JP2642235B2 - Manufacturing method of titanium clad steel with high bonding strength - Google Patents
Manufacturing method of titanium clad steel with high bonding strengthInfo
- Publication number
- JP2642235B2 JP2642235B2 JP23382190A JP23382190A JP2642235B2 JP 2642235 B2 JP2642235 B2 JP 2642235B2 JP 23382190 A JP23382190 A JP 23382190A JP 23382190 A JP23382190 A JP 23382190A JP 2642235 B2 JP2642235 B2 JP 2642235B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- steel
- bonding strength
- temperature
- clad steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、接合強度の高いチタンおよびチタン合金の
圧延クラッド鋼板の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a rolled clad steel sheet of titanium and a titanium alloy having high bonding strength.
[従来の技術] チタンクラッド鋼の製造方法としては、爆着法と圧延
法の2種類があり、前者の爆着法は製品の寸法、寸法精
度および生産性等の点で制約が大きいことから、最近で
は後者の圧延法に感心が持たれつつある。この圧延法
は、概略〈合わせ面の清浄化〉−〈クロラッド素材の溶
接組立て〉−〈真空引きおよび封止〉−〈加熱〉−〈熱
間加工〉の各工程よりなるが、爆着法に比べて接合強度
が劣るという欠点がある。この原因としてはチタンの
鋼との間に脆弱な金属間化合物が生成し易いこと、鋼
板中の炭素がチタン側に拡散して炭化チタンを生成し、
界面の剥離強度を低下すること、等のことがこれまでの
ところ知られている。[Prior art] There are two methods for producing titanium clad steel, the explosion method and the rolling method, and the former explosion method has great limitations in terms of product dimensions, dimensional accuracy, productivity, and the like. Recently, the latter rolling method has been impressed. This rolling method generally comprises the steps of <cleaning of mating surfaces>-<welding and assembly of chlorad material>-<evacuation and sealing>-<heating>-<hot working>. There is a disadvantage that the bonding strength is inferior. The cause is that brittle intermetallic compounds are easily generated between titanium and steel, and carbon in the steel sheet diffuses to the titanium side to generate titanium carbide,
It has been known to reduce the peel strength at the interface.
この対策として、に関しては金属間化合物の生成を
抑制する目的でチタンと鋼板との間にインサート材とし
てニッケル等を設ける方法(例えば特公昭53−10347号
公報)、またに関しては接合界面での炭化チタンの形
成を抑制する目的で、上述のニッケルをインサート材と
して用いる方法の他に基材として炭素含有量の少ない極
低炭素鋼を使用する方法(例えば特開昭56−122681号公
報)もしくは基材の合わせ側を脱炭する方法(例えば特
開昭59−220292号公報)、あるいは予め鋼中の炭素を固
定しておく目的でTi等の強力な炭化物形成元素を添加し
た鋼を用いる方法(特開昭56−122681号公報)等が提案
されている。As a countermeasure, a method of providing nickel or the like as an insert material between titanium and a steel sheet for the purpose of suppressing generation of an intermetallic compound (for example, Japanese Patent Publication No. 53-10347), In order to suppress the formation of titanium, in addition to the above-mentioned method of using nickel as an insert material, a method of using ultra-low carbon steel having a low carbon content as a base material (for example, JP-A-56-122681) or A method of decarburizing the mating side of the material (for example, JP-A-59-220292), or a method of using a steel to which a strong carbide-forming element such as Ti is added in order to fix carbon in the steel in advance ( JP-A-56-122681) has been proposed.
[発明が解決しようとする課題] しかしながら、これらの方法によって接合界面におけ
る炭化チタンの形成は抑制できてもTiとFe、あるいはイ
ンサート材としてニッケル箔等を用いた場合にはNiとTi
のそれぞれの金属間化合物の微量、極薄層の形成を抑制
することは困難であり、結合強度の劣化原因を未だ十分
には排除することができない。[Problems to be Solved by the Invention] However, even if the formation of titanium carbide at the joint interface can be suppressed by these methods, Ti and Fe, or Ni and Ti when nickel foil or the like is used as an insert material.
It is difficult to suppress the formation of a trace amount of each of the intermetallic compounds and the formation of an extremely thin layer, and the cause of the deterioration of the bonding strength cannot be sufficiently eliminated yet.
