JP2642503B2 - Method for removing insulating thin film on glass substrate of EL element - Google Patents
Method for removing insulating thin film on glass substrate of EL elementInfo
- Publication number
- JP2642503B2 JP2642503B2 JP2224017A JP22401790A JP2642503B2 JP 2642503 B2 JP2642503 B2 JP 2642503B2 JP 2224017 A JP2224017 A JP 2224017A JP 22401790 A JP22401790 A JP 22401790A JP 2642503 B2 JP2642503 B2 JP 2642503B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- glass substrate
- workpiece
- abrasive
- insulating thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Description
【産業上の利用分野】 本発明は、被研摩物に研摩材を高圧で吹き付けて研摩
する乾式ブラスト法あるいは液体ホーニング法等を用い
た薄膜の除去方法に関し、より詳しくは、EL素子のガラ
ス基板上に形成された絶縁薄膜の除去方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a thin film using a dry blasting method or a liquid honing method in which an abrasive is sprayed on an object to be polished at a high pressure, and more particularly to a glass substrate for an EL element. The present invention relates to a method for removing an insulating thin film formed thereon.
物体の表面の機械的研削,研磨加工には、その必要研
削量,要求される加工後の表面状態(表面粗度,平滑
度),被加工物の材質および表面状態や形状等に応じ
て、種々の方法が用いられている。一般に、上記方法と
しては、乾式ブラスト法や液体ホーニング法がよく用い
られる。これらの方法は、圧縮空気を用いて、研磨材を
高速に加速し、この研磨材を被加工物に衝突させて上記
被加工物の表面を研削するものである。上記方法は、比
較的手軽で、しかも被加工物の形状,材質等の制約が少
ないため、工業的にも幅広く用いられている。また、上
記方法は、物体の表面に付着した薄膜の除去には極めて
有効であり、一般に、薄膜形成装置の治工具類の表面に
付着した膜片の除去に用いられる他、例えば薄膜ELパネ
ルの製造工程における表示素子の表示領域周囲の不要な
膜を除去する目的にも用いられる。第5図は上記乾式ブ
ラスト法あるいは液体ホーニング法を用いた物体表面の
研削加工方法を示す断面図である。第5図に示すよう
に、噴射ガン22は研磨材23をスポット状に噴射する。そ
して、被加工物21の全面を均一に広範囲に加工するため
に、上記噴射ガン22あるいは上記被加工物21の少なくと
も一方を一定速度で走査するようにしている。この研削
加工方法では、加速された研磨材23が被加工物21に衝突
し、上記被加工物21の表層部に微小なクラックや欠陥を
発生させる。そして、上記クラックや欠陥を更に成長さ
せて、上記被加工物21の表層部の一部を、微小な塊状に
して、被加工物21から離脱させる。このような動作を繰
り返すことにより、研削加工が進行する。そして、上記
研削加工における研削速度を決定する主な因子として
は、上記研磨材23が有する運動エネルギー,研磨材23の
弾性率,被加工物21の弾性率,被加工物21のポアソン比
(変形しやすさ)がある。上記因子のうち、研磨材23の
弾性率および被加工物21の弾性率とポアソン比は、上記
研磨材23および上記被加工物21の材質により決まる。こ
のため、実際の加工時に条件を変えられるのは、研磨材
23の有する運動エネルギーである。ここで、上記研磨材
23が有する運動エネルギーをW,上記研磨材23の質量をm,
被加工物21への衝突時に上記研磨材23が有する速度をv
とすると、次の(1)式が成り立つ。 W=(1/2)mv2 ……(1) 上記研磨材23の質量mは、研磨材23の粒径で決まり、
この粒径は上記研磨材23の種類により決まる。そして、
上記速度vは上記研磨材23を加速する圧縮空気の圧力P
と、上記噴射ガン22の先端から上記被加工物21までの距
離dと、上記研磨材23の質量mを用いて、次の(2)式
で計算できる。 v=α・Pi/mjdk ……(2) (α:定数、i,j,k:乗数) 上記研磨材23が有する運動エネルギーWのうち、上記
被加工物21の表面に垂直な方向の成分Wzのみが研削の作
用を有する。したがって、実際に研削に有効な運動エネ
ルギーであるWzは、上記被加工物21の表面と上記噴出ガ
ン25からの研磨材23の噴出方向とがなす角度をθとする
と、次の(3)式で計算できる。 Wz=(1/2)m(v sinθ)2=(1/2)mv2sin2θ ……(3) 上述の物体表面の研削加工方法では、研削効率を高く
するため、上記Wzが最大値となるθ=90゜(上記研磨材
23の噴出方向が上記被加工物21の表面に垂直)になるよ
うに、上記噴出ガン25をセットしている。上述の研削加
工方法は、被加工物の表面を単に研削する場合および被
加工物の表面を梨地状に粗す場合だけでなく、前述した
ように、被加工物の表面に付着している薄膜を除去する
ための薄膜の除去方法としても用いられる。The mechanical grinding and polishing of the surface of an object depends on the required amount of grinding, the required surface condition after processing (surface roughness and smoothness), the material and the surface condition and shape of the workpiece. Various methods have been used. Generally, as the above method, a dry blast method or a liquid honing method is often used. In these methods, the abrasive is accelerated at high speed using compressed air, and the abrasive is caused to collide with the workpiece to grind the surface of the workpiece. The above method is relatively easy and has few restrictions on the shape, material, and the like of the workpiece, so that it is widely used industrially. Further, the above method is extremely effective for removing a thin film attached to