JP2641389B2 - Manufacturing method of liquid crystal display element - Google Patents

Manufacturing method of liquid crystal display element

Info

Publication number
JP2641389B2
JP2641389B2 JP6053639A JP5363994A JP2641389B2 JP 2641389 B2 JP2641389 B2 JP 2641389B2 JP 6053639 A JP6053639 A JP 6053639A JP 5363994 A JP5363994 A JP 5363994A JP 2641389 B2 JP2641389 B2 JP 2641389B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal material
cell
crystal molecules
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6053639A
Other languages
Japanese (ja)
Other versions
JPH07261185A (en
Inventor
百英 張
康夫 都甲
貴 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUTANREE DENKI KK
Original Assignee
SUTANREE DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUTANREE DENKI KK filed Critical SUTANREE DENKI KK
Priority to JP6053639A priority Critical patent/JP2641389B2/en
Publication of JPH07261185A publication Critical patent/JPH07261185A/en
Application granted granted Critical
Publication of JP2641389B2 publication Critical patent/JP2641389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子の製造方法
に関し、特に配向膜や配向処理が不要な液晶表示素子の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a liquid crystal display device, and more particularly to a method of manufacturing a liquid crystal display device which does not require an alignment film or alignment treatment.

【0002】[0002]

【従来の技術】液晶表示ディスプレイ等に使用される液
晶表示素子いわゆる液晶セルは、液晶の特定な分子配列
を電界等の外部からの作用によって別の異なる分子配列
に状態変化させて、その間の光学的特性の変化を視覚的
な変化として表示に利用している。液晶分子をある特定
の配列状態にするために液晶をはさむガラス基板の表面
には配向処理を行うのが普通である。
2. Description of the Related Art A liquid crystal display element used in a liquid crystal display or the like, a so-called liquid crystal cell, changes the state of a specific molecular arrangement of liquid crystal into another different molecular arrangement by an external action such as an electric field and the like, and optically intervenes between them. The change of the characteristic is used for display as a visual change. Generally, an alignment treatment is performed on the surface of a glass substrate holding liquid crystal in order to arrange liquid crystal molecules in a specific alignment state.

【0003】従来のツイストネマチック(TN)形液晶
セルなどでは、配向処理として、液晶を挟むガラス基板
を綿布のようなもので一方向に擦るいわゆるラビング法
が採用されている。ガラス基板表面にポリイミド膜等の
配向膜が形成される場合は、その配向膜表面をラビング
する。
In a conventional twisted nematic (TN) type liquid crystal cell or the like, a so-called rubbing method in which a glass substrate sandwiching a liquid crystal is rubbed in one direction with a cotton cloth or the like is employed as an alignment treatment. When an alignment film such as a polyimide film is formed on the surface of the glass substrate, the surface of the alignment film is rubbed.

【0004】ラビングの方向はたとえば上下の基板間で
ラビング方向が互いに直交するように行う。液晶セルが
ネガ表示の場合にはセルを挟んで平行ニコル配置の偏光
板をその偏光軸がどちらか一方のラビング方向と平行に
なるように配置し、またポジ表示の場合には、直交ニコ
ル配置の偏光板をその偏光軸が基板のラビング方向と平
行になるように配置する。
Rubbing is performed, for example, so that the rubbing directions of the upper and lower substrates are orthogonal to each other. If the liquid crystal cell is a negative display, a polarizing plate with a parallel Nicol arrangement is placed so that the polarization axis is parallel to one of the rubbing directions, and if the liquid crystal cell is a positive display, an orthogonal Nicol arrangement is used. Are arranged such that their polarization axes are parallel to the rubbing direction of the substrate.

【0005】[0005]

【発明が解決しようとする課題】このようなラビングで
配向処理をすると、液晶分子の配向方向が一様なため
に、コントラスト特性が画面を見る方向(視角)によっ
て変わる。その場合、観測者から画面を見たときの表示
が見やすい角度が特定の角度範囲に制限される視角特性
が生じる。
When the alignment treatment is performed by such rubbing, the contrast characteristic changes depending on the direction in which the screen is viewed (viewing angle) because the alignment direction of the liquid crystal molecules is uniform. In this case, there is a viewing angle characteristic in which the angle at which the display is easy to see when viewing the screen from the observer is limited to a specific angle range.

【0006】したがって、このような液晶セルはある方
向からは見えやすく、別の方向からは見えにくいといっ
た視角依存性を持つことになる。このような視角依存性
をもつ液晶セルを表示装置として利用した場合には、表
示画面に対してある角度ではコントラストが極端に低下
し、甚だしい場合には表示の明暗が反転してしまう。
Therefore, such a liquid crystal cell has a viewing angle dependency such that it is easy to see from one direction and hard to see from another direction. When a liquid crystal cell having such a viewing angle dependence is used as a display device, the contrast is extremely lowered at a certain angle with respect to the display screen, and when it is severe, the contrast of the display is reversed.