[課題を解決するための手段] 本発明は、このような接合強度の劣化原因となる金属
間化合物の生成を抑制するため、熱延条件および熱処理
条件の影響について種々検討し、熱延工程での金属間化
合物の生成を抑制し、引き続く冷却工程で金属間化合物
を低減、消滅することが可能な熱処理条件を知見するこ
とによって構成するに至ったものである。[Means for Solving the Problems] The present invention examines various effects of hot rolling conditions and heat treatment conditions in order to suppress generation of such an intermetallic compound that causes deterioration of bonding strength. The formation of the intermetallic compound is suppressed, and the heat treatment conditions under which the intermetallic compound can be reduced and eliminated in the subsequent cooling step are found.
即ち、本発明は基材としての鋼材を合わせ材としての
チタン材の間隙面を真空排気した後、熱間加工を施こ
す、いわゆる真空引き熱間加工法において、950〜700℃
の温度範囲内で熱間圧延を施こした後、50℃/分以上の
冷却速度で600℃以下の温度まで冷却し、次いで300〜58
0℃の温度範囲内に0.5〜24時間加熱保持することを特徴
とする接合強度の高いチタンクラッド鋼の製造方法を提
供するものである。That is, in the present invention, a steel material as a base material is evacuated to a gap surface of a titanium material as a bonding material, and then subjected to hot working.
After hot-rolling within the temperature range described above, cooling is performed at a cooling rate of 50 ° C / min or more to a temperature of 600 ° C or less, and then 300 to 58 ° C.
An object of the present invention is to provide a method for producing a titanium-clad steel having a high bonding strength, wherein the method is heated and held in a temperature range of 0 ° C. for 0.5 to 24 hours.
[作用] ここで基材としての鋼材の鋼種は特に限定されるもの
ではなく、普通鋼あるいはステンレス鋼等の高合金鋼等
いずれでも良いが鋼成分特に鋼表面層の鋼成分としては
先述の如き炭化チタンの生成を抑制する観点からC(Ti
C等の安定な炭化物を形成していないいわゆる自由な炭
素)量の少ないことが望ましい。この観点から、鋼基材
として高炭素鋼板等のC量の多い鋼を用いる場合には、
表面脱炭処理を施こすか、あるいは純鉄板等のインサー
ト材をかかる鋼基材とチタン材の間に挿入することが望
ましい。合わせ材としてのチタンの種類は特に制約され
るものでなく、純チタンあるいは合金チタンのいずれも
使用できる。[Function] Here, the steel type of the steel material as the base material is not particularly limited, and any of high-alloy steel such as ordinary steel or stainless steel may be used, but the steel component, particularly the steel component of the steel surface layer, is as described above. From the viewpoint of suppressing the formation of titanium carbide, C (Ti
It is desirable that the amount of so-called free carbon which does not form a stable carbide such as C) be small. From this viewpoint, when using a steel having a high C content such as a high carbon steel sheet as the steel base,
It is desirable to apply a surface decarburization treatment or to insert an insert material such as a pure iron plate between the steel base material and the titanium material. The type of titanium as the joining material is not particularly limited, and either pure titanium or alloyed titanium can be used.
かかる鋼基材およびチタン材は公知の方法で組み立て
て内部を排気した後、封止する。例えば、捨て材、チタ
ン材および鋼基材の3層もしくは鋼基材、チタン材、チ
タン材、鋼基材の4層に積み重ねて組み立て材とし3層
の場合は捨て材と鋼基材、4層の場合は両外面の鋼基材
の端面間に当て板を当てがって端部を溶接し、次いでパ
イプ等を介して組み立て材の内部を真空排気した後、封
止する。なお、捨て材は基材と同じ材質とすることが熱
膨張等の面から好ましく、また3層の場合には捨て材と
チタン材の間に4層の場合には、チタン材間に予めアル
ミナ粉末等の剥離材を配しておく。更に、鋼基材とチタ
ン材の間の端部にはスペーサー等を介挿して(当て材に
段差を設けても良い)両材の直接接触を防ぎ熱延前の加
熱時における無益な金属間化合物の生成を抑制すること
が望ましい、第1図に4層の場合の組み立て材を例示し
た断面図を示す。第1図中において、1は鋼基材、2は
チタン材、3は当て板、4は剥離材、5はスペーサー、
6は排気パイプおよび7は溶接端部である。The steel base material and the titanium material are assembled by a known method, and the inside is evacuated and then sealed. For example, in the case of three layers of a discarded material, a titanium material and a steel substrate, or four layers of a steel substrate, a titanium material, a titanium material, and a steel substrate, an assembly material is formed. In the case of a layer, a patch plate is applied between the end faces of the steel base material on both outer surfaces, the ends are welded, and then the inside of the assembly is evacuated via a pipe or the like, and then sealed. The material to be discarded is preferably made of the same material as the base material from the viewpoint of thermal expansion and the like. In the case of three layers, between the discarded material and the titanium material, in the case of four layers, the alumina is previously placed between the titanium materials. A release material such as a powder is provided. In addition, a spacer or the like is inserted at the end between the steel base material and the titanium material (a step may be provided on the backing material) to prevent direct contact between the two materials and prevent the useless metal during heating before hot rolling. FIG. 1 is a cross-sectional view illustrating an example of an assembling material in the case of four layers in which it is desirable to suppress generation of a compound. In FIG. 1, 1 is a steel substrate, 2 is a titanium material, 3 is a backing plate, 4 is a release material, 5 is a spacer,
6 is an exhaust pipe and 7 is a welded end.