the surface of an object, and is generally used for removing a piece of film attached to the surface of a jig or the like of a thin film forming apparatus. It is also used for the purpose of removing unnecessary films around the display area of the display element in the manufacturing process. FIG. 5 is a sectional view showing a method of grinding the surface of an object using the dry blast method or the liquid honing method. As shown in FIG. 5, the spray gun 22 sprays the abrasive 23 in a spot shape. Then, in order to uniformly process the entire surface of the workpiece 21 over a wide range, at least one of the injection gun 22 and the workpiece 21 is scanned at a constant speed. In this grinding method, the accelerated abrasive 23 collides with the workpiece 21 and generates minute cracks and defects in the surface layer of the workpiece 21. Then, the cracks and defects are further grown, and a part of the surface layer portion of the workpiece 21 is separated into a minute lump from the workpiece 21. By repeating such an operation, the grinding process proceeds. The main factors that determine the grinding speed in the grinding process are the kinetic energy of the abrasive 23, the elastic modulus of the abrasive 23, the elastic modulus of the workpiece 21, the Poisson's ratio of the workpiece 21 (deformation). Ease). Among the above factors, the elastic modulus of the abrasive 23 and the elastic modulus and Poisson's ratio of the workpiece 21 are determined by the materials of the abrasive 23 and the workpiece 21. For this reason, the conditions that can be changed during actual processing are
The kinetic energy of 23. Where the abrasive
The kinetic energy of 23 is W, the mass of the abrasive 23 is m,
The velocity of the abrasive 23 at the time of collision with the workpiece 21 is represented by v
Then, the following equation (1) holds. W = (1/2) mv 2 (1) The mass m of the abrasive 23 is determined by the particle size of the abrasive 23,
The particle size is determined by the type of the abrasive 23. And
The speed v is the pressure P of the compressed air for accelerating the abrasive 23.
Using the distance d from the tip of the spray gun 22 to the workpiece 21 and the mass m of the abrasive 23, the following equation (2) can be used. v = α · P i / m j d k (2) (α: constant, i, j, k: multiplier) Of the kinetic energy W of the abrasive 23, perpendicular to the surface of the workpiece 21. Only the component Wz in the appropriate direction has a grinding effect. Therefore, Wz, which is the kinetic energy that is actually effective for grinding, is given by the following equation (3), where θ is the angle between the surface of the workpiece 21 and the ejection direction of the abrasive 23 from the ejection gun 25. Can be calculated by In Wz = (1/2) m (v sinθ) 2 = (1/2) mv 2 sin 2 θ ...... (3) grinding method described above of the object surface, in order to increase the grinding efficiency, the Wz up Θ = 90 ° (the above abrasive
The ejection gun 25 is set so that the ejection direction of the nozzle 23 is perpendicular to the surface of the workpiece 21). The above-mentioned grinding method is not limited to the case of simply grinding the surface of the workpiece and the case of roughening the surface of the workpiece in a satin shape, as described above, the thin film adhered to the surface of the workpiece. It is also used as a method of removing a thin film for removing sapphire.