【0007】そのような視角特性を持つのは、ラビング
によって液晶分子にプレチルトが生じるからである。液
晶分子がプレチルトを持つ方向は、ラビングするベクト
ル方向に一致する。液晶セルに電圧が印加されると、液
晶分子はプレチルトしている方向に立ち上がってくるた
めに、その方向から観測した場合に、旋光性が解消され
やすくなる。したがってベクトルの終端方向が一番見や
すくなる。
The reason for having such a viewing angle characteristic is that rubbing causes pretilt in liquid crystal molecules. The direction in which the liquid crystal molecules have a pretilt coincides with the rubbing vector direction. When a voltage is applied to the liquid crystal cell, the liquid crystal molecules rise in the pretilt direction, so that when observed from that direction, the optical rotatory power is easily eliminated. Therefore, the end direction of the vector is most easily seen.

【0008】さらに、ラビングする際には、摩擦による
静電気が発生して配向膜に絶縁破壊が起きたり、その部
分の配向不良によって表示不良の原因となる場合があ
る。また、アクティブ駆動方式を採用する液晶セルで、
TFT(薄膜トランジスタ)などの駆動素子や配線が表
面に形成された基板をラビングする場合には、ラビング
による静電気によって素子や配線が破壊されるという場
合がある。
Furthermore, when rubbing, static electricity due to friction may be generated, causing dielectric breakdown in the alignment film, or display failure due to poor alignment at that portion. In addition, the liquid crystal cell adopts the active drive method,
When rubbing a substrate on which a driving element such as a TFT (thin film transistor) or a wiring is formed on the surface, the element or the wiring may be broken by static electricity generated by the rubbing.

【0009】さらに、配向膜形成時やラビング時に微小
なゴミが大量に発生し、そのゴミが静電気によって基板
に付着し、それが液晶セルのギャップ不良や黒点や白点
といった表示不良の原因となる場合がある。
Further, a large amount of fine dust is generated at the time of forming an alignment film or at the time of rubbing, and the dust adheres to the substrate by static electricity, which causes a display defect such as a gap defect of a liquid crystal cell or a black point or a white point. There are cases.

【0010】この問題を解決するために、本願出願人に
よる特許出願である特願平4−236652号等では、
ラビング処理のような積極的な配向構造を持たない液晶
セルの構造を提案している。これら先願の方法では、セ
ルの基板間のギャップと液晶のカイラルピッチとを特定
の関係となるように選択し、液晶の熱光学効果を利用し
て配向をさせている。
In order to solve this problem, Japanese Patent Application No. 4-236652, etc., which is a patent application filed by the present applicant, discloses:
A structure of a liquid crystal cell which does not have an active alignment structure such as a rubbing treatment is proposed. In these prior applications, the gap between the cell substrates and the chiral pitch of the liquid crystal are selected so as to have a specific relationship, and the liquid crystal is oriented using the thermo-optic effect of the liquid crystal.

【0011】つまり、液晶の液晶相−等方相間の相転移
温度以上に液晶材料を加熱して等方性の液体にした状態
つまり等方相でセルに注入し、その後徐冷して液晶状態
つまり液晶相に相転移させて配向させる。それにより、
微小な配向領域すなわちミクロドメインを多数ランダム
に形成する。偏光板の配置は、ポジ表示の場合には直交
ニコル配置、ネガ表示の場合には平行ニコル配置とす
る。基板面内にはラビング方向のような基準方向がない
ことから視角特性が均一となる。
That is, the liquid crystal material is heated above the phase transition temperature between the liquid crystal phase and the isotropic phase of the liquid crystal to be converted into an isotropic liquid, that is, injected into the cell in an isotropic phase, and then gradually cooled to form a liquid crystal state. In other words, the phase is changed to the liquid crystal phase and aligned. Thereby,
A large number of microscopic domains, that is, microdomains, are randomly formed. The polarizers are arranged in an orthogonal Nicol arrangement for a positive display, and a parallel Nicol arrangement for a negative display. Since there is no reference direction such as the rubbing direction in the substrate surface, the viewing angle characteristics become uniform.

【0012】この先願の方法では、たとえ配向膜は形成
されても配向構造形成のためのラビング処理が不要とな
るか、あるいはラビング処理を静電気やゴミの影響の比
較的少ない基板側のみに行うことができる。
In the method of the prior application, even if an alignment film is formed, a rubbing treatment for forming an alignment structure is not required, or a rubbing treatment is performed only on a substrate side which is relatively less affected by static electricity and dust. Can be.

【0013】この先願の発明の実施例において、例えば
液晶分子の配向方向が上下基板間で90°ツイスト(捩
じれ)している、いわゆるツイスト角が90°のツイス
トネマチック液晶表示素子(TN−LCD)を製造する
場合、液晶セルの厚さdと、液晶のカイラルピッチpの
関係がd/p=Φ/360°=0.25となるように調
整している。なお、ΦはTN−液晶セルのツイスト角
(90°)である。
In the embodiment of the invention of the prior application, for example, a twisted nematic liquid crystal display element (TN-LCD) having a so-called twist angle of 90 ° in which the orientation direction of liquid crystal molecules is 90 ° twisted between the upper and lower substrates. Is manufactured, the relationship between the thickness d of the liquid crystal cell and the chiral pitch p of the liquid crystal is adjusted so that d / p = Φ / 360 ° = 0.25. Φ is the twist angle (90 °) of the TN-liquid crystal cell.