次に、このようにして作製した組み立て材に熱間圧延
を施こして鋼基材とチタン材を接合する。Next, the assembled material thus manufactured is subjected to hot rolling to join the steel base material and the titanium material.
ここで本発明においては950〜700℃の温度範囲内で熱
間圧延を施こした後、50℃/分以上の冷却速度で600℃
以下の温度まで冷却することを一つの特徴とする。この
趣旨は金属間化合物の生成を可能な限り抑制し、且つ鉄
とチタン原子の相互拡散を図り易くすることにある。即
ち、熱延温度が950℃を超えると金属間化合物の生成が
著しくなり、一方700℃未満では接合界面での鉄とチタ
ンの金属原子の相互拡散が起こりにくいため未圧着部が
生ずる恐れがあることによる。Here, in the present invention, after being subjected to hot rolling within a temperature range of 950 to 700 ° C, 600 ° C at a cooling rate of 50 ° C / min or more.
One feature is to cool to the following temperature. The purpose is to suppress the formation of intermetallic compounds as much as possible and to facilitate the interdiffusion of iron and titanium atoms. That is, if the hot rolling temperature exceeds 950 ° C., the formation of intermetallic compounds becomes remarkable, while if the temperature is less than 700 ° C., mutual diffusion of iron and titanium metal atoms at the bonding interface hardly occurs, and there is a possibility that an uncompressed portion may occur. It depends.
更に、熱間圧延後、600℃以下の温度に冷却するまで
の冷却速度が50℃/分未満では、接合界面において金属
間化合物が肥大化し接合強度を劣化する。冷却速度の上
限は特に限定されるものでないが冷却速度が速くなると
鋼基材等の成分によっては加工性が劣化するので用途等
に応じて適宜選定することが望ましい。600℃以下の温
度となるまで特定の冷却温度以上で冷却する理由は600
℃を境いとして金属間化合物の生成挙動が異なり、600
℃以下の温度で金属間化合物は逆に衰退、消滅する特異
な傾向があることを見い出したことによるもので、600
℃以下の温度で冷却速度は、とくに速くする必要がなく
自然放冷で良い。Further, if the cooling rate after the hot rolling until cooling to a temperature of 600 ° C. or less is less than 50 ° C./min, the intermetallic compound is enlarged at the joining interface and the joining strength is deteriorated. The upper limit of the cooling rate is not particularly limited, but if the cooling rate is increased, the workability is deteriorated depending on the components of the steel base material and the like. The reason for cooling above a certain cooling temperature until the temperature is below 600 ° C is 600
The formation behavior of intermetallic compounds differs from
This is due to the finding that intermetallic compounds have a unique tendency to decay and disappear at temperatures below ℃
At a temperature of not more than ° C., the cooling rate does not need to be particularly high, and natural cooling is sufficient.