しかしながら、上記従来の薄膜の除去方法では、次の
ような問題がある。すなわち、SiO2,Al2O3,TiO2,Si3N4
等の様な酸化物あるいは窒化物からなる非常に硬い薄膜
が被加工物の表面に付着している場合、あるいはスパッ
タリング法,CVD法等によって付着力が強い薄膜が被加工
物の表面に付着している場合で、しかも上記被加工物が
ガラス,セラミック等の硬くて脆性破壊をおこしやすい
材質からなる場合には、第6図(A)に示すように、薄
膜32が被加工物21の表面に部分的に付着したまま残留し
たり、薄膜32を完全に除去しようとすると、第6図
(B)に示すように、被加工物21の表面も研削してしま
うことがあるという問題がある。このため、薄膜のみを
除去するように条件設定することが極めて困難であると
いう問題がある。 そこで、本発明の目的は、被加工物としてのEL素子の
ガラス基板上に付着した硬い薄膜や付着力の強い薄膜を
上記ガラス基板へのダメージを抑えながら容易に除去す
ることができるEL素子のガラス基板上の絶縁薄膜の除去
方法を提供することにある。However, the above-mentioned conventional method for removing a thin film has the following problems. That is, SiO 2 , Al 2 O 3 , TiO 2 , Si 3 N 4
When a very hard thin film made of oxide or nitride such as is adhered to the surface of the workpiece, or a thin film with strong adhesive force adheres to the surface of the workpiece by sputtering, CVD, etc. If the work piece is made of a hard and brittle material, such as glass or ceramic, which tends to cause brittle fracture, as shown in FIG. If the thin film 32 remains partially adhered to the surface or the thin film 32 is completely removed, the surface of the workpiece 21 may be ground as shown in FIG. 6B. . For this reason, there is a problem that it is extremely difficult to set conditions so as to remove only the thin film. Therefore, an object of the present invention is to provide an EL device which can easily remove a hard thin film or a thin film having a strong adhesive force on a glass substrate of an EL device as a workpiece while suppressing damage to the glass substrate. An object of the present invention is to provide a method for removing an insulating thin film on a glass substrate.
上記目的を達成するため、本発明の請求項1のEL素子
のガラス基板上の絶縁薄膜の除去方法は、被加工物とし
てのEL素子のガラス基板の表面に付着している薄膜に向
けて、ガンから水と研摩材との混合物を噴射して、上記
ガラス基板上から上記薄膜を除去するEL素子のガラス基
板上の絶縁薄膜の除去方法であって、 上記ガラス基板の表面と上記ガンからの混合物の噴射
方向とのなす角度を90゜未満に設定したことを特徴とし
ている。 また、請求項2の発明は、請求項(1)のEL素子のガ
ラス基板上の絶縁薄膜の除去方法において、上記角度は
60゜未満に設定したことを特徴としている。In order to achieve the above object, the method for removing an insulating thin film on a glass substrate of an EL device according to claim 1 of the present invention is directed to a method for removing a thin film adhered to a surface of a glass substrate of an EL device as a workpiece. A method of removing an insulating thin film on a glass substrate of an EL element, which comprises spraying a mixture of water and an abrasive from a gun to remove the thin film from the glass substrate, comprising: It is characterized in that the angle between the mixture and the injection direction is set to less than 90 °. According to a second aspect of the present invention, in the method for removing an insulating thin film on a glass substrate of an EL element according to the first aspect,
It is characterized by being set at less than 60 mm.