【0014】つまり、液晶セルのツイスト角Φとセル厚
dとによって規定されるカイラルピッチpを持った液晶
を使用することによりツイスト角90°のTN−LCD
を得ている。具体的にはネマチック液晶に調整された量
のカイラル剤を添加して上記の関係を満たす所望のカイ
ラルピッチpを得ることが開示されている。
That is, by using a liquid crystal having a chiral pitch p defined by the twist angle Φ of the liquid crystal cell and the cell thickness d, a TN-LCD having a twist angle of 90 ° is used.
Have gained. Specifically, it is disclosed that a desired chiral pitch p satisfying the above relationship is obtained by adding an adjusted amount of a chiral agent to a nematic liquid crystal.

【0015】特願平4−236652号に開示の液晶表
示素子の方法によると、液晶セルへの液晶材料の注入
は、ネマティック液晶相(N)から等方相(I)への相
転移温度であるN−I転移点以上の高温の等方相で行
い、注入後に常温まで徐冷して液晶相としている。
According to the method of the liquid crystal display device disclosed in Japanese Patent Application No. 4-236652, the liquid crystal material is injected into the liquid crystal cell at a phase transition temperature from the nematic liquid crystal phase (N) to the isotropic phase (I). The injection is performed in a high temperature isotropic phase at a certain NI transition point or higher, and after injection, the liquid crystal is gradually cooled to room temperature to obtain a liquid crystal phase.

【0016】ところで、液晶セルへの液晶材料の注入を
上記先願の等方相ではなく、従来の技術のように常温の
液晶相のままで行った場合には、注入時の液晶の流れに
そった流動パターンが基板面に残る。
When the liquid crystal material is injected into the liquid crystal cell not in the isotropic phase of the prior application but in the liquid crystal phase at room temperature as in the prior art, the flow of the liquid crystal at the time of injection is reduced. The flowing pattern remains on the substrate surface.

【0017】流動パターンは液晶の流れ模様が縞状に残
ったものであり、目に見える大きな表示欠陥となる。こ
の流動パターンは、一旦形成されてしまうと消えにくい
性質を持ち、熱処理などによっても容易に消し去ること
はできない。この現象をメモリ効果とも呼ぶ。
The flow pattern is a pattern in which the flow pattern of the liquid crystal remains in stripes, and causes a large visible display defect. Once formed, this flow pattern has a property that it is difficult to erase, and cannot be easily erased by heat treatment or the like. This phenomenon is also called a memory effect.

【0018】メモリ効果が生じる原因は未だ良く判って
いない。配向膜に液晶分子が一旦吸着すると、基板との
界面の分子は熱振動などによっても容易に動かなくなり
N−I転移点以上に加熱しても界面の分子は溶けず、そ
のために初期配向がいつまでも残るのであろうと考えら
れる。この配向膜と液晶分子をつなぐ力はファンデルワ
ールス力であろうと思われる。
The cause of the memory effect has not been well understood. Once the liquid crystal molecules are adsorbed on the alignment film, the molecules at the interface with the substrate do not move easily due to thermal vibration or the like, and the molecules at the interface do not melt even when heated above the NI transition point. It is thought that it will remain. It is considered that the force connecting the alignment film and the liquid crystal molecules is van der Waals force.

【0019】また、上記の先願のように等方相で液晶材
料をセルに注入する場合には、セルを高温に加熱する必
要がある。なぜなら、常温(室温25℃近傍)下で使用
する液晶表示装置では、動作温度範囲ではネマティック
相もしくはスメクティック相の液晶相でなければならな
い。従って、等方相となるN−I点以上の温度は常温よ
りもかなり高温(例えば、90℃以上)に調整されてい
るからである。そのような高温度で液晶をセルに注入す
る場合には高温に起因する様々な問題がある。
When the liquid crystal material is injected into the cell in an isotropic phase as in the above-mentioned prior application, it is necessary to heat the cell to a high temperature. This is because a liquid crystal display device used at room temperature (around room temperature of 25 ° C.) must have a nematic phase or a smectic phase within the operating temperature range. Therefore, the temperature above the NI point, which is an isotropic phase, is adjusted to a considerably higher temperature (for example, 90 ° C. or higher) than normal temperature. When the liquid crystal is injected into the cell at such a high temperature, there are various problems caused by the high temperature.

【0020】さらに、通常の液晶注入方法としては真空
注入が広く行われている。これは真空槽内において、所
定真空度に排気したセルに液晶材料を注入口から充填す
る方法である。真空注入法の問題としては、真空中に液
晶成分が蒸発し易く、特に高温になっている場合にその
傾向が強くなる。従って、真空注入法で先願の等方相に
よる液晶注入をすると液晶中の成分が蒸発し、所望組成
の液晶を注入することが困難になる。
Furthermore, vacuum injection is widely used as a normal liquid crystal injection method. This is a method of filling a cell evacuated to a predetermined degree of vacuum with a liquid crystal material from an inlet in a vacuum chamber. As a problem of the vacuum injection method, the liquid crystal component easily evaporates in a vacuum, and the tendency is particularly strong when the temperature is high. Therefore, when liquid crystal is injected in the isotropic phase of the prior application by the vacuum injection method, components in the liquid crystal evaporate, and it becomes difficult to inject a liquid crystal having a desired composition.

