JP2642268B2 - Magnetic field strength measurement method - Google Patents

Magnetic field strength measurement method

Info

Publication number
JP2642268B2
JP2642268B2 JP3307673A JP30767391A JP2642268B2 JP 2642268 B2 JP2642268 B2 JP 2642268B2 JP 3307673 A JP3307673 A JP 3307673A JP 30767391 A JP30767391 A JP 30767391A JP 2642268 B2 JP2642268 B2 JP 2642268B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetoresistive element
ratio
resistance
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3307673A
Other languages
Japanese (ja)
Other versions
JPH05145143A (en
Inventor
正勝 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3307673A priority Critical patent/JP2642268B2/en
Publication of JPH05145143A publication Critical patent/JPH05145143A/en
Application granted granted Critical
Publication of JP2642268B2 publication Critical patent/JP2642268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気センサなどに用い
られる磁気抵抗素子および磁場強度測定法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element used for a magnetic sensor and the like and a method for measuring a magnetic field intensity.

【0002】[0002]

【従来の技術】従来、磁気抵抗素子としては、強磁性体
の磁気抵抗効果を利用した素子が多く使用されてきた。
従来の磁気抵抗素子の一例を図3に示す。磁気抵抗素子
は強磁性体からなる磁気抵抗素子部11とその両端の一
対の電極部12から構成される。磁気抵抗効果は、強磁
性体の抵抗Rが強磁性体の磁化方向と強磁性体に流す電
流方向との間の角度θによって、 R=R0 +ΔR・cos2 θ と変化する現象である。ここに、R0 は磁化方向が電流
方向と垂直になった場合の抵抗、ΔRは磁化方向と電流
方向が平行になった場合の抵抗とR0 との差である。磁
気抵抗素子のS/N比はΔR/R0 で表される。図4に
従来、磁気抵抗素子に用いられてきた強磁性体であるN
iFe合金における抵抗率の磁場依存性を示す。R0
ΔRに対応する抵抗率をそれぞれρ0 ,Δρとすると、
ΔR/R=Δρ/ρは(20.8−20)/20=
0.04となる。その他の強磁性体であるNiCo,N
iCu合金などでもΔρ/ρ0 はいずれも室温で数%程
度であり、磁場センサなどに用いるにはS/N比は不十
分であった。以上、強磁性体の磁気抵抗効果を利用した
磁気抵抗素子はS/N比が非常に低いという問題点があ
った。
2. Description of the Related Art Hitherto, as a magnetoresistive element, an element utilizing a magnetoresistance effect of a ferromagnetic material has been widely used.
FIG. 3 shows an example of a conventional magnetoresistive element. The magnetoresistive element includes a magnetoresistive element portion 11 made of a ferromagnetic material and a pair of electrode portions 12 at both ends thereof. The magnetoresistance effect is a phenomenon in which the resistance R of a ferromagnetic material changes as R = R 0 + ΔR · cos 2 θ depending on the angle θ between the direction of magnetization of the ferromagnetic material and the direction of current flowing through the ferromagnetic material. Here, R 0 is the resistance when the magnetization direction is perpendicular to the current direction, and ΔR is the difference between the resistance when the magnetization direction and the current direction are parallel and R 0 . The S / N ratio of the magnetoresistive element is represented by ΔR / R 0 . FIG. 4 shows N, which is a ferromagnetic material conventionally used in a magnetoresistive element.
4 shows the magnetic field dependence of resistivity in an iFe alloy. R 0 ,
When the resistivity corresponding to ΔR is ρ 0 and Δρ, respectively,
ΔR / R 0 = Δρ / ρ 0 is (20.8−20) / 20 =
0.04. Other ferromagnetic materials, NiCo, N
Δρ / ρ 0 is about several percent at room temperature even in iCu alloys and the like, and the S / N ratio was insufficient for use in magnetic field sensors and the like. As described above, the magnetoresistive element utilizing the magnetoresistance effect of the ferromagnetic material has a problem that the S / N ratio is extremely low.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
の磁気抵抗素子の問題であったS/N比の低さを解決
し、S/N比の高い磁気抵抗素子を提供することおよび
この磁気抵抗素子を用いた磁場強度測定法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive element having a high S / N ratio by solving the low S / N ratio which has been a problem of the conventional magnetoresistive element. An object of the present invention is to provide a method for measuring a magnetic field intensity using the magnetoresistive element.