第4図に示すように、被加工物としてのEL素子のガラ
ス基板の表面と研磨材の噴射方向とのなす角をθとする
と、上記研磨材の上記ガラス基板への衝突速度vのう
ち、上記ガラス基板に垂直な方向の成分vzおよび上記ガ
ラス基板の表面に平行な方向の成分をvxは、それぞれ vz=v sinθ,vx=v cosθ であり、上記研磨材の質量をmとすると、上記vzおよび
vxに対応するエネルギーWzおよびWxは、それぞれ、 Wz=(1/2)mv2sin2θ,Wx=(1/2)mv2cos2θ である。θは90゜未満に設定している。したがって、θ
を90゜に設定した場合に較べて、ガラス基板に付着した
絶縁薄膜を破壊する上記ガラス基板の表面に垂直な方向
のエネルギーWzは小さい。しかし、上記Wzが小さい分だ
け上記ガラス基板の表面に平行な方向のエネルギーWxが
発生して、このエネルギーWxは、上記ガラス基板の表面
に付着した薄膜を上記ガラス基板から引き剥すように作
用する。そして、上記薄膜と上記ガラス基板との界面で
の付着力は、上記ガラス基板の分子同士および上記薄膜
の分子同士の結合力に較べて小さいため、上記作用によ
って、上記薄膜は容易にガラス基板から引き剥される。
また、上述のように、ガラス基板表面に垂直な方向のエ
ネルギーは小さいので、ガラス基板の表面に与えるダメ
ージが小さくなり、ガラス基板の表面の粗度が小さくな
る。 また、第3図に示すように、上記角度は60゜を臨界点
として、著しく、表面の粗度が小さくなる。As shown in FIG. 4, assuming that the angle between the surface of the glass substrate of the EL element as the workpiece and the direction in which the abrasive is jetted is θ, of the collision speed v of the abrasive to the glass substrate, When the component vz in the direction perpendicular to the glass substrate and the component vx in the direction parallel to the surface of the glass substrate are vz = v sin θ and vx = v cos θ, and the mass of the abrasive is m, vz and
Energy Wz and Wx corresponding to vx, respectively, Wz = (1/2) mv 2 sin 2 θ, is Wx = (1/2) mv 2 cos 2 θ. θ is set to less than 90 °. Therefore, θ
Is set to 90 °, the energy Wz in the direction perpendicular to the surface of the glass substrate, which destroys the insulating thin film attached to the glass substrate, is smaller. However, energy Wx in a direction parallel to the surface of the glass substrate is generated by the smaller Wz, and this energy Wx acts to peel off the thin film attached to the surface of the glass substrate from the glass substrate. . And, since the adhesive force at the interface between the thin film and the glass substrate is smaller than the bonding force between the molecules of the glass substrate and the molecules of the thin film, the thin film can be easily removed from the glass substrate by the above-described action. Peeled off.
In addition, as described above, since energy in a direction perpendicular to the surface of the glass substrate is small, damage to the surface of the glass substrate is reduced, and roughness of the surface of the glass substrate is reduced. Further, as shown in FIG. 3, the above angle is remarkable with the critical point being 60 °, and the surface roughness becomes small.