本発明の他の重要な特徴はかかる条件で冷却した後、
300〜580℃の温度範囲に30分以上加熱保持することにあ
る。この加熱保持には2つの方法があり一つは600℃以
下の温度まで50℃/分以上の冷却速度で冷却後、更に室
温まで自然放冷等で冷却した後再加熱して加熱保持する
方法、他は600℃から室温への冷却途中において加熱保
持、換言すると段付け冷却処理する方法がある。Another important feature of the present invention is that after cooling under such conditions,
The purpose is to maintain the temperature in the temperature range of 300 to 580 ° C for 30 minutes or more. There are two methods for this heating and holding. One is to cool to a temperature of 600 ° C or less at a cooling rate of 50 ° C / min or more, then cool to room temperature by natural cooling, etc., then reheat and heat and hold. Others include a method of heating and holding during cooling from 600 ° C. to room temperature, in other words, a stepwise cooling treatment.
このような加熱保持処理は本発明の極めて重要な構成
条件であって、これは次のような知見に基づく。即ち、
接合界面の透過電子顕微鏡観察の結果、接合強度の主た
る阻害因子は界面に生成した厚さが数百Å程度の金属間
化合物(Ti2Fe,TiFe等)であって、この薄い層は400〜5
00℃程度の加熱処理によって消滅する傾向にあることが
判明した。この理由については未だ不明な点もあるが、
Feの固溶量が大きいβ−Ti相に金属間化合物のFeが吸収
されることによるものではないかと考えられる。Such a heat-holding treatment is a very important component of the present invention, and is based on the following findings. That is,
Observation of the bonding interface by transmission electron microscopy revealed that the main inhibitor of the bonding strength was an intermetallic compound (Ti 2 Fe, TiFe, etc.) with a thickness of several hundred mm formed at the interface. Five
It was found that the heat treatment at about 00 ° C. tended to disappear. There is still some unclear reason for this,
It is considered that this may be due to the absorption of Fe of the intermetallic compound into the β-Ti phase having a large amount of Fe solid solution.
いずれにしても、かかる加熱保持部処理によって従来
にない接合強度を有するチタンクラッド鋼板の提供が可
能となった。加熱保持の温度を300〜580℃とした理由は
580℃を超える高い温度では、金属間化合物が生成する
方向にあり、300℃未満の低い温度では金属間化合物の
消滅に長時間を要することにある。また加熱時間が0.5
時間未満では接合強度の改善寄与は小さく、24時間を超
えても改善効果は飽和する。In any case, such a heat-holding section treatment has made it possible to provide a titanium-clad steel sheet having unprecedented bonding strength. The reason for setting the heating and holding temperature to 300 to 580 ° C is
At a high temperature exceeding 580 ° C., an intermetallic compound tends to be generated, and at a low temperature below 300 ° C., it takes a long time for the intermetallic compound to disappear. The heating time is 0.5
If the time is less than the time, the improvement contribution of the bonding strength is small, and if the time exceeds 24 hours, the improvement effect is saturated.
加熱保持処理後は冷却し、端部を切断して圧延後の組
み立て材を分解し捨て材および当て材を取り除きクラッ
ド材を取り出す。After the heating and holding treatment, the material is cooled, the ends are cut, the assembled material after rolling is disassembled, the discarded material and the patch material are removed, and the clad material is taken out.
[実 施 例] 次に実施例によって本発明の効果を詳述する。EXAMPLES Next, the effects of the present invention will be described in detail with reference to examples.
鋼基材として鋼成分がC:0.001,Si:0.01,Mn:0.3,P:0.0
1,S:0.01,Ti:0.2(重量%)である板厚70mmの極低炭素T
i添加鋼、合わせ材として板厚30mmの純チタン材(JISH4
600、1種)を用いて、鋼基体、合わせ材、合わせ材お
よび鋼基材の順に積み重ね(合わせ材の向かい合った面
にはアルミナ系の剥離材を塗布)、端面に鋼基材と同じ
鋼種の当て板を当てがって端部を封止溶接し、次いで内
部に通ずる吸引パイプを取り付けて10-2Torrの真空度と
した後、溶接封止した。Steel composition as steel base material is C: 0.001, Si: 0.01, Mn: 0.3, P: 0.0
Ultra low carbon T with 70mm thickness, 1, S: 0.01, Ti: 0.2 (wt%)
i Additive steel, pure titanium material with a thickness of 30 mm (JISH4
600, 1 type), stack in the order of steel substrate, laminated material, laminated material and steel substrate (alumina-based release material is applied to the facing surfaces of the laminated material), and the same steel type as the steel substrate on the end surface Then, the end portion was sealed and welded, and then a suction pipe communicating with the inside was attached thereto, and the vacuum was set to 10 −2 Torr, followed by welding and sealing.