【0021】高温真空注入では、高温に伴い、チャンバ
内壁や治具等からガスが生じ、高真空化に時間がかか
る。セル厚を均一に保ったまま注入及び冷却しなければ
ならないため、特願平4−347701号に記載の方法
のようにプレス等を行なう必要がある等の点で生産効率
が低いという欠点があった。通常の真空注入に必要な時
間と高温プレス注入および冷却にかかる時間とでは、事
実上2倍から5倍程度の違いがある。
In the high-temperature vacuum injection, a gas is generated from the inner wall of the chamber, a jig or the like due to the high temperature, and it takes a long time to achieve a high vacuum. Since it is necessary to perform injection and cooling while keeping the cell thickness uniform, there is a disadvantage that the production efficiency is low in that a press or the like must be performed as in the method described in Japanese Patent Application No. 4-347701. Was. The time required for normal vacuum injection and the time required for high-temperature press injection and cooling substantially differ by about 2 to 5 times.

【0022】一方、毛細管現象を利用した液晶注入を行
えば、所望組成の液晶を注入することができるが、この
方法では液晶セル内に気泡が残り易い。特に、TFTを
形成したような表面に凹凸のある基板のセルの場合や、
表示画面の大きなセルに注入を行う場合に気泡が残り易
い傾向がある。この気泡が残った部分はやはり表示欠陥
となる。
On the other hand, by injecting a liquid crystal utilizing the capillary phenomenon, a liquid crystal having a desired composition can be injected. However, in this method, air bubbles are likely to remain in the liquid crystal cell. In particular, in the case of a cell on a substrate having an uneven surface such as a TFT,
When injecting into a large cell of the display screen, air bubbles tend to remain. The portion where the air bubbles remain also becomes a display defect.

【0023】本発明の目的は、先願の特願平4−236
652号に開示の液晶表示素子のような積極的な配向構
造を必要としない液晶表示素子であって、しかも高温注
入時の問題をなくして低温度で液晶を注入でき、しかも
液晶相で液晶を注入しても流動パターンをなくすことの
可能な液晶表示素子の製造方法を提供することにある。
An object of the present invention is to provide a prior application of Japanese Patent Application No. 4-236.
The liquid crystal display element does not require an active alignment structure like the liquid crystal display element disclosed in Japanese Patent No. 652, and can inject liquid crystal at a low temperature without the problem of injection at a high temperature. It is an object of the present invention to provide a method for manufacturing a liquid crystal display element capable of eliminating a flow pattern even when the liquid crystal is injected.

【0024】[0024]

【課題を解決するための手段】本発明による液晶表示素
子の製造方法は、積極的配向処理をしない表面を有する
一対の基板を、該表面同士が対向するように所定間隔で
対向配置してセルを形成する工程と、前記セルの前記基
板間に液晶材料を注入する工程と、前記液晶材料が注入
された前記セルに、前記液晶材料と前記基板との界面に
おける液晶分子と前記基板表面との結合作用を減少さ
せ、前記界面における液晶分子の自由な運動を可能とす
るエネルギを与える工程と、前記界面における液晶分子
の配列方向が基板面内方向に関して巨視的にはほぼあら
ゆる方向に分布するように、前記液晶分子を配向させる
工程とを有する。
According to a method of manufacturing a liquid crystal display device according to the present invention , a pair of substrates having a surface that is not subjected to an active alignment treatment is opposed at a predetermined interval so that the surfaces face each other. Arranging a cell by arranging the cell, injecting a liquid crystal material between the substrates of the cell, and injecting the liquid crystal material into the cell, liquid crystal molecules at an interface between the liquid crystal material and the substrate ; the binding action between the substrate surface is reduced, a step of providing energy to allow free movement of liquid crystal molecules in the interface, liquid crystal molecules in the interface
Is almost macroscopically in the in-plane direction of the substrate.
Orienting the liquid crystal molecules so as to be distributed in a loose direction .

【0025】[0025]

【作用】マルチドメインが形成されるように膜を形成し
た基板間に液晶材料を注入し、液晶材料と基板との界面
における液晶分子と膜相互の結合作用を減少させ、液晶
分子の自由な運動を可能とする程度のエネルギを与える
と、界面上の液晶分子と界面との結合が解けてメモリ効
果がなくなる。それによりセルの流動パターンを消失さ
せる。
The liquid crystal material is injected between the substrates on which the films are formed so that the multi-domain is formed, and the coupling action between the liquid crystal molecules and the film at the interface between the liquid crystal material and the substrate is reduced, and the free movement of the liquid crystal molecules is achieved. When energy is applied to the extent that allows the liquid crystal molecules on the interface to be dissociated from the interface, the memory effect is lost. This causes the flow pattern of the cell to disappear.