以下、本発明を図示の実施例により詳細に説明する。 第1図は本発明のEL素子のガラス基板上の絶縁薄膜の
除去方法の一実施例の断面図である。上記実施例は液体
ホーニング法によりガラス基板からなる被加工物1の表
面に付着した厚さ2000〜3000ÅのSiO2およびSi3N4から
なる絶縁薄膜7をJIS規格1200番のアランダム系の研磨
材3を用いて除去する。第1図に示すように、上記ガラ
ス基板からなる被加工物1の表面と噴射ガン2から噴射
する上記研磨材3の噴射方向とがなす角度θを45゜に設
定している。また、上記噴射ガン2の先端と上記被加工
物1との距離は8cmに設定している。そして、被加工物
1の全面を均一に広範囲に加工するために、上記噴射ガ
ン2あるいは上記被加工物1の少なくとも一方を一定速
度で走査するようにしている。上記研磨材3は、圧空圧
力2.0kg/cm2の圧縮空気によって加速され、上記被加工
物1の表面に付着している絶縁薄膜7に衝突する。この
とき、上記研磨材3が持つ運動エネルギーのうち、上記
被加工物1の表面に垂直方向の成分が上記絶縁薄膜7を
破壊する一方、上記研磨材3が持つ運動エネルギーとう
ち、上記被加工物1の表面に平行方向の成分が上記絶縁
薄膜7を上記被加工物1から剥離し、除去する。第2図
(B)に上記実施例により絶縁薄膜7を除去した後の被
加工物1の表面状態を示す。また、第2図(A)に従来
の如くθ=90゜とし、その他の条件を上記実施例と同一
にして薄膜除去した場合の被加工物の表面状態を示す。
第2図(A),(B)からわかるように、上記実施例で
は、従来に較べて被加工物の表面の中心線平均粗度Raお
よび最大粗度Rmax共に、10分の1以下に向上できる。ま
た、上記実施例において、角度θを種々の値に設定した
場合の被加工物の表面の中心線平均粗度Raを第3図に示
す。第3図からわかるように、中心線平均粗度Raは角度
θを60゜未満に設定すると急激に小さくなり、被加工物
の表面状態を良好にできる。 尚、上記噴射ガンあるいは被加工物の走査速度は、研
磨材粒子の衝突速度に較べてはるかに小さく、実用上無
視できるレベルである。したがって、上記噴射ガンの傾
斜角度および上記噴射ガンと被加工物との距離を一定に
保持しておけば、研磨材の噴射方向に対していずれの方
向へ走査を行なっても良い。Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a sectional view of one embodiment of a method for removing an insulating thin film on a glass substrate of an EL element according to the present invention. In the above embodiment, the insulating thin film 7 made of SiO 2 and Si 3 N 4 having a thickness of 2000 to 3000 ° attached to the surface of the workpiece 1 made of a glass substrate by the liquid honing method is polished with an alundum system of JIS No. 1200 Material 3 is removed. As shown in FIG. 1, the angle θ between the surface of the workpiece 1 made of the glass substrate and the direction of the abrasive 3 sprayed from the spray gun 2 is set to 45 °. The distance between the tip of the injection gun 2 and the workpiece 1 is set to 8 cm. In order to uniformly process the entire surface of the workpiece 1 over a wide range, at least one of the spray gun 2 and the workpiece 1 is scanned at a constant speed. The abrasive 3 is accelerated by compressed air at a compressed air pressure of 2.0 kg / cm 2 and collides with the insulating thin film 7 attached to the surface of the workpiece 1. At this time, of the kinetic energy of the abrasive 3, a component in a direction perpendicular to the surface of the workpiece 1 destroys the insulating thin film 7, while the kinetic energy of the abrasive 3 out of the kinetic energy of the abrasive 3 The component in the direction parallel to the surface of the workpiece 1 peels off the insulating thin film 7 from the workpiece 1 and removes the same. FIG. 2B shows the surface state of the workpiece 1 after the insulating thin film 7 has been removed according to the above embodiment. FIG. 2 (A) shows the surface condition of the workpiece when the thin film is removed with θ = 90 ° as in the prior art, and the other conditions are the same as in the above embodiment.
As can be seen from FIGS. 2 (A) and 2 (B), in the above embodiment, both the center line average roughness Ra and the maximum roughness Rmax of the surface of the workpiece are improved to 1/10 or less as compared with the conventional example. it can. FIG. 3 shows the center line average roughness Ra of the surface of the workpiece when the angle θ is set to various values in the above embodiment. As can be seen from FIG. 3, the center line average roughness Ra decreases sharply when the angle θ is set to less than 60 °, and the surface condition of the workpiece can be improved. The scanning speed of the spray gun or the workpiece is much lower than the collision speed of the abrasive particles, and is negligible in practical use. Therefore, if the inclination angle of the spray gun and the distance between the spray gun and the workpiece are kept constant, scanning may be performed in any direction with respect to the abrasive material spraying direction.
以上の説明より明らかなように、本発明のEL素子のガ
ラス基板上の絶縁薄膜の除去方法は、被加工物としての
EL素子のガラス基板の表面と研磨材の噴射方向とのなす
角度を90゜未満に設定しているので、従来の如く上記角
度を90゜に設定した場合と異なり、上記研磨材は上記ガ
ラス基板の表面に付着した絶縁薄膜を上記ガラス基板か
ら水平方向に引き剥がす力を有する。したがって、本発
明によれば、上記研磨材を過大な速度で噴射しなくても
絶縁薄膜を除去でき、ガラス基板の表面に与えるダメー
ジを最小限にして、硬く付着力の強い絶縁薄膜を容易に
最適の条件で、ガラス基板から除去することができる。
また、ガラス基板の加工後の表面粗度を従来に較べ大幅
に小さくできるので、その後の工程で薄膜を形成する場
合のカバーレッジの問題を解決できる。 また、上記角度を60゜未満にすると、ガラス基板の表
面粗度が著しく、小さくなる。As is clear from the above description, the method for removing an insulating thin film on a glass substrate of an EL element according to the present invention is a method for removing an insulating film as an object to be processed.
Since the angle between the surface of the glass substrate of the EL element and the direction in which the abrasive is jetted is set to less than 90 °, unlike the case where the angle is set to 90 ° as in the conventional case, the abrasive is made of the glass substrate. Has a force to peel off the insulating thin film adhered to the surface of the substrate from the glass substrate in the horizontal direction. Therefore, according to the present invention, the insulating thin film can be removed without spraying the abrasive at an excessive speed, minimizing damage to the surface of the glass substrate, and easily forming a hard and strong adhesive thin film. Under optimal conditions, it can be removed from the glass substrate.
Further, since the surface roughness of the glass substrate after processing can be significantly reduced as compared with the related art, the problem of coverage when a thin film is formed in a subsequent step can be solved. When the angle is less than 60 °, the surface roughness of the glass substrate is remarkably small.
第1図は本発明のEL素子のガラス基板上の絶縁薄膜の除
去方法の一実施例の断面図、第2図は絶縁薄膜の除去加
工後のガラス基板の表面の断面図、第3図は絶縁薄膜の
除去加工後のガラス基板の平均粗度と研磨材噴射方向の
傾斜角度θの関係特性図、第4図は上記傾斜角度θによ
る研磨材の速度成分分解の説明図、第5図は従来の薄膜
の除去方法を説明する断面図、第6図は従来の薄膜の除
去方法により薄膜を除去する様子を示す断面図である。 1,21……被加工物、2,22……噴射ガン、3,23……研磨
材、7,32……薄膜。FIG. 1 is a cross-sectional view of one embodiment of a method for removing an insulating thin film on a glass substrate of an EL element according to the present invention, FIG. 2 is a cross-sectional view of the surface of the glass substrate after removing the insulating thin film, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the average roughness of the glass substrate after the removal processing of the insulating thin film and the inclination angle θ of the abrasive injection direction, FIG. 4 is an explanatory diagram of the velocity component decomposition of the abrasive by the inclination angle θ, and FIG. FIG. 6 is a cross-sectional view for explaining a conventional method for removing a thin film, and FIG. 6 is a cross-sectional view showing how a thin film is removed by a conventional method for removing a thin film. 1,21… Workpiece, 2,22… Injection gun, 3,23… Abrasive, 7,32… Thin film.
フロントページの続き (72)発明者 岸下 博 大阪府大阪市阿倍野区長池町22番22号 シヤープ株式会社内 (56)参考文献 特開 昭50−109471(JP,A) 特開 昭62−41100(JP,A) 特開 昭55−127173(JP,A) 特開 昭61−3611(JP,A)Continuation of the front page (72) Inventor Hiroshi Kishishita 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-50-109471 (JP, A) JP-A-62-41100 ( JP, A) JP-A-55-127173 (JP, A) JP-A-61-3611 (JP, A)
Claims (2)
面に付着している絶縁薄膜に向けて、ガンから水と研摩
材との混合物を噴射して、上記ガラス基板上から上記絶
縁薄膜を除去するEL素子のガラス基板上の絶縁薄膜の除
去方法であって、 上記ガラス基板の表面と上記ガンからの混合物の噴射方
向とのなす角度を90゜未満に設定したことを特徴とする
EL素子のガラス基板上の絶縁薄膜の除去方法。A mixture of water and an abrasive is sprayed from a gun toward an insulating thin film adhered to a surface of a glass substrate of an EL element as a workpiece, and the insulating thin film is sprayed from above the glass substrate. A method for removing an insulating thin film on a glass substrate of an EL element, wherein an angle between a surface of the glass substrate and a direction of injection of a mixture from the gun is set to less than 90 °.