次いで第1表に示す11種類の熱延、熱処理条件によっ
て板厚5mmのチタンクラッド鋼板を作製し、T剥離強度
およびせん断剥離強度を測定した。第2図および第3図
はそれれぞれT剥離強度およびせん断剥離強度の測定に
用いた試験片を示すための長手方向断面図であって、8
は鋼板、9はチタン板、10は縦割りスリットおよび11は
巾方向スリットである。Next, a titanium-clad steel sheet having a thickness of 5 mm was produced under the 11 types of hot rolling and heat treatment conditions shown in Table 1, and the T peel strength and the shear peel strength were measured. 2 and 3 are longitudinal sectional views showing test pieces used for measuring the T peel strength and the shear peel strength, respectively.
Is a steel plate, 9 is a titanium plate, 10 is a vertical slit, and 11 is a width direction slit.
即ち、T剥離強度は長さ100mm、巾25mmの試験片の一
端に長さ方向に深さ25mmの縦割りスリット10(巾1mm)
を接合界面に沿って鋼板8側に設け、スリット10で分離
された鋼板8およびチタン板9をそれぞれ外側に直角に
T字型に折り曲げて掴み部として引張り試験機で50mm/
分の速度で引張り、接合部を引き剥す方法で測定し、そ
のまま荷重を表示した。一方、せん断剥離強度は長さ10
0mm、巾25mmの試験片のほぼ長さ方向の中央部に巾1mmの
2本の巾方向のスリット11を試験片の巾方向の全長に2m
mの間隔で、それぞれチタン側および鋼板側から接合界
面に達する深さまで切込み加工し、引張速度10mm/分で
試験片の両端を掴んで引張り、2本のスリット間の接合
界面を引き剥す方法によって測定し、荷重を剥離面積
(50mm2)で除して表示した。これらの測定結果を第1
表に併記した。That is, T peel strength is 100 mm long and 25 mm wide at one end of a vertically split slit 10 (1 mm wide) with a depth of 25 mm in the length direction.
Is provided on the steel plate 8 side along the joining interface, and the steel plate 8 and the titanium plate 9 separated by the slit 10 are each bent outwardly at right angles into a T-shape, and a 50 mm /
It was measured by a method of pulling at a speed of one minute and peeling off the joint, and the load was indicated as it was. On the other hand, the shear peel strength is 10
Two 1-mm-wide slits 11 with a width of 1 mm are placed in the center of the test specimen with a width of 0 mm and a width of 25 mm approximately 2 m along the entire length of the test specimen in the width direction.
Cut at intervals of m from the titanium side and the steel plate side to the depth reaching the bonding interface, gripping both ends of the test piece at a tensile speed of 10 mm / min, pulling, and peeling off the bonding interface between the two slits It was measured and the load was divided by the peeled area (50 mm 2 ) and indicated. The results of these measurements are
Also shown in the table.
第1表の評価結果から明らかなように、本発明によれ
ば比較例に比べて接合強度の高いチタンクラッド鋼が製
造できることが明らかである。As is clear from the evaluation results in Table 1, it is clear that according to the present invention, a titanium clad steel having higher bonding strength can be manufactured as compared with the comparative example.
[発明の効果] 本発明によるチタンクラッド鋼板は接合強度、とくに
T剥離強度が従来材に比べて格段に優れており、海洋構
造物、化学プラント、各種乗り物あるいは建築材料等に
使用した場合の信頼性が高く、関連産業分野に与える利
点は極めて大きい。 [Effects of the Invention] The titanium-clad steel sheet according to the present invention has remarkably superior bonding strength, especially T-peel strength, as compared with conventional materials, and is reliable when used in offshore structures, chemical plants, various vehicles or building materials. It is highly efficient and has a great advantage in the related industrial fields.