【0026】[0026]

【実施例】本発明の実施例の製造方法の具体例を図1を
参照して以下に説明する。但し表示素子の駆動素子とし
て基板上に形成されるTFTやITO電極などは図示を
省略してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of a manufacturing method according to an embodiment of the present invention will be described below with reference to FIG. However, TFTs, ITO electrodes, and the like formed on the substrate as drive elements for the display elements are not shown.

【0027】まず、ガラス転移点が300℃程度の一般
的なアクティブマトリックス用ポリイミド材料を用い
て、ポリイミド膜を印刷により膜厚約600オングスト
ロームでITO電極等が形成されたガラス基板1の上に
形成し、配向膜2とする。
First, using a general polyimide material for an active matrix having a glass transition point of about 300 ° C., a polyimide film is formed on a glass substrate 1 on which an ITO electrode or the like is formed with a thickness of about 600 Å by printing. Thus, the alignment film 2 is formed.

【0028】なお、この基板の製造方法は先願の特願平
4−236652号に記載のプロセスがそのまま利用で
きる。すなわち、積極的配向処理、たとえばラビングは
行なわない。
As a method for manufacturing the substrate, the process described in Japanese Patent Application No. Hei 4-236652 can be used as it is. That is, active alignment processing, for example, rubbing is not performed.

【0029】この配向膜2を形成したガラス基板1を2
枚用意し、両者を対向配置して5μmのギャップ間隔に
なるように調整して張り合わせて空セル3を作成する
(図1(A))。
The glass substrate 1 on which the alignment film 2 is formed is
An empty cell 3 is prepared by arranging the two to face each other and adjusting them so as to have a gap of 5 μm and bonding them together (FIG. 1A).

【0030】この空セル3に真空注入法によりカイラル
ネマティック液晶材料4を室温(25℃)でネマティッ
ク相状態で注入する。たとえば、90°ツイストの配向
を得るために液晶材料4(フッソ混合系、N−I転移点
98℃)はセルのギャップをdとし、液晶のカイラルピ
ッチをpとした場合に、d/p=1/4となるようにカ
イラル剤を含ませて調整されている(図1(B))。
A chiral nematic liquid crystal material 4 is injected into the empty cell 3 at room temperature (25 ° C.) in a nematic phase by a vacuum injection method. For example, in order to obtain 90 ° twist alignment, the liquid crystal material 4 (fluorine mixed system, NI transition point 98 ° C.) has a cell gap d and a liquid crystal chiral pitch p: d / p = It is adjusted by including a chiral agent so that it becomes 1/4 (FIG. 1 (B)).

【0031】液晶材料4がセル3内に完全に充填された
後、セル3の液晶注入口(図示せず)を封止する。この
状態では注入時の流動配向による流動パターンが欠陥と
して目視で観測できる。
After the cell 3 is completely filled with the liquid crystal material 4, the liquid crystal injection port (not shown) of the cell 3 is sealed. In this state, a flow pattern due to the flow orientation at the time of injection can be visually observed as a defect.

【0032】次に、セル3をヒータのような加熱装置5
で界面における液晶分子も自由な運動が可能となる温度
まで加熱する。加熱は、例えば150℃で2時間行う。
加熱温度は、界面においても液晶分子の自由な運動を可
能とするため、液晶相−等方相間の相転移温度を越える
温度であるが、配向膜の化学的性質を変えず、液晶の熱
分解温度を越えない所定温度以下とする。すなわち、配
向膜の化学的性質を変えず、かつ液晶分子と配向膜22
との結合力を減少させ、液晶分子の自由な運動を可能と
する程度の熱エネルギを与えるような温度が選択され
る。
Next, the cell 3 is heated by a heating device 5 such as a heater.
The liquid crystal molecules at the interface are also heated to a temperature at which free movement is possible. The heating is performed, for example, at 150 ° C. for 2 hours.
The heating temperature exceeds the phase transition temperature between the liquid crystal phase and the isotropic phase to allow free movement of liquid crystal molecules even at the interface, but the thermal decomposition of the liquid crystal does not change the chemical properties of the alignment film. The temperature should be lower than the predetermined temperature that does not exceed the temperature. That is, the liquid crystal molecules and the alignment film 22 remain unchanged without changing the chemical properties of the alignment film.
The temperature is selected so as to reduce the bonding force with the liquid crystal and to provide heat energy to such an extent that the liquid crystal molecules can freely move.

【0033】配向膜の化学的性質を変化させて流動パタ
ーンを消滅させる場合と比較すると、制御が容易で安定
な結果を得易い特徴がある。この加熱で界面の液晶分子
は配向膜界面との物理的あるいは化学的結合から解かれ
メモリ効果によるポリイミド膜2上の流動パターンは消
失する。また、ここで加熱温度が液晶のN−I転移点以
上であるために、液晶材料4は等方性状態となる(図1
(C))。
Compared with the case where the flow pattern is extinguished by changing the chemical properties of the alignment film, there is a feature that the control is easy and a stable result is easily obtained. With this heating, the liquid crystal molecules at the interface are released from the physical or chemical bond with the alignment film interface, and the flow pattern on the polyimide film 2 due to the memory effect disappears. Since the heating temperature is equal to or higher than the NI transition point of the liquid crystal, the liquid crystal material 4 is in an isotropic state (FIG. 1).
(C)).

