the load side heat exchanger 5 and the load side heat exchanger 5. The cold water circulation is performed by the cold water pump 16 in the cold water circulation path 15 during the cold heat consumption operation. The refrigeration provided to the circulating chilled water from the circulating refrigerant of No. 6 is converted into an air conditioner
To be transported and supplied.

【0016】蓄熱運転はタイマ制御により一日のうちの
所定時間帯Tにおいて実施(例えば、冷熱消費運転を午
前8時から午後6時まで実施するのに対して、蓄熱運転
は午後10時から午前8時の間に実施)するようにして
あり、この蓄熱運転の実施において制御器12は、負荷
側電磁弁9を閉弁し、かつ、迂回電磁弁10を開弁する
とともに、バイパス路8に対する冷媒通過を遮断する状
態に合流三方弁11を調整し、この状態で冷媒ポンプ1
を運転することにより同図1に示すように、負荷側冷媒
路6への冷媒循環を断った状態で、かつ、冷媒の全量を
蓄熱槽3に通過させる状態で、迂回冷媒路7を介しヒー
トポンプ4と蓄熱槽3とにわたって冷媒を循環させる。
The heat storage operation is performed by a timer control in a predetermined time zone T of the day (for example, the cold heat operation is performed from 8:00 am to 6:00 pm, whereas the heat storage operation is performed from 10 pm to During the heat storage operation, the controller 12 closes the load-side solenoid valve 9 and opens the bypass solenoid valve 10, and passes the refrigerant through the bypass passage 8. The three-way valve 11 is adjusted so as to shut off the refrigerant.
As shown in FIG. 1, by operating the heat pump, the refrigerant is circulated through the bypass refrigerant path 7 in a state where the circulation of the refrigerant to the load side refrigerant path 6 is cut off, and in a state where the entire amount of the refrigerant passes through the heat storage tank 3. The refrigerant is circulated between the heat storage tank 4 and the heat storage tank 3.

【0017】また、蓄熱槽3に対する冷媒の目標供給温
度tssとして、上記の所定時間帯Tの間に蓄熱槽3へ
所定冷熱量Qsを蓄熱できる温度(例えば、−4ないし
−5℃といった温度)を予め設定してあるのに対し、ヒ
ートポンプ4からの冷媒送出温度tsを検出する温度セ
ンサ17の検出情報に基づき、図3に実線で示す如く、
ヒートポンプ4からの冷媒送出温度tsを上記の設定目
標供給温度tssに維持するように、具体的には設定目
標供給温度tssを中心とする設定許容変動巾内に維持
(tss−Δt<ts<tss+Δt、例えばΔt=
0.3℃)するようにヒートポンプ4の出力を調整制御
する。
The target supply temperature tss of the refrigerant to the heat storage tank 3 is a temperature at which the predetermined amount of cold energy Qs can be stored in the heat storage tank 3 during the above-mentioned predetermined time period T (for example, a temperature such as -4 to -5 ° C.). Is set in advance, and based on the detection information of the temperature sensor 17 that detects the refrigerant delivery temperature ts from the heat pump 4, as shown by a solid line in FIG.
The refrigerant delivery temperature ts from the heat pump 4 is maintained at the set target supply temperature tss, specifically, within a set allowable fluctuation range around the set target supply temperature tss (tss-Δt <ts <tss + Δt). , For example, Δt =
The output of the heat pump 4 is adjusted and controlled so as to be 0.3 ° C.).