第1図は熱延前の組み立て材の構成を例示した断面図、
第2図および第3図はそれぞれT剥離強度およびせん断
剥離強度を測定するために用いた試験片の長手方向の断
面図である。 1……鋼基材、2……チタン材 3……当て材、4……剥離材 5……スパーサー、6……排気パイプ 7……溶接端部、8……鋼板 9……チタン板、10……縦割りスリット 11……巾方向スリットFIG. 1 is a cross-sectional view illustrating the configuration of an assembly material before hot rolling,
FIG. 2 and FIG. 3 are longitudinal sectional views of test pieces used for measuring T peel strength and shear peel strength, respectively. DESCRIPTION OF SYMBOLS 1 ... Steel base material 2 ... Titanium material 3 ... Patch material 4 ... Peeling material 5 ... Sparser 6 ... Exhaust pipe 7 ... Welded end 8 ... Steel plate 9 ... Titanium plate 10 ... Vertical slit 11 ... Width slit
Claims (1)
ン材の間隙面を真空排気した後、熱間加工を施こす、い
わゆる真空引き熱間加工法によるチタンクラッド鋼の製
造方法において、 950〜700℃の温度範囲内で熱間圧延を施こした後、50℃
/分以上の冷却速度で600℃以下の温度まで冷却し、次
いで300〜580℃の温度範囲内に0.5〜24時間加熱保持す
ることを特徴とする接合強度の高いチタンクラッド鋼の
製造方法。(1) A method for producing titanium clad steel by a so-called vacuum hot working method in which a gap between a steel material as a base material and a titanium material as a bonding material is evacuated and then subjected to hot working. After hot rolling within the temperature range of ~ 700 ° C, 50 ° C
A method for producing a titanium-clad steel having high bonding strength, comprising cooling to a temperature of 600 ° C. or lower at a cooling rate of not less than / min and then heating and maintaining the temperature within a temperature range of 300 to 580 ° C. for 0.5 to 24 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23382190A JP2642235B2 (en) | 1990-09-04 | 1990-09-04 | Manufacturing method of titanium clad steel with high bonding strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23382190A JP2642235B2 (en) | 1990-09-04 | 1990-09-04 | Manufacturing method of titanium clad steel with high bonding strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04118183A JPH04118183A (en) | 1992-04-20 |
JP2642235B2 true JP2642235B2 (en) | 1997-08-20 |
Family
ID=16961092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23382190A Expired - Lifetime JP2642235B2 (en) | 1990-09-04 | 1990-09-04 | Manufacturing method of titanium clad steel with high bonding strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2642235B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102773670B (en) * | 2012-07-26 | 2015-03-25 | 李向民 | Manufacturing method of titanium-steel-titanium two-sided composite plate |
-
1990
- 1990-09-04 JP JP23382190A patent/JP2642235B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04118183A (en) | 1992-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4869421A (en) | Method of jointing titanium aluminide structures | |
US5579988A (en) | Clad reactive metal plate product and process for producing the same | |
EP0827437B1 (en) | Nickel-chronium-based brazing alloys | |
EP0406688B1 (en) | Method for manufacturing titanium clad steel plate | |
JP3047752B2 (en) | Manufacturing method of titanium clad steel sheet | |
JPS6029593B2 (en) | Manufacturing method of Ti-clad steel | |
JP2724515B2 (en) | Manufacturing method of titanium clad steel sheet with excellent bonding strength | |
JP2642235B2 (en) | Manufacturing method of titanium clad steel with high bonding strength | |
JP3398204B2 (en) | Brazing filler metal for aluminum alloys and aluminum alloy products | |
US3066393A (en) | Metal clad molybdenum article | |
JPH0780061B2 (en) | Method for producing titanium clad steel sheet with excellent bondability | |
KR100277204B1 (en) | Silicon nitride and carbon steel joining method | |
JPS60157B2 (en) | Manufacturing method of carbide tools | |
JPS561286A (en) | Production of ti-clad steel | |
JPS62168694A (en) | Cladding solder | |
JPS6188986A (en) | Manufacture of titanium clad material | |
JP3369610B2 (en) | Method for manufacturing bonded body of silicon carbide and austenitic steel | |
JPH05169281A (en) | Manufacture of tantalum/copper/stainless steel (carbon steel) clad | |
JPH04162981A (en) | Foil-shaped aluminum alloy brazing filler metal for vecuum brazing | |
JPH0757425B2 (en) | Hot rolling method for titanium clad steel sheet | |
JPH058056A (en) | Joining method for stainless steel and aluminum or aluminum alloy | |
JPH05177363A (en) | Production of copper clad steel products | |
JPS6289588A (en) | Manufacture of clad steel | |
JPH07498B2 (en) | Diamond joining method for cutting tools | |
JPH08318381A (en) | Joining method of metal material |