【0034】その後、セル3を徐々に冷却して液晶材料
4を等方性から液晶相に相転移させて配向しマルチドメ
インを形成する(図1(D))。以上説明した実施例の
方法により実際に液晶表示素子を製造した結果、流動性
パターンによる欠陥は目視できず、しかも顕微鏡下でみ
ると先願の発明のようなランダムな配向のマルチドメイ
ン構造が形成されていた。
Thereafter, the cell 3 is gradually cooled to cause the liquid crystal material 4 to undergo a phase transition from isotropic to a liquid crystal phase and to be oriented to form a multi-domain (FIG. 1 (D)). As a result of actually manufacturing the liquid crystal display element by the method of the above-described embodiment, defects due to the fluidity pattern were not visible, and when viewed under a microscope, a multi-domain structure having a random orientation like the invention of the prior application was formed. It had been.

【0035】また、電気光学特性的には先願の発明のも
のとほとんど同じであるが、再配向させているため、や
や極角方向のアンカリングエネルギが弱い傾向が見ら
れ、先願に比べ閾値Vthがわずかに低い、立ち下がり時
間(Td)がやや遅いという傾向が見られた。この傾向
は配向膜や加熱条件により異なる。
Although the electro-optical characteristics are almost the same as those of the invention of the prior application, anchoring energy in the polar angle direction tends to be slightly weaker due to reorientation. There was a tendency that the threshold value Vth was slightly low and the fall time (Td) was slightly late. This tendency differs depending on the orientation film and the heating conditions.

【0036】実際に、実施例による液晶表示装置と従来
例(特願平4−347701号)による液晶表示装置を
作成してその特性を測定した。結果を、図2と〔表1〕
に示す。
Actually, a liquid crystal display device according to the embodiment and a liquid crystal display device according to a conventional example (Japanese Patent Application No. 4-347701) were prepared and their characteristics were measured. The results are shown in FIG. 2 and [Table 1].
Shown in

【0037】[0037]

【表1】 [Table 1]

【0038】図2において、実施例では、Vthが0〜
0.2Vの低下を示し、〔表1〕のレスポンス特性は立
ち上がり時間Trが±2msでほぼ同じ立ち下がり時間
Tdが0〜0.7ms遅い結果であった。
In FIG. 2, in the embodiment, Vth is 0 to 0.
The response characteristics in Table 1 show that the rise time Tr is ± 2 ms and the fall time Td is almost the same 0 to 0.7 ms later.

【0039】上記の実施例においては、メモリ効果をな
くすためにセルを加熱して液晶分子に熱エネルギを与
え、界面との相互結合作用を減少させたが、この熱エネ
ルギを与える方法以外に、基板表面と液晶分子との結合
作用を減少させ、液晶分子の自由な運動を可能とするよ
うに作用する光を液晶材料に照射したり、このように作
用する超音波振動をセルに加えたりすることによって液
晶分子にエネルギを付与しても同じような効果が得られ
るであろう。
In the above embodiment, in order to eliminate the memory effect, the cell was heated to give heat energy to the liquid crystal molecules to reduce the mutual coupling with the interface. Bond between liquid crystal molecules and substrate surface
Reduces the action and allows free movement of the liquid crystal molecules.
Or irradiated with light acting urchin the liquid crystal material, thus created
A similar effect would be obtained by applying energy to the liquid crystal molecules by applying ultrasonic vibrations to the cells.

【0040】また、90°ツイストネマティック液晶の
配向膜としてポリイミド膜を用いた場合だけでなく、そ
れ以外の条件においても本発明は有効である。さらに、
実施例では一対の基板の両方に配向膜を形成したが、一
方の基板のみに配向膜を形成した場合でも同様な効果が
得られる。
The present invention is effective not only when a polyimide film is used as an alignment film of a 90 ° twisted nematic liquid crystal but also under other conditions. further,
In the embodiment, the alignment film is formed on both of the pair of substrates. However, the same effect can be obtained when the alignment film is formed on only one of the substrates.

【0041】以上、先願の特願平4−236652号に
記載の技術に関連して説明したが、本発明は積極的配向
処理を行わない液晶セル作製の全ての方法に対して有効
である。
As described above, the present invention has been described in relation to the technique described in Japanese Patent Application No. 4-236652, but the present invention is effective for all methods of manufacturing a liquid crystal cell without performing an active alignment treatment. .

【0042】以上の説明における材料や数値はあくまで
も例示であって、本発明は説明した実施例のものに限る
ものではなく、以上の開示に基づいて当業者であれば様
々な改良や変更が可能であることは言うまでもない。
The materials and numerical values in the above description are merely examples, and the present invention is not limited to the embodiments described above. Various modifications and changes can be made by those skilled in the art based on the above disclosure. Needless to say,

【0043】[0043]

【発明の効果】本発明によれば、等方相で液晶材料を注
入する必要はなく、低温度の液晶相で液晶を注入できる
ので高温にまつわる問題がなくなるのはもちろんのこ
と、セルを加熱して流動パターンを消失させることがで
きるので表示欠陥のない高品質な表示素子が得られる。
According to the present invention, it is not necessary to inject the liquid crystal material in the isotropic phase, and the liquid crystal can be injected in the low temperature liquid crystal phase. As a result, a high-quality display element free from display defects can be obtained.

【0044】高温真空注入や毛細管現象を利用した液晶
注入法を用いる必要がないので、一般的な真空注入法で
注入できるため、通常用いられている装置での製作が可
能である。
Since there is no need to use a high-temperature vacuum injection or a liquid crystal injection method utilizing a capillary phenomenon, the liquid crystal can be injected by a general vacuum injection method, and therefore, it can be manufactured by a commonly used apparatus.

【0045】本発明の効果は、特に基板表面に凹凸があ
るものや、大画面ディスプレイを作製する場合に有効で
ある。さらに、先願の特願平4−236652号に記載
の発明と同様に、ラビングが不要であることにより、以
下のような効果が得られる。
The effect of the present invention is particularly effective when the substrate surface has irregularities or when a large-screen display is manufactured. Further, similar to the invention described in Japanese Patent Application No. Hei 4-236652, the following effects can be obtained by eliminating the need for rubbing.

【0046】静電気による素子や配線の破壊が起きず、
ゴミの発生や付着による表示不良を低減することができ
る。さらに、ラビング処理あるいは積極的配向処理の工
程が不要で、製造コストの低減が可能となる。
The element and wiring are not destroyed by static electricity.
Display defects due to generation and adhesion of dust can be reduced. Further, a rubbing process or an active alignment process is not required, and the manufacturing cost can be reduced.

【0047】さらに、視角特性が全方位にわたってほぼ
均一であり観測者の特定の位置によってコントラストが
低下するといった不便が減少する。
In addition, the viewing angle characteristics are substantially uniform in all directions, and the inconvenience that the contrast is reduced depending on the specific position of the observer is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による液晶表示セルの製造工程
を説明する図である。
FIG. 1 is a diagram illustrating a manufacturing process of a liquid crystal display cell according to an embodiment of the present invention.

【図2】本発明の実施例による液晶表示セルの特性を従
来技術と比較して示すグラフである。
FIG. 2 is a graph showing characteristics of a liquid crystal display cell according to an embodiment of the present invention, as compared with a conventional art.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ポリイミド膜 3 液晶セル 4 液晶材料 5 加熱装置 Reference Signs List 1 glass substrate 2 polyimide film 3 liquid crystal cell 4 liquid crystal material 5 heating device

フロントページの続き (56)参考文献 特開 平6−194655(JP,A) 特開 平4−119327(JP,A) 欧州特許出願公開589264(EP,A)Continuation of the front page (56) References JP-A-6-194655 (JP, A) JP-A-4-119327 (JP, A) European Patent Application Publication 589264 (EP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 積極的配向処理をしない表面を有する
対の基板を、該表面同士が対向するように所定間隔で対
向配置してセルを形成する工程と、 前記セルの前記基板間に液晶材料を注入する工程と、 前記液晶材料が注入された前記セルに、前記液晶材料と
前記基板との界面における液晶分子と前記基板表面との
結合作用を減少させ、前記界面における液晶分子の自由
な運動を可能とするエネルギを与える工程と、前記界面における液晶分子の配列方向が基板面内方向に
関して巨視的にはほぼあらゆる方向に分布するように、
前記液晶分子を配向させる工程とを有する液晶表示素子
の製造方法。
A step of forming a cell by arranging a pair of substrates having a surface that is not subjected to an active alignment treatment at a predetermined interval so that the surfaces face each other ; A step of injecting a liquid crystal material between the substrates; and
Reduce the binding effect of the liquid crystal molecules and the substrate surface at the interface between the substrate, a step of providing energy to allow free movement of liquid crystal molecules in the interface arrangement direction the substrate surface of the liquid crystal molecules in the interface Inward
Macroscopically, it is distributed in almost every direction,
And a step of aligning the liquid crystal molecules.
【請求項2】 前記液晶材料を注入する工程において、
前記液晶材料は液晶相の状態で注入される請求項1記載
の液晶表示素子の製造方法。
2. In the step of injecting the liquid crystal material,
2. The method according to claim 1, wherein the liquid crystal material is injected in a liquid crystal phase.
【請求項3】 前記液晶材料を加熱することにより前記
エネルギを与え、前記加熱温度は前記液晶分子の熱分解
温度以下の温度であることを特徴とする請求項2記載の
液晶表示素子の製造方法。
3. The method according to claim 2, wherein the energy is given by heating the liquid crystal material, and the heating temperature is lower than a thermal decomposition temperature of the liquid crystal molecules. .
【請求項4】 前記液晶材料の加熱により前記液晶材料
を基板との界面においても等方性にし、前記加熱の後、
前記セルを徐冷して前記液晶分子を配向させることを特
徴とする請求項3記載の液晶表示素子の製造方法。
4. The heating of the liquid crystal material makes the liquid crystal material isotropic also at the interface with the substrate, and after the heating,
4. The method according to claim 3, wherein the cell is gradually cooled to align the liquid crystal molecules.
【請求項5】 前記液晶材料がカイラルネマティック液
晶を含み、前記加熱温度が前記カイラルネマティック液
晶の液晶相−等方相間の相転移温度以上である請求項4
記載の液晶表示素子の製造方法。
5. The liquid crystal material includes a chiral nematic liquid crystal, and the heating temperature is equal to or higher than a phase transition temperature between a liquid crystal phase and an isotropic phase of the chiral nematic liquid crystal.
The manufacturing method of the liquid crystal display element described in.
【請求項6】 前記液晶材料に光を照射して前記エネル
ギを与えることを特徴とする請求項2記載の液晶表示素
子の製造方法。
6. The method according to claim 2, wherein the energy is given by irradiating the liquid crystal material with light.
【請求項7】 前記液晶材料に超音波振動を加えて前記
エネルギを与えることを特徴とする請求項2記載の液晶
表示素子の製造方法。
7. The method according to claim 2, wherein the energy is given by applying ultrasonic vibration to the liquid crystal material.
【請求項8】 前記基板の少なくとも一方が表面にポリ
イミド膜を有する請求項1〜7のいずれかに記載の液晶
表示素子の製造方法。
8. The method according to claim 1, wherein at least one of the substrates has a polyimide film on a surface.
【請求項9】 前記ポリイミド膜は前記エネルギを与え
る工程と前記注入工程とで化学的性質を変化させない請
求項8記載の液晶表示素子の製造方法。
9. The method according to claim 8, wherein a chemical property of the polyimide film is not changed between the step of applying energy and the step of injecting.
JP6053639A 1994-03-24 1994-03-24 Manufacturing method of liquid crystal display element Expired - Lifetime JP2641389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6053639A JP2641389B2 (en) 1994-03-24 1994-03-24 Manufacturing method of liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6053639A JP2641389B2 (en) 1994-03-24 1994-03-24 Manufacturing method of liquid crystal display element