【0018】つまり、蓄熱槽3の一般的特性として、蓄
熱槽3における単位時間当たりの蓄熱可能量qsは図4
に示すように、蓄熱が進行して蓄熱状態が飽和状態に近
づくに伴い低下するが、これに対し、同図4に破線で示
すようにヒートポンプ4の単位時間当たりの発生冷熱量
qhがqh1となる一定出力でヒートポンプ4を運転し
て蓄熱運転を行うと、単位時間当たりの発生冷熱量qh
1が単位時間当たりの蓄熱可能量qsよりも小さくなる
状態が生じて、図3に破線イで示すようにヒートポンプ
4への戻り冷媒温度trが高温となり、これに伴い、ヒ
ートポンプ4からの冷媒送出温度tsも高温となって冷
熱蓄熱能率が低下したり、また逆に、単位時間当たりの
発生冷熱量qh1が単位時間当たりの蓄熱可能量qsよ
りも大きくなる状態が生じて、図3に破線ロで示すよう
にヒートポンプ4への戻り冷媒温度trが次第に低下
し、これに伴い、ヒートポンプ4からの冷媒送出温度t
sもヒートポンプ保護上の自動運転停止機能が作動する
装置下限温度tdまで低下してしまってヒートポンプ4
の運転が中断されたりし、これらのために、図4におい
て面積aedに相当する目標の所定冷熱量Qsの蓄熱を
所定時間帯Tの間に完了できない事態が生じてしまう。
That is, as a general characteristic of the heat storage tank 3, the heat storage capacity qs per unit time in the heat storage tank 3 is shown in FIG.
As shown in FIG. 4, the heat storage progresses and decreases as the heat storage state approaches the saturated state. On the other hand, the amount of generated cold heat qh per unit time of the heat pump 4 is qh1 as shown by the broken line in FIG. When the heat pump 4 is operated at a constant output to perform the heat storage operation, the amount of generated cold heat per unit time qh
3 is smaller than the heat storage capacity qs per unit time, and the refrigerant temperature tr returned to the heat pump 4 becomes high as shown by a broken line A in FIG. The temperature ts also becomes high and the cold heat storage efficiency decreases, and conversely, a state occurs in which the amount of generated cold heat qh1 per unit time is larger than the storable amount qs per unit time, and FIG. As shown by the symbol, the refrigerant temperature tr returning to the heat pump 4 gradually decreases, and accordingly, the refrigerant delivery temperature t from the heat pump 4
s has dropped to the device lower limit temperature td at which the automatic operation stop function on the heat pump protection is activated, and the heat pump 4
4 is interrupted, and for these reasons, a situation occurs in which the storage of the target predetermined amount of cold energy Qs corresponding to the area aed in FIG. 4 cannot be completed during the predetermined time period T.

【0019】そこで前述の如く、蓄熱槽3に対する冷媒
の目標供給温度tssとして、所定時間帯Tの間に蓄熱
槽3へ所定冷熱量Qsを蓄熱できる温度を予め設定し
て、ヒートポンプ4からの冷媒送出温度tsをその設定
目標供給温度tssに維持するようにヒートポンプ4の
出力を調整制御する形態を採用することにより、蓄熱槽
3における単位時間当たりの蓄熱可能量qsが変化する
ことにかかわらず、ヒートポンプ4の単位時間当たりの
発生冷熱量qhと蓄熱槽3における単位時間当たりの蓄
熱可能量qsとを平衡させながら蓄熱を進め、すなわ
ち、蓄熱槽3における単位時間当たりの蓄熱可能量qs
が図4においてed線に沿って経時変化するのに対し、
ヒートポンプ4の単位時間当たりの発生冷熱量qhも同
様にed線に沿って変化させながら蓄熱を進め、これに
よって、所定時間帯Tの終了時点で所定冷熱量Qsの蓄
熱を確実に終了できるようにしてある。
Therefore, as described above, the temperature at which the predetermined amount of cold heat Qs can be stored in the heat storage tank 3 during the predetermined time period T is set in advance as the target supply temperature tss of the refrigerant to the heat storage tank 3, By adopting a mode in which the output of the heat pump 4 is adjusted and controlled so as to maintain the delivery temperature ts at the set target supply temperature tss, regardless of a change in the heat storage capacity qs per unit time in the heat storage tank 3, The heat storage is advanced while balancing the generated amount of cold heat qh per unit time of the heat pump 4 and the heat storage capacity qs per unit time in the heat storage tank 3, that is, the heat storage capacity qs per unit time in the heat storage tank 3.
Changes over time along the ed line in FIG.
Similarly, the amount of cold heat generated per unit time of the heat pump 4 is also changed along the ed line to advance the heat storage, whereby the heat storage of the predetermined cold heat amount Qs at the end of the predetermined time zone T can be surely ended. It is.

【0020】一方、蓄熱運転後の冷熱消費運転の実施に
おいて制御器12は、負荷側電磁弁9を開弁し、かつ、
迂回電磁弁10を閉弁し、この状態で冷媒ポンプ1を運
転することにより図2に示すように、迂回冷媒路7への
冷媒循環を断った状態で、ヒートポンプ4と負荷側熱交
換器5と蓄熱槽3とにわたって冷媒を循環させる。
On the other hand, in performing the cold heat consuming operation after the heat storage operation, the controller 12 opens the load side solenoid valve 9 and
By closing the bypass solenoid valve 10 and operating the refrigerant pump 1 in this state, as shown in FIG. 2, in a state in which the circulation of the refrigerant to the bypass refrigerant path 7 is cut off, the heat pump 4 and the load side heat exchanger 5 And the heat storage tank 3 to circulate the refrigerant.

【0021】また、蓄熱槽3における蓄熱残量、及び負
荷側熱交換器5における冷却負荷の演算に基づき、蓄熱
残量を所定の消費計画に沿って減少させるための蓄熱槽
3とヒートポンプ4とに対する負荷分担を逐次決定し
て、蓄熱槽3からの冷熱取り出し量、及びヒートポンプ
4の補助発生冷熱量の夫々を決定負荷分担に応じた量と
するように、逐次、合流三方弁11を調整するとともに
ヒートポンプ4を出力調整し、もって、蓄熱槽3からの
冷熱取り出し(すなわち、蓄熱槽3の通過による冷媒冷
却)とヒートポンプ4の補助運転とにより、蓄熱槽3の
蓄熱残量を所定の消費計画に沿って減少させながら、負
荷側熱交換器5に対し空調機14の必要冷水温度に応じ
た温度tsx(例えば、空調機14の必要冷水温度が7
℃程度であるのに対し5℃程度の温度)の冷媒を継続供
給する。
The heat storage tank 3 and the heat pump 4 for reducing the remaining heat storage in accordance with a predetermined consumption plan based on the calculation of the remaining heat storage in the heat storage tank 3 and the cooling load in the load side heat exchanger 5. , And sequentially adjusts the three-way valve 11 so that each of the amount of cold heat taken out of the heat storage tank 3 and the amount of auxiliary generated cold heat of the heat pump 4 becomes an amount corresponding to the determined load share. In addition, the output of the heat pump 4 is adjusted, so that the remaining heat stored in the heat storage tank 3 is reduced to a predetermined consumption schedule by taking out cold heat from the heat storage tank 3 (that is, cooling the refrigerant by passing through the heat storage tank 3) and performing auxiliary operation of the heat pump 4. Along with the temperature tsx corresponding to the required chilled water temperature of the air conditioner 14 (for example, the required chilled water temperature of the air conditioner 14
(Temperature of about 5 ° C. as opposed to about 5 ° C.).

【0022】尚、蓄熱槽3の蓄熱残量は、蓄熱運転時に
おいて蓄熱槽3の入口・出口冷媒温度差と蓄熱槽3に対
する冷媒通過量とに基づき算出する蓄熱量を積算して、
蓄熱運転完了時における冷熱蓄熱総量を算出するととも
に、冷熱消費運転時において同様に蓄熱槽3の入口・出
口冷媒温度差と蓄熱槽3に対する冷媒通過量とに基づき
算出する冷熱取り出し量の積算値を冷熱蓄熱総量から減
算することにより算出するようにしてあり、一方、負荷
側熱交換器5における冷却負荷は、負荷側熱交換器5の
入口・出口冷水温度差と負荷側熱交換器5に対する冷水
通過量とに基づき算出するようにしてある。
Incidentally, the remaining amount of heat stored in the heat storage tank 3 is obtained by integrating the heat storage amount calculated based on the difference between the inlet and outlet refrigerant temperatures of the heat storage tank 3 and the amount of refrigerant passing through the heat storage tank 3 during the heat storage operation.
In addition to calculating the total amount of cold heat storage at the time of the completion of the heat storage operation, the integrated value of the amount of cold heat taken out calculated based on the difference between the inlet and outlet refrigerant temperatures of the heat storage tank 3 and the amount of the refrigerant passing through the heat storage tank 3 during the cold heat consumption operation is also calculated. The cooling load in the load-side heat exchanger 5 is calculated by subtracting it from the total amount of cold heat storage. It is calculated based on the passing amount.

【0023】また、蓄熱残量の消費計画としては、例え
ば、冷熱消費運転時間帯において蓄熱残量を所定の減少
率で減少させて、その冷熱消費運転時間帯の終了時点で
蓄熱残量を0とするようなものを設定する。
In addition, as the consumption plan of the remaining heat storage, for example, the remaining heat storage is reduced at a predetermined reduction rate in the cold heat consumption operation time zone, and the heat storage remaining amount is set to 0 at the end of the cold heat consumption operation time zone. Is set.

【0024】〔別実施例〕次に別実施例を列記する。[Another embodiment] Next, another embodiment will be described.

【0025】前述実施例においては冷熱蓄熱の例を示し
たが、本発明は温熱蓄熱にも適用できる。
In the above embodiment, an example of cold heat storage has been described, but the present invention can be applied to warm heat storage.

【0026】所定時間Tの熱媒循環により蓄熱槽3に所
定熱量Qsを蓄熱できる温度とする、蓄熱槽3に対する
熱媒の目標供給温度tssは、蓄熱槽3の特性や熱源装
置4の特性に応じて適当値を決定すればよい。
The target supply temperature tss of the heat medium to the heat storage tank 3, which is a temperature at which the predetermined amount of heat Qs can be stored in the heat storage tank 3 by the circulation of the heat medium for a predetermined time T, depends on the characteristics of the heat storage tank 3 and the characteristics of the heat source device 4. An appropriate value may be determined accordingly.

【0027】蓄熱槽3に蓄熱した冷熱や温熱の消費目的
は冷房や暖房に限定されるものではない。
The purpose of consuming the cold or warm heat stored in the heat storage tank 3 is not limited to cooling or heating.

【0028】熱源装置4はヒートポンプに限定されるも
のではなく、また、蓄熱槽3も潜熱蓄熱式に限定される
ものではない。
The heat source device 4 is not limited to a heat pump, and the heat storage tank 3 is not limited to a latent heat storage type.

【0029】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蓄熱運転時の冷媒循環形態を示すシステム構成
FIG. 1 is a system configuration diagram showing a refrigerant circulation mode during a heat storage operation.

【図2】冷熱消費運転時の冷媒循環形態を示す図FIG. 2 is a diagram showing a refrigerant circulation mode during a cold heat consuming operation;

【図3】冷媒送出温度の調整形態を示すグラフFIG. 3 is a graph showing a mode of adjusting a refrigerant delivery temperature.

【図4】蓄熱可能量の変化形態、及び、ヒートポンプの
出力調整形態を示すグラフ
FIG. 4 is a graph showing a change form of the heat storage capacity and a heat pump output adjustment form.

【符号の説明】[Explanation of symbols]

3 蓄熱槽 4 熱源装置 tss 目標供給温度 T 所定時間 qs 蓄熱可能量 ts 熱媒送出温度 qh 発生熱量 3 heat storage tank 4 heat source device tss target supply temperature T predetermined time qs heat storage capacity ts heat medium delivery temperature qh generated heat

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱源装置(4)と蓄熱槽(3)とにわた
り熱媒を循環させて、前記熱源装置(4)の発生温熱又
は発生冷熱を前記蓄熱槽(3)に蓄熱する蓄熱システム
の運転方法であって、 前記蓄熱槽(3)に対する熱媒の目標供給温度(ts
s)として、前記熱源装置(4)を運転しながら前記熱
源装置(4)と前記蓄熱槽(3)との間で熱媒循環させ
る所定時間(T)の蓄熱運転により、前記蓄熱槽(3)
へ所定熱量(Qs)を蓄熱できる温度を設定し、蓄熱運転の運転過程において、 前記蓄熱槽(3)におけ
る単位時間当たりの蓄熱可能量(qs)が変化すること
に対し、前記熱源装置(4)からの熱媒送出温度(t
s)を前記の目標供給温度(tss)に維持するよう
、循環熱媒の検出温度に基づき前記熱源装置(4)の
出力を調整して、前記蓄熱槽(3)における単位時間当
たりの蓄熱可能量(qs)と前記熱源装置(4)の単位
時間当たりの発生熱量(qh)とが平衡する状態を保つ
蓄熱システムの運転方法。
1. A heat storage system for circulating a heat medium between a heat source device (4) and a heat storage tank (3) to store generated heat or cold generated by the heat source device (4) in the heat storage tank (3). An operation method, wherein a target supply temperature (ts) of the heat medium to the heat storage tank (3) is provided.
s), while operating the heat source device (4),
Heat medium is circulated between the heat source device (4) and the heat storage tank (3).
The heat storage tank (3) is operated by the heat storage operation for a predetermined time (T ).
A temperature at which a predetermined amount of heat (Qs) can be stored is set, and in the operation process of the heat storage operation , the heat storage device (4) responds to a change in the heat storage capacity (qs) per unit time in the heat storage tank (3). )) (T)
adjusting the output of the heat source device (4) based on the detected temperature of the circulating heat medium so as to maintain the target supply temperature (tss) at the target supply temperature (tss), and storing the heat per unit time in the heat storage tank (3). A method for operating a heat storage system, in which a possible amount (qs) and a generated heat amount (qh) per unit time of the heat source device (4) are kept in equilibrium .
JP3199017A 1991-08-08 1991-08-08 Operation method of heat storage system Expired - Lifetime JP2644113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3199017A JP2644113B2 (en) 1991-08-08 1991-08-08 Operation method of heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3199017A JP2644113B2 (en) 1991-08-08 1991-08-08 Operation method of heat storage system

Publications (2)

Publication Number Publication Date
JPH0545008A JPH0545008A (en) 1993-02-23
JP2644113B2 true JP2644113B2 (en) 1997-08-25

Family

ID=16400736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3199017A Expired - Lifetime JP2644113B2 (en) 1991-08-08 1991-08-08 Operation method of heat storage system

Country Status (1)

Country Link
JP (1) JP2644113B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393861B1 (en) * 1999-09-17 2002-05-28 Robert Levenduski Thermal storage apparatus and method for air conditioning system
US6668567B2 (en) 1999-09-17 2003-12-30 Robert Levenduski Thermal storage apparatus and method for air conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2554137B2 (en) * 1988-08-30 1996-11-13 株式会社クボタ How to operate the heat storage device

Also Published As

Publication number Publication date
JPH0545008A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US11493246B2 (en) Demand flow for air cooled chillers
US6536677B2 (en) Automation and control of solar air conditioning systems
US6659361B2 (en) Temperature control device
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP4960795B2 (en) Heat source system
US11624538B2 (en) Refrigeration device provided with a secondary by-pass branch and method of use thereof
US6321548B1 (en) Apparatus for automatically closing a cooling system expansion valve in response to power loss
JPS627463B2 (en)
JP2644113B2 (en) Operation method of heat storage system
US6749016B2 (en) Brine temperature control apparatus using a three-way proportional valve
JPH09287797A (en) Method for controlling device operation in ice heat accumulating system
JP3583869B2 (en) Thermal storage air conditioning system device and its control method
JP2001167341A (en) Device and method for cooling automatic vending machine
JPH01123966A (en) Refrigerator
JP2503636B2 (en) Refrigeration system operation controller
JP2001227780A (en) Air conditioning system
JP2554137B2 (en) How to operate the heat storage device
JP2006046839A (en) Cold and hot water carrying system
JP2019039596A (en) Heat pump heat source machine
JP2001165547A (en) Apparatus and method for cooling vending machine
JP3846754B2 (en) Refrigerant circulation type air conditioning system
JPS58123046A (en) Heat pump type hot water supplier
JP3432004B2 (en) Control method of heat storage device
JPH01142356A (en) Air-conditioner
JP2000002452A (en) Heat source system using heat storage tank