A method for removing an insulating thin film on a glass substrate of an EL element.
縁薄膜の除去方法において、 上記角度は60゜未満に設定したことを特徴とするEL素子
のガラス基板上の絶縁薄膜の除去方法。2. The method for removing an insulating thin film on a glass substrate of an EL device according to claim 1, wherein said angle is set to less than 60 °. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2224017A JP2642503B2 (en) | 1990-08-24 | 1990-08-24 | Method for removing insulating thin film on glass substrate of EL element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2224017A JP2642503B2 (en) | 1990-08-24 | 1990-08-24 | Method for removing insulating thin film on glass substrate of EL element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04104864A JPH04104864A (en) | 1992-04-07 |
JP2642503B2 true JP2642503B2 (en) | 1997-08-20 |
Family
ID=16807282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2224017A Expired - Lifetime JP2642503B2 (en) | 1990-08-24 | 1990-08-24 | Method for removing insulating thin film on glass substrate of EL element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2642503B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5793014B2 (en) * | 2011-07-21 | 2015-10-14 | 株式会社不二製作所 | Side polishing method for hard brittle material substrate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5643561B2 (en) * | 1974-02-05 | 1981-10-13 | ||
JPS55127173A (en) * | 1979-01-26 | 1980-10-01 | Kenesu Kuraunchi Chiyaaruzu | Method of cleansing paint mask |
JPS613611A (en) * | 1984-06-15 | 1986-01-09 | Nippon Steel Corp | Descaling method of stainless steel sheet |
JPS6241100A (en) * | 1985-08-17 | 1987-02-23 | 太平商工株式会社 | Method of peeling rigid coating layer |
-
1990
- 1990-08-24 JP JP2224017A patent/JP2642503B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04104864A (en) | 1992-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2576836B2 (en) | Improved aerosol cleaning device | |
US6991515B2 (en) | Ultra fine particle film forming method and apparatus | |
KR102378196B1 (en) | Method for removing deposited material | |
TWI438304B (en) | A ceramic spray member and a method for manufacturing the same, and a polishing medium for a ceramic spray member | |
US6291012B1 (en) | Method for forming a metallic coat by impacting metallic particles on a workpiece | |
JP2019162675A (en) | Surface processing method for hard brittle material-made article to be treated | |
JP2642503B2 (en) | Method for removing insulating thin film on glass substrate of EL element | |
JP3996039B2 (en) | Method for manufacturing ceramic base material with metal spray coating | |
JPH09287072A (en) | Sputtering target assembled body and its production | |
JP2003236755A (en) | Surface toughening method of functional hard material | |
KR100323496B1 (en) | Device and Method for Reclaiming of Semiconductor wafer | |
JPH05214505A (en) | Formation of spray deposit | |
JP3024095B2 (en) | Sandblasting surface treatment method | |
TWI761359B (en) | Method for removing deposit | |
JPH06320425A (en) | End face working method for hard fragile thin plate | |
JP4522117B2 (en) | Method for manufacturing processing container member used in semiconductor or liquid crystal manufacturing apparatus | |
US8986829B2 (en) | Layered body | |
JP2001237201A (en) | Recycling method of silicon wafer | |
EP0963861A1 (en) | Pattern plate and method of producing the same | |
JP3044453B2 (en) | Metal plate surface roughening method and roughening device | |
JP4332004B2 (en) | Processing method using blast mask and wafer support member | |
Fantassi et al. | Relationships between particle parameters on impact and flattening process during plasma spray deposition | |
JPH04337283A (en) | Manufacture of thin film el element | |
JPH09232608A (en) | Manufacture of solar battery | |
JPS6343139B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080502 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 14 |