Publications (2)

Publication Number Publication Date
JPH07261185A JPH07261185A (en) 1995-10-13
JP2641389B2 true JP2641389B2 (en) 1997-08-13

Family

ID=12948483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6053639A Expired - Lifetime JP2641389B2 (en) 1994-03-24 1994-03-24 Manufacturing method of liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2641389B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0182876B1 (en) 1996-01-09 1999-05-01 구자홍 Method for controlling pretilt direction for lcd cell
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
KR100259258B1 (en) 1997-11-21 2000-06-15 구본준 Liquid crystal display device
KR100301853B1 (en) 1999-03-25 2001-09-26 구본준, 론 위라하디락사 Alignment layer for liquid crystal display device
KR100357214B1 (en) 1999-04-21 2002-10-18 엘지.필립스 엘시디 주식회사 Liquid crystal display device
KR100475107B1 (en) 1999-10-14 2005-03-09 엘지.필립스 엘시디 주식회사 A method of manufacturing a multi-domain liquid crystal display device
KR100565739B1 (en) 2000-10-28 2006-03-29 엘지.필립스 엘시디 주식회사 Photo-alignment Characteristic Material and Liquid Crystal Display Device fabricated with it
KR100595300B1 (en) 2000-10-28 2006-07-03 엘지.필립스 엘시디 주식회사 Photo-alignment Material and Liquid Crystal Display Device fabricated with it
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119327A (en) * 1990-09-10 1992-04-20 Fuji Photo Film Co Ltd Production of liquid crystal display element
US5453862A (en) * 1992-09-04 1995-09-26 Stanley Electric Co., Ltd. Rubbing-free (chiral) nematic liquid crystal display

Also Published As

Publication number Publication date
JPH07261185A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JP4614200B2 (en) Normally black vertical alignment type liquid crystal display device and manufacturing method thereof
JP2982330B2 (en) Liquid crystal display device
JP2641389B2 (en) Manufacturing method of liquid crystal display element
KR100751188B1 (en) Method of Fabricating Ferroelectric Liquid Crystal Display
US7362392B2 (en) Fabricating method for a ferroelectric liquid crystal panel
JPH0862609A (en) Production of liquid crystal display element and liquid crystal display element
JP4383006B2 (en) Manufacturing method of liquid crystal display element
JPH08152636A (en) Production of liquid crystal display element
KR0183205B1 (en) Fabrication method for liquid crystal cell
JP2753206B2 (en) Guest-host type liquid crystal display
JPS6330828A (en) Manufacture of liquid crystal display device
JPH06294961A (en) Liquid crystal display element and its production
JP3063553B2 (en) Liquid crystal panel manufacturing method
JP2945273B2 (en) Liquid crystal display panel and method of manufacturing the same
JPH0736042A (en) Liquid crystal display element and its production
US5844653A (en) Liquid crystal mixture
JP2001316667A (en) Liquid crystal display element
JP2880807B2 (en) Liquid crystal display
JP2918343B2 (en) Ferroelectric liquid crystal display
JPH10170920A (en) Liquid crystal display element and its production
JPH0836186A (en) Production of liquid crystal device
JPH09218411A (en) Liquid crystal display element
JP3239310B2 (en) Ferroelectric liquid crystal display device
JPH08286190A (en) Production of ferroelectric liquid crystal element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970325

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 17

EXPY Cancellation because of completion of term