【0004】[0004]

【課題を解決するための手段】この様な目的を達成する
ために、本発明の磁場強度測定方法は、非磁性導体膜の
両面に軟磁性体膜が設けられている磁気抵抗素子を磁場
中に配置する工程と、前記磁気抵抗素子の非磁性導体膜
の両側に高周波を印加する工程と、前記磁気抵抗素子の
高周波抵抗値の前記磁場による変化に基づいて前記磁場
の強度を測定する工程とを有することを特徴とする。
In order to achieve the above object, a method for measuring a magnetic field strength according to the present invention provides a magnetic resistance element having a soft magnetic film provided on both surfaces of a nonmagnetic conductor film in a magnetic field. And applying high frequency to both sides of the non-magnetic conductor film of the magnetoresistive element, and measuring the intensity of the magnetic field based on a change in the high frequency resistance value of the magnetoresistive element due to the magnetic field. It is characterized by having.

【0005】[0005]

【0006】[0006]

【0007】[0007]

【作用】本発明においては、磁気抵抗素子の高周波抵抗
の磁場依存性が大きいことを利用する。その結果、高い
S/N比で磁場を測定することができる。
The present invention makes use of the fact that the high frequency resistance of the magnetoresistive element has a large magnetic field dependence. As a result, the magnetic field can be measured at a high S / N ratio.

【0008】[0008]

【実施例】以下、図面を参照しつつ本発明の実施例を詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】図1は本発明の実施例を示す斜視図であ
り、一対の電極4を有する導体2からなるラインの上下
に、軟磁性体1が設けられた構造を成している。3は磁
気抵抗素子部、5は外部磁場である。このような構造を
持つ素子の両端にある周波数fを印加した時の抵抗R
(f)は、 R(f)=R0 (f)+ΔRmag (f) で表される。ここで、R0 (f)は軟磁性体が積層され
ていない導体のみの場合の抵抗、ΔRmag (f)は軟磁
性体が設けられたことによる抵抗の増加分である。R0
(f)は周波数が1GHz以下では、ほとんど周波数に
依存せず一定値となる。一方、軟磁性体では、高周波域
で比透磁率の虚数部μ″(f)が大きくなり、 ΔRmag (f)∝f・μ″(f) の関係により、ΔRmag (f)は大きくなる。軟磁性体
に外部磁場を印加していくと、μ″(f)は徐々に小さ
くなり、印加磁場の大きさが軟磁性体の異方性磁場に比
べ十分大きな値となると遂にはμ″(f)は零となる。
従って、図1に示した磁気抵抗素子のS/N比は、 ΔRmag (f)/R0 (f) で表されることになる。R0 (f)は小さく、ΔRmag
(f)は高周波域で非常に大きな値となるため、この磁
気抵抗素子は非常に大きなS/N比を持つことになる。
FIG. 1 is a perspective view showing an embodiment of the present invention, in which a soft magnetic body 1 is provided above and below a line composed of a conductor 2 having a pair of electrodes 4. Reference numeral 3 denotes a magnetoresistive element, and reference numeral 5 denotes an external magnetic field. The resistance R when the frequency f at both ends of the element having such a structure is applied.
(F) is represented by R (f) = R 0 (f) + ΔR mag (f). Here, R 0 (f) is the resistance in the case where only the conductor without the soft magnetic material is laminated, and ΔR mag (f) is the increase in resistance due to the provision of the soft magnetic material. R 0
(F) has a constant value almost independent of the frequency when the frequency is 1 GHz or less. On the other hand, in a soft magnetic material, the imaginary part μ ″ (f) of the relative magnetic permeability increases in a high frequency range, and ΔR mag (f) increases due to the relationship ΔR mag (f) ∝f · μ ″ (f). . When an external magnetic field is applied to the soft magnetic material, μ ″ (f) gradually decreases, and finally when the magnitude of the applied magnetic field becomes sufficiently large as compared with the anisotropic magnetic field of the soft magnetic material, μ ″ (f) f) becomes zero.
Therefore, the S / N ratio of the magnetoresistive element shown in FIG. 1 is represented by ΔR mag (f) / R 0 (f). R 0 (f) is small and ΔR mag
Since (f) has a very large value in a high frequency range, this magnetoresistive element has a very large S / N ratio.

【0010】導体2として膜厚1μmのCuを、軟磁性
体1として膜厚0.5μmのNiFe合金を使用し、周
波数500MHzにおいて測定した抵抗の外部磁場依存
性を図2に示す。磁気抵抗素子部の長さは8mm、幅は
1.5mmである。抵抗値は外部磁場零の時4.70Ω
であるが、外部磁場の増加と共に急激に低下し、NiF
e合金の異方性磁場5 Oeより十分大きな外部磁場下
では、0.695Ωにまで低下する。この実験では、R
0 =0.695Ω、ΔRmag =4.70−0.695≒
4.0であり、S/N比はΔRmag /R0 ≒4.0/
0.695≒5.76と非常に高い値となる。
FIG. 2 shows the external magnetic field dependence of the resistance measured at a frequency of 500 MHz using a 1 μm-thick Cu as the conductor 2 and a 0.5 μm-thick NiFe alloy as the soft magnetic material 1. The length of the magnetoresistive element is 8 mm and the width is 1.5 mm. Resistance value is 4.70Ω when external magnetic field is zero
However, it decreases sharply with the increase of the external magnetic field, and NiF
Under an external magnetic field sufficiently larger than the anisotropic magnetic field 5 Oe of the e-alloy, the value drops to 0.695Ω. In this experiment, R
0 = 0.695Ω, ΔR mag = 4.70-0.695 °
4.0 and the S / N ratio is ΔR mag / R 0 ≒ 4.0 /
This is a very high value of 0.695 ≒ 5.76.

【0011】なお、本発明による磁気抵抗素子では、C
uおよびNiFe合金の膜厚を厚くすることにより、R
0 を下げ、ΔRmag を上げることができるため、これら
の膜厚を適当に設定することにより、S/N比をさらに
向上させることが可能である。
In the magnetoresistive element according to the present invention, C
By increasing the thickness of the u and NiFe alloys, R
Since 0 can be decreased and ΔR mag can be increased, it is possible to further improve the S / N ratio by appropriately setting these film thicknesses.

【0012】この結果から明らかなように、本発明の磁
気抵抗素子は従来の磁気抵抗素子に比べ、S/N比が高
いという利点がある。
As is apparent from the results, the magnetoresistive element of the present invention has an advantage that the S / N ratio is higher than that of the conventional magnetoresistive element.

【0013】図2に示したように、磁気抵抗素子の両端
に高周波を印加した時、抵抗値は外部磁場に大きく依存
する。従って、あらかじめ較正曲線を求めておけば、抵
抗値から外部磁場の強度を求めることができる。
As shown in FIG. 2, when a high frequency is applied to both ends of the magnetoresistive element, the resistance value largely depends on the external magnetic field. Therefore, if the calibration curve is obtained in advance, the intensity of the external magnetic field can be obtained from the resistance value.

【0014】なお、図1において軟磁性体1は、導体2
の表面に直接接触して設けられているが、他の実施例と
して、軟磁性体を導体表面に非磁性体を介して設けた磁
気抵抗素子も、図1の磁気抵抗素子と同様に高いS/N
比を持つ磁気抵抗素子として機能する。
In FIG. 1, the soft magnetic material 1 is composed of a conductor 2
As another example, a magnetoresistive element in which a soft magnetic material is provided on a conductor surface through a non-magnetic material as in the case of FIG. / N
It functions as a magnetoresistive element having a ratio.

【0015】[0015]

【発明の効果】以上説明したように、本発明による磁気
抵抗素子は高周波抵抗が大きな磁場依存性を示すため磁
気抵抗素子としてのS/N比が非常に高いという利点が
ある。
As described above, the magnetoresistive element according to the present invention has an advantage that the S / N ratio as the magnetoresistive element is very high because the high-frequency resistance shows a large magnetic field dependence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗素子の一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing one embodiment of a magnetoresistive element of the present invention.

【図2】本発明の磁気抵抗素子における抵抗の磁場依存
性の一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of magnetic field dependence of resistance in the magnetoresistive element of the present invention.

【図3】従来の磁気抵抗素子を示す斜視図である。FIG. 3 is a perspective view showing a conventional magnetoresistive element.

【図4】従来の磁気抵抗素子に使用されているNiFe
膜における抵抗率の磁場依存性を示す特性図である。
FIG. 4 shows NiFe used in a conventional magnetoresistive element.
FIG. 4 is a characteristic diagram showing the magnetic field dependence of resistivity in a film.

【符号の説明】[Explanation of symbols]

1 軟磁性体 2 導体 3 磁気抵抗素子部 4 電極 5 外部磁場 DESCRIPTION OF SYMBOLS 1 Soft magnetic body 2 Conductor 3 Magnetoresistive element part 4 Electrode 5 External magnetic field

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性導体膜の両面に軟磁性体膜が設け
られている磁気抵抗素子を磁場中に配置する工程と、前
記磁気抵抗素子の非磁性導体膜の両側に高周波を印加す
る工程と、前記磁気抵抗素子の高周波抵抗値の前記磁場
による変化に基づいて前記磁場の強度を測定する工程と
を有することを特徴とする磁場強度測定方法。
1. A step of disposing a magnetoresistive element having soft magnetic films provided on both sides of a nonmagnetic conductor film in a magnetic field, and a step of applying a high frequency to both sides of the nonmagnetic conductor film of the magnetoresistive element. And measuring the strength of the magnetic field based on a change in the high-frequency resistance value of the magnetoresistive element due to the magnetic field.
JP3307673A 1991-11-22 1991-11-22 Magnetic field strength measurement method Expired - Fee Related JP2642268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3307673A JP2642268B2 (en) 1991-11-22 1991-11-22 Magnetic field strength measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3307673A JP2642268B2 (en) 1991-11-22 1991-11-22 Magnetic field strength measurement method

Publications (2)

Publication Number Publication Date
JPH05145143A JPH05145143A (en) 1993-06-11
JP2642268B2 true JP2642268B2 (en) 1997-08-20

Family

ID=17971866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307673A Expired - Fee Related JP2642268B2 (en) 1991-11-22 1991-11-22 Magnetic field strength measurement method

Country Status (1)

Country Link
JP (1) JP2642268B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576246B2 (en) * 2010-01-06 2014-08-20 株式会社神戸製鋼所 Axial gap type brushless motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308394A (en) * 1987-06-10 1988-12-15 Mitsubishi Electric Corp Manufacture of magnetoresistance effect element
JPS6419512A (en) * 1987-07-14 1989-01-23 Sony Corp Magneto-resistance effect type magnetic head
JPH0642566B2 (en) * 1987-12-09 1994-06-01 日本電気株式会社 Method of manufacturing magnetic low resistance element

Also Published As

Publication number Publication date
JPH05145143A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
US7501928B2 (en) Current sensor
US7394240B2 (en) Current sensor
US7723983B2 (en) Magnetic sensor and current sensor
JP2651015B2 (en) Magnetic field sensor with ferromagnetic thin film
US7138798B1 (en) Azimuth meter having spin-valve giant magneto-resistive elements
US20100001723A1 (en) Bridge type sensor with tunable characteristic
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
CA2054580A1 (en) Magnetoresistive sensor based on the spin valve effect
JPH11354860A (en) Spin valve magnetic conversion element and magnetic head
JPH11513128A (en) Magnetic field sensor with magnetoresistive bridge
JP3587678B2 (en) Magnetic field sensor
US20240045003A1 (en) Magnetic sensor
US5523687A (en) Magnetic flux guide having tongues and magnetoresistive transducer incorporating said guide
JP2002532894A (en) Magnetic field sensor with giant magnetoresistance effect
Bedir et al. A study on electrodeposited Ni x Fe 1− x alloy films
JP2642268B2 (en) Magnetic field strength measurement method
De Cos et al. Magnetoimpedance in narrow NiFe/Au/NiFe multilayer film systems
JP3035838B2 (en) Magnetoresistance composite element
US5982177A (en) Magnetoresistive sensor magnetically biased in a region spaced from a sensing region
JPH09231517A (en) Magnetic reluctance sensor
JP2002357488A (en) Stress sensor
JP4237855B2 (en) Magnetic field sensor
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JPH09260742A (en) Magnetoresistance effect device
JPH0221153B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees