JP2639691B2 - Active suspension control device - Google Patents

Active suspension control device

Info

Publication number
JP2639691B2
JP2639691B2 JP12267288A JP12267288A JP2639691B2 JP 2639691 B2 JP2639691 B2 JP 2639691B2 JP 12267288 A JP12267288 A JP 12267288A JP 12267288 A JP12267288 A JP 12267288A JP 2639691 B2 JP2639691 B2 JP 2639691B2
Authority
JP
Japan
Prior art keywords
air
pressure
suspension
pressure accumulator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12267288A
Other languages
Japanese (ja)
Other versions
JPH01293211A (en
Inventor
穣 樋渡
勝美 上村
篤 美禰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP12267288A priority Critical patent/JP2639691B2/en
Publication of JPH01293211A publication Critical patent/JPH01293211A/en
Application granted granted Critical
Publication of JP2639691B2 publication Critical patent/JP2639691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/512Pressure in suspension unit in spring
    • B60G2400/5122Fluid spring
    • B60G2400/51222Pneumatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/201Air spring system type
    • B60G2500/2014Closed systems

Description

【発明の詳細な説明】 産業上の利用分野 本発明は車両用アクティブサスペンションの制御装置
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a control device for an active suspension for a vehicle.

従来の技術 エアサスペンションのばね上とばね下の相対変位量を
検出する車高センサの信号によって、エアをサスペンシ
ョン内に注入したり又はサスペンション内のエアを排出
したりして、上記相対変位量をゼロにするよう制御し、
車体姿勢を正常に保つようにするものは従来より公知
(例えば実開昭58−167208号公報参照)であり、又上記
のような車高調整機能に加え、上記相対変位の速度,ば
ね上の上下加速度等に応じてサスペンションのエアの出
し入れ制御を行い、車体の制振等をはかるようにしたア
クティブサスペンションも従来より公知(例えば特開昭
62−139709号公報参照)である。
2. Description of the Related Art According to a signal from a vehicle height sensor that detects a relative displacement between a sprung portion and a unsprung portion of an air suspension, air is injected into the suspension or air is discharged from the suspension, and the relative displacement amount is determined. Control to zero,
A device for maintaining the vehicle body posture normally has been known (for example, see Japanese Utility Model Application Laid-Open No. 58-167208). In addition to the above-described vehicle height adjusting function, the speed of relative displacement and the speed of spring Active suspensions are also known in the prior art that control the air in and out of the suspension according to the vertical acceleration and the like to control the vibration of the vehicle body (for example,
62-139709).

発明が解決しようとする課題 上記のようなアクティブサスペンションにおいては、
エアサスペンション内にエアを供給する高圧アキュムレ
ータとエアサスペンションから排出されたエアを回収す
る低圧アキュムレータと該低圧アキュムレータから高圧
アキュムレータにエアを圧縮供給するエアコンプレッサ
とエアサスペンションのエアの注排を制御する制御弁
(注入弁と排出弁との組合せにより構成される)とから
なるエアの閉回路を構成し、ばね上とばね下の相対変位
量,相対変位速度,ばね上の上下加速度等の各信号の入
力に応じてコントローラが注入域は排出されるべきエア
の指示流量を演算にて決定し、上記制御弁を開閉させる
べき信号を発し、サスペンションへのエアの注排制御を
行うと共に、高圧アキュムレータおよび低圧アキュムレ
ータの内圧を検出する信号に基づきエアコンプレッサの
作動を制御する信号を発して高圧および低圧の各アキュ
ムレータ内圧をそれぞれ設定圧力範囲に保持するように
なっている。
Problems to be Solved by the Invention In the active suspension as described above,
A high-pressure accumulator for supplying air into the air suspension, a low-pressure accumulator for collecting air discharged from the air suspension, an air compressor for supplying air from the low-pressure accumulator to the high-pressure accumulator, and control for controlling air injection and discharge of the air suspension. A closed circuit of air consisting of a valve (composed of a combination of an injection valve and a discharge valve) is constructed, and signals of relative displacement between sprung and unsprung, relative displacement speed, vertical acceleration on the sprung, etc. In response to the input, the controller determines the flow rate of the air to be discharged from the injection area by calculation, issues a signal to open and close the control valve, controls the injection and discharge of air to the suspension, and controls the high-pressure accumulator and A signal that controls the operation of the air compressor based on a signal that detects the internal pressure of the low-pressure accumulator It emitting adapted to hold the respective set pressure range high and low pressure of the accumulator internal pressure.

上記の制御において、コントローラからの指示流量と
それに基づく制御弁の開閉制御により実際に注排される
エアの実流量との間には、相対圧力差の変化によりどう
しても誤差が生じ、なかなか正確な流量制御を行い難い
と言う課題を有している。
In the above control, an error is inevitably generated between the flow rate indicated by the controller and the actual flow rate of the air actually discharged by opening / closing control of the control valve based on the flow rate. There is a problem that control is difficult.

本発明はこのような課題に対処することを主目的とす
るものである。
An object of the present invention is to address such a problem.

課題を解決するための手段 本発明は、上記のように高圧アキュムレータ,低圧ア
キュムレータ,制御弁,エアコンプレッサ等よりなるエ
アの閉回路でエアサスペンションへのエアの注排制御を
行うアクティブサスペンションにおいて、エアサスペン
ションのサス内圧を検出するサス内圧センサの信号より
車両の積載条件の変化を判断し高圧アキュムレータと低
圧アキュムレータの各設定圧力を、上記サス内圧の変化
に対し制御弁を流れるエアの単位時間当りの流量が常に
ほぼ一定値となるべき圧力関係となるよう、可変的に制
御する圧力環境制御用コントローラを設けたことを特徴
とするものである。
Means for Solving the Problems The present invention relates to an active suspension for controlling the injection and discharge of air to and from an air suspension by an air closed circuit including a high-pressure accumulator, a low-pressure accumulator, a control valve, an air compressor, and the like as described above. The change of the loading condition of the vehicle is judged from the signal of the suspension internal pressure sensor that detects the suspension internal pressure of the suspension, and the set pressures of the high-pressure accumulator and the low-pressure accumulator are changed per unit time of the air flowing through the control valve with respect to the change of the suspension internal pressure. A pressure environment control controller that variably controls the flow rate so that the flow rate always has a pressure that should be substantially constant is provided.

作用 上記により、車両の積載条件が変化しサス内圧が変化
しても制御弁の上流側と下流側との圧力関係は常にほぼ
一定に保たれ、エアサスペンションへのエアの注,排制
御は正確に行われ、アクティブサスペンション性能の向
上をはかり得る。
Function As described above, even if the load condition of the vehicle changes and the internal pressure of the suspension changes, the pressure relationship between the upstream side and the downstream side of the control valve is always kept almost constant, and the injection and discharge control of air to the air suspension is accurately controlled. And the active suspension performance can be improved.

実施例 以下本発明の実施例を附図を参照して説明する。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

図において、1はエアサスペンション、2は高圧アキ
ュムレータ、3は低圧アキュムレータ、4は流量制御弁
であり、該流量制御弁4は注入弁41と排出弁42との組合
せよりなり、注入弁41が開となる高圧アキュムレータ2
からエアサスペンション1内にエアが注入され、排出弁
42が開となるとエアサスペンション1内のエアが低圧ア
キュムレータ3内に流出するようになっている。
In the figure, 1 is an air suspension, 2 is a high-pressure accumulator, 3 is a low-pressure accumulator, 4 is a flow control valve, and the flow control valve 4 is composed of a combination of an injection valve 41 and a discharge valve 42, and the injection valve 41 is opened. High pressure accumulator 2
Air is injected into the air suspension 1 from the
When the valve 42 is opened, the air in the air suspension 1 flows out into the low-pressure accumulator 3.

5はエアコンプレッサであり、通常は低圧アキュムレ
ータ3内のエアを吸入圧縮して高圧アキュムレータ2に
供給することにより高圧アキュムレータ2の内圧をエア
サスペンション1のサス内圧より充分に高い設定圧力範
囲に保つと共に低圧アキュムレータ3の内圧をエアサス
ペンション1のサス内圧より充分に低い設定圧力範囲に
保つようになっている。
Reference numeral 5 denotes an air compressor, which normally sucks and compresses air in the low-pressure accumulator 3 and supplies it to the high-pressure accumulator 2, thereby keeping the internal pressure of the high-pressure accumulator 2 in a set pressure range sufficiently higher than the suspension internal pressure of the air suspension 1. The internal pressure of the low-pressure accumulator 3 is maintained in a set pressure range sufficiently lower than the internal pressure of the suspension of the air suspension 1.

6はエアサスペンションのエアの出し入れを制御する
コントローラAであり、該コントローラA6はエアサスペ
ンション1のばね上とばね下の上下方向変位を検出する
サス相対変位センサ7,ばね上の上下加速度を検出する上
下加速度センサ8,その他車両の走行時,停止時の諸挙動
を検出する種々のセンサ類の各検出信号に基づきエアサ
スペンション1への注入又は排出すべきエアの指示流量
を演算にて求め、注入弁41又は排出弁42を作動させるべ
き制御弁開閉指令信号を発し上記演算にて求めた指示流
量通りにエアの注入又は排出を行うものである。
Reference numeral 6 denotes a controller A for controlling the inflow and outflow of air from the air suspension. The controller A6 detects a suspension relative displacement sensor 7 for detecting the vertical displacement of the air suspension 1 above and below the spring, and detects the vertical acceleration on the spring. Based on the detection signals of the vertical acceleration sensor 8 and other various sensors for detecting various behaviors of the vehicle when it is running and when it is stopped, an instruction flow rate of air to be injected or discharged into the air suspension 1 is obtained by calculation. A control valve opening / closing command signal for operating the valve 41 or the discharge valve 42 is issued, and air is injected or discharged according to the indicated flow rate obtained by the above calculation.

上記において、上記流量制御弁4は注入弁41,排出弁4
2共に電磁弁により構成され、それぞれ開状態において
上流側の圧力(一次圧力)P1と下流側の圧力(二次圧
力)P2との圧力差によってエアが流れるものであり、そ
の単位時間当りの流量Q/secは次の式で表される。
In the above, the flow control valve 4 is composed of an injection valve 41 and a discharge valve 4.
Is composed of 2 both solenoid valves, which flows air by a pressure difference between the pressure (secondary pressure) P 2 on the upstream side of the pressure (primary pressure) P 1 and the downstream side in the respective open state, per unit time Is expressed by the following equation.

但し P1:一次側圧力(Kgf/cm2G) P2:二次側圧力(Kgf/cm2G) A:有効断面積(mm2) t:温度(℃) (上式においてP1,P2はそれぞれゲージ圧であるからそ
れに標準大気圧1.033を加算することによりそれぞれの
絶対圧とすることができる) 仮に流量制御弁4の注入弁41の有効断面積Aを10mm2
とし排出弁42の有効断面積Aを20mm2とし、t=20℃で
あるとし、上記(1),(2)式を図で示すと第2図
(イ)および(ロ)のようになる。
However, P 1 : Primary pressure (Kgf / cm 2 G) P 2 : Secondary pressure (Kgf / cm 2 G) A: Effective area (mm 2 ) t: Temperature (° C) (P 1 , Since P 2 is a gauge pressure, the absolute pressure can be obtained by adding the standard atmospheric pressure 1.033 to the gauge pressure.) If the effective sectional area A of the injection valve 41 of the flow control valve 4 is 10 mm 2
Assume that the effective sectional area A of the discharge valve 42 is 20 mm 2, and that t = 20 ° C., and the above equations (1) and (2) are shown in FIGS. 2 (a) and 2 (b). .

尚第2図(イ),(ロ)において、注入流量Q1および
排出流量Q2は、毎分当りのノーマルリッター(流れるエ
アの体積を標準状態即ち20℃,1気圧,相対湿度65%の状
態に換算したもの)N/分で表している。
Note FIG. 2 (b), in (b), the injection flow rate Q 1 and discharge flow rate Q 2 are normal liters per minute (standard state i.e. 20 ° C. The volume of air flowing, 1 atm, relative humidity 65% It is expressed in N / min.

上記のような流量特性をもつ流量制御弁4にてエアサ
スペンション1へのエアの出し入れを行うアクティブサ
スペンションにおいては、車両の積載条件(即ち搭乗人
員や荷物の有無等)が変化しエアサスペンション1のサ
ス内圧が変化する等、1次圧力P1と2次圧力P2との圧力
関係が変化すると単位時間当りの流量が変化し、コント
ローラAが演算にて求めた指示流量とそれに基づき注入
又は排出されるエアの実流量との間の誤差が大きくな
り、アクティブサスペンション性能が低下してしまうと
言う問題を有している。
In the case of an active suspension in which air flows into and out of the air suspension 1 by the flow control valve 4 having the above-described flow characteristics, the loading conditions of the vehicle (that is, the number of passengers, the presence or absence of luggage, etc.) change, and the air suspension 1 suspension pressure changes etc., the primary pressure P 1 and the flow rate per the pressure relationships change unit time and the secondary pressure P 2 is changed, the indicated flow rate and injection or discharge based thereon the controller a is found in the arithmetic There is a problem that the error between the actual flow rate of the air and the active suspension performance is reduced.

そこで本発明では、高圧アキュムレータ2,低圧アキュ
ムレータ3の各内圧をそれぞれ検出する圧力センサ9,10
に加えエアサスペンション1の内圧を検出するサス内圧
センサ11を設けると共にエアコンプレッサ5の吸入通路
および吐出通路にそれぞれ切換弁12および13を設け、更
に上記圧力センサ9,10およびサス内圧センサ11の各圧力
信号から第3図に示すような制御ロジックによって切換
弁12,13およびエアコンプレッサ5の制御信号を発し高
圧および低圧の両アキュムレータ2,3の設定圧力をエア
サスペンション1の内圧変化に応じて変更制御する圧力
環境制御用のコントローラB14を設け、該コントローラB
14による制御にてサス内圧が変化しても注入弁41および
排出弁42の単位時間当りの流量Qが常にほぼ一定となる
よう構成したものである。
Therefore, in the present invention, the pressure sensors 9 and 10 for detecting the internal pressures of the high-pressure accumulator 2 and the low-pressure accumulator 3, respectively.
In addition to the above, a suspension internal pressure sensor 11 for detecting the internal pressure of the air suspension 1 is provided, and switching valves 12 and 13 are provided in the suction passage and the discharge passage of the air compressor 5, respectively. Control signals for the switching valves 12 and 13 and the air compressor 5 are generated from the pressure signal by control logic as shown in FIG. 3, and the set pressures of the high-pressure and low-pressure accumulators 2 and 3 are changed according to the change in the internal pressure of the air suspension 1. A controller B14 for controlling pressure environment is provided.
The flow rate Q per unit time of the injection valve 41 and the discharge valve 42 is always substantially constant even if the internal pressure of the suspension is changed by the control by the control unit 14.

即ち、車両の標準積載状態(所謂定積状態)でサス内
圧が例えば4Kgf/cm2Gであり、高圧アキュムレータ2内
の設定圧力が6Kgf/cm2Gであったとすると、注入弁41を
開としたときの注入流量Q1は第2図(イ)のa点にて示
されるように680N/分である。
That is, when the suspension internal pressure is, for example, 4 kgf / cm 2 G and the set pressure in the high-pressure accumulator 2 is 6 kgf / cm 2 G in the standard loading state of the vehicle (so-called constant load state), the injection valve 41 is opened. the infusion rate to Q 1 when a 680N / min as indicated by point a in FIG. 2 (b).

こヽで例えば乗車人員が増え所謂過積状態となりサス
内圧が5Kgf/cm2Gとなったとき高圧アキュムレータ2内
の圧力が前記定積状態と同じ6Kgf/cm2Gであったとする
と、注入時の流量Q1は第2図(イ)のa′点のように約
500N/分となり、又定積状態より例えば乗車人員が減
って軽積状態となりサス内圧が3Kgf/cm2Gになったりす
ると注入流量Q1は第2図(イ)のa″点のように約750N
/分となり、コントローラA6の制御弁開閉指令信号が
定積状態を標準として発せられるよう設定されている
と、実際に注入されるエアの実流量は、過積状態では指
示流量より少くなり、軽積状態では指示流量より多く注
入しすぎになってしまう。
Here, for example, if the number of passengers increases and a so-called overload condition occurs and the internal pressure of the suspension becomes 5 kgf / cm 2 G, and the pressure in the high-pressure accumulator 2 is 6 kgf / cm 2 G, which is the same as that in the constant volume condition, injection is performed. about the flow rate Q 1 as a 'point of FIG. 2 (b)
When the number of occupants is reduced to 500 N / min and the number of passengers is reduced, for example, and the inner pressure of the suspension becomes 3 kgf / cm 2 G, the injection flow rate Q 1 becomes as indicated by the point a ″ in FIG. About 750N
/ Min, and if the control valve opening / closing command signal of the controller A6 is set so that the constant volume state is issued as a standard, the actual flow rate of the actually injected air is smaller than the indicated flow rate in the overload state, In the stacking state, the injection is more than the indicated flow rate.

本発明では第3図に示すようにコントローラB14がサ
ス内圧センサ11の信号から先ず車両積載条件を例えば標
準か過積載か軽積載か判断し、注入時であれば第2図
(イ),排出時であれば第2図(ロ)に示すような特性
マップに基づき標準積載時の流量680N/分と同じ流量
Q1およびQ2を得るべき高圧アキュムレータ2および低圧
アキュムレータ3の内圧を決定しこれをその状態での高
圧アキュムレータ2および低圧アキュムレータ3の設定
圧力とし、該新たに決定した両設定圧力と圧力センサ9
および10の信号から得た高圧および低圧のアキュムレー
タ2,3内圧力とをそれぞれ比較し、過積載状態であれば
切換弁12をオンとしエアコンプレッサ5とし、フィルタ
15を介して外気を吸入しこれを圧縮して高圧アキュムレ
ータ2内に供給し高圧アキュムレータ2内圧力を上記新
たに決定した設定圧力例えば6.7Kgf/cm2Gまで上昇させ
ることにより、第2図(イ)のbに示すように標準積載
時と同じ注入流量680N/分となる。一方低圧アキュム
レータ3内には特に強制的なエア供給は行われないの
で、新たな設定圧力(例えば、第2図(ロ)では4.5Kgf
/cm2G)より低い標準積載状態のときのまま(例えば3.4
Kgf/cm2G)であるが、車両が動き出せばサス相対変移セ
ンサ7,上下加速度センサ8等のセンサ類の信号に基づく
コントローラA6の弁開閉指令信号により流量制御弁4が
開閉を繰り返してエアの出し入れ制御が行われると共に
切換弁12はオン状態で低圧アキュムレータ3のエア出口
は閉塞されたままとなっているので、上記エアサスペン
ション1から排出されたエアが低圧アキュムレータ3内
に流入して内圧を上昇させ、これにより比較的短時間内
に低圧アキュムレータ3内圧力は新たに決定された設定
圧力(例えば4.5Kgf/cm2G)に達し、切換弁12はオフと
なって第1図示の状態に戻り、以後は新たに決定された
設定圧力にて通常の圧力制御が行われる。
In the present invention, as shown in FIG. 3, the controller B14 first determines the vehicle loading conditions, for example, standard, overloaded or lightly loaded, based on the signal of the suspension internal pressure sensor 11, and if it is during injection, FIG. If it is time, the flow rate is the same as the flow rate of 680 N / min at the time of standard loading based on the characteristic map as shown in Fig. 2 (b).
Q 1 and Q 2 to determine the internal pressure of the high-pressure accumulator 2 and a low-pressure accumulator 3 to be obtained which was a set pressure of the high-pressure accumulator 2 and a low-pressure accumulator 3 in that state, the newly determined both set pressure and the pressure sensor 9
And the high pressure and low pressure accumulators 2 and 3 obtained from the signals of 10 and 10 are compared, and if overloaded, the switching valve 12 is turned on and the air compressor 5 is turned on.
2 is drawn by sucking the outside air through the compressor 15 and compressing the compressed air to supply the compressed air into the high-pressure accumulator 2 to increase the pressure in the high-pressure accumulator 2 to the newly determined set pressure, for example, 6.7 kgf / cm 2 G. As shown in b) of b), the injection flow rate is 680 N / min which is the same as in the standard loading. On the other hand, since no forced air supply is performed in the low-pressure accumulator 3, a new set pressure (for example, 4.5 kgf in FIG.
/ cm 2 G) lower than the standard loading condition (for example, 3.4
Kgf / cm 2 G), but when the vehicle starts to move, the flow control valve 4 repeats opening and closing by the valve opening / closing command signal of the controller A6 based on the signals of the sensors such as the suspension relative displacement sensor 7, the vertical acceleration sensor 8, and the air. As the switching valve 12 is turned on and the air outlet of the low-pressure accumulator 3 remains closed, the air discharged from the air suspension 1 flows into the low-pressure accumulator 3 and the internal pressure is controlled. The pressure in the low-pressure accumulator 3 reaches a newly determined set pressure (for example, 4.5 kgf / cm 2 G) within a relatively short time, the switching valve 12 is turned off, and the state shown in FIG. Then, normal pressure control is performed at the newly determined set pressure.

標準積載状態から軽積載状態に変った場合は切換弁13
をオンとすると共にエアコンプレッサ5をオンとするこ
とにより、低圧アキュムレータ3内のエアはエアコンプ
レッサ5にて吸い出され切換弁13よりマフラー16を介し
て大気中に放出されて該低圧アキュムレータ3内圧力を
標準積載状態3.4Kgf/cm2Gより軽積載状態の設定圧力2.2
Kgf/cm2Gまで低下させ、又高圧アキュムレータ2内エア
は前記と同様車両が動き出してからのコントローラA6に
よるエアサスペンション1へのエア注入排出制御によ
り、斬時エアサスペンション1へ注入されて圧力を下げ
新たな設定圧力(5.5Kgf/cm2G)まで下ったところで切
換弁13はオフとなる。
Switching valve 13 when changing from standard loading state to light loading state
Is turned on and the air compressor 5 is turned on, so that the air in the low-pressure accumulator 3 is sucked out by the air compressor 5 and is discharged from the switching valve 13 to the atmosphere via the muffler 16 to be released into the atmosphere. Set pressure at standard loading condition 3.4Kgf / cm 2 G lighter loading condition 2.2
Kgf / cm 2 G, and the air in the high-pressure accumulator 2 is injected into the air suspension 1 at the time of injection by the controller A6 to control the injection and discharge of air into the air suspension 1 after the vehicle starts moving as described above. When the pressure drops to a new set pressure (5.5 kgf / cm 2 G), the switching valve 13 is turned off.

上記において、高圧および低圧のアキュムレータ2,3
の各設定圧力にはエアコンプレッサ5および切換弁12,1
3のオン,オフ頻度を考慮してある程度の許容幅(例え
ば0.1Kgf/cm2G程度)がもたせてあることは言うまでも
なく、又上記では積載条件を標準積載,過積載,軽積載
の3段階に分けて圧力制御を行う場合について説明した
が、実際には積載条件をもっと細かく分けて圧力制御を
行うものである。
In the above, the high and low pressure accumulators 2,3
Air compressor 5 and switching valves 12, 1
Needless to say, a certain tolerance (for example, about 0.1 kgf / cm 2 G) is given in consideration of the on / off frequency of 3, and in the above, the loading conditions are three stages: standard loading, overloading, and light loading. Although the case where the pressure control is performed separately has been described, the pressure control is actually performed by dividing the loading conditions into more detailed ones.

上記のようにしてサス内圧がどのように変化しても流
量制御弁4の単位時間当りの流量をほぼ一定(例えば68
0N/分)とし、どのような積載条件でも指示流量に対
し誤差の極めて少ない実流量を得ることができ、アクテ
ィブサスペンション性能の向上をはかり得るものであ
る。
As described above, the flow rate of the flow control valve 4 per unit time is substantially constant (for example, 68
0N / min), an actual flow rate with an extremely small error with respect to the indicated flow rate can be obtained under any loading conditions, and the active suspension performance can be improved.

尚本発明においては、高圧および低圧のアキュムレー
タ2,3の各設定圧力制御の為の具体的構造は第1図の実
施例に限定されることはなく、例えば第1図のものに更
に低圧アキュムレータ3に強制的にエアを供給するエア
供給路の切換弁を附加すると共に高圧アキュムレータ2
内のエアを強制的に排出するエア排出路と切換弁を附加
し、サス内圧の変化に応じてこれらの切換弁をもコント
ローラB14にて制御して高圧および低圧のアキュムレー
タ2,3の内圧を新たに決定した設定圧力に強制的に変更
制御するようにしても良い。
In the present invention, the specific structure for controlling the set pressures of the high-pressure and low-pressure accumulators 2 and 3 is not limited to the embodiment shown in FIG. 3 is provided with a switching valve of an air supply path for forcibly supplying air, and a high-pressure accumulator 2 is provided.
An air discharge path and a switching valve for forcibly discharging the air inside are added, and these switching valves are also controlled by the controller B14 in response to changes in the suspension internal pressure, and the internal pressures of the high-pressure and low-pressure accumulators 2 and 3 are adjusted. The change control may be forcibly performed to the newly determined set pressure.

発明の効果 以上のように本発明によれば、車両の積載条件が変化
しサス内圧が変化しても圧力環境をほぼ一定に保ち、い
つも流量制御弁の単位時間当りの流量が変化しないよう
にしたことにより、演算にて求めた指示流量と実際に流
量制御弁部を流れる実流量との誤差を極めて小とするこ
とができ、アクティブサスペンション性能を積載条件の
変化にかかわらず常に充分発揮させることができるもの
で、実用上多大の効果をもたらし得るものである。
Effects of the Invention As described above, according to the present invention, the pressure environment is maintained substantially constant even when the load condition of the vehicle changes and the suspension internal pressure changes, so that the flow rate per unit time of the flow control valve does not always change. By doing so, the error between the calculated flow rate and the actual flow rate that actually flows through the flow control valve can be made extremely small, and the active suspension performance can always be fully exhibited regardless of changes in loading conditions. Which can bring a great effect practically.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す制御系統図、第2図
(イ),(ロ)はエア注入時およびエア排出時の流量制
御弁の流量特性図、第3図は第1図における圧力環境制
御用コントローラの制御態様の一例を示すフローチャー
トである。 1……エアサスペンション、2……高圧アキュムレー
タ、3……低圧アキュムレータ、4……流量制御弁、5
……エアコンプレッサ、6……エア出し入れ制御用コン
トローラ、7……サス相対変位センサ、8……上下加速
度センサ、9,10……圧力センサ、11……サス内圧セン
サ、12,13……切換弁、14……圧力環境制御用コントロ
ーラ。
1 is a control system diagram showing one embodiment of the present invention, FIGS. 2A and 2B are flow characteristic diagrams of a flow control valve at the time of air injection and air discharge, and FIG. 3 is FIG. 4 is a flowchart illustrating an example of a control mode of a pressure environment control controller in FIG. 1 ... Air suspension, 2 ... High pressure accumulator, 3 ... Low pressure accumulator, 4 ... Flow control valve, 5
... air compressor, 6 ... air in / out controller, 7 ... suspension relative displacement sensor, 8 ... vertical acceleration sensor, 9, 10 ... pressure sensor, 11 ... suspension internal pressure sensor, 12, 13 ... switching Valve, 14 …… Controller for pressure environment control.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−96113(JP,A) 実開 昭60−152506(JP,U) 実開 昭60−119634(JP,U) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-96113 (JP, A) JP-A-60-152506 (JP, U) JP-A-60-119634 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エアの出し入れ可能なエアサスペンション
と、高圧アキュムレータと、低圧アキュムレータと、該
低圧アキュムレータ内のエアを吸出圧縮して高圧アキュ
ムレータ内に供給するエアコンプレッサと、高圧アキュ
ムレータからエアサスペンションへのエア注入およびエ
アサスペンションから低圧アキュムレータへのエア排出
を制御する流量制御弁とで構成したエアの閉回路の上記
流量制御弁を、車両の諸挙動を検出するセンサ類の信号
に基づきエアサスペンションにエア出し入れを行うべき
指示流量を演算にて求めると共に該指示流量に基づき上
記流量制御弁の開閉指令信号を発するエア出し入れ制御
用コントローラの該開閉指令信号で制御するアクティブ
サスペンションにおいて、エアサスペンションのサス内
圧を検出するサス内圧センサの信号により車両の積載条
件を判断して、高圧アキュムレータおよび低圧アキュム
レータの各設定圧力を、上記サス内圧の変化に対し流量
制御弁を流れるエアの単位時間当りの流量が常にほぼ一
定値となるべき圧力関係となるよう、可変的に制御する
圧力環境制御用コントローラを設けたことを特徴とする
アクティブサスペンションの制御装置。
An air suspension capable of taking in and out of air, a high-pressure accumulator, a low-pressure accumulator, an air compressor for sucking and compressing air in the low-pressure accumulator and supplying the compressed air to the high-pressure accumulator, and an air compressor from the high-pressure accumulator to the air suspension. The above-mentioned flow control valve of the closed circuit for air, which is composed of a flow control valve for controlling air injection and air discharge from the air suspension to the low-pressure accumulator, is supplied to the air suspension based on signals from sensors for detecting various behaviors of the vehicle. In an active suspension controlled by the opening / closing command signal of an air in / out controller for issuing an opening / closing command signal for the flow control valve based on the command flow, the suspension internal pressure of the air suspension is determined. Suspension to detect The load condition of the vehicle is determined based on the signal of the pressure sensor, and the set pressures of the high-pressure accumulator and the low-pressure accumulator are adjusted so that the flow rate of the air flowing through the flow rate control valve per unit time with respect to the change in the internal pressure of the suspension is always substantially constant. A control device for an active suspension, comprising a pressure environment controller for variably controlling a pressure so as to have a desired pressure relationship.
JP12267288A 1988-05-19 1988-05-19 Active suspension control device Expired - Lifetime JP2639691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12267288A JP2639691B2 (en) 1988-05-19 1988-05-19 Active suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12267288A JP2639691B2 (en) 1988-05-19 1988-05-19 Active suspension control device

Publications (2)

Publication Number Publication Date
JPH01293211A JPH01293211A (en) 1989-11-27
JP2639691B2 true JP2639691B2 (en) 1997-08-13

Family

ID=14841779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12267288A Expired - Lifetime JP2639691B2 (en) 1988-05-19 1988-05-19 Active suspension control device

Country Status (1)

Country Link
JP (1) JP2639691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335917A1 (en) * 2016-12-13 2018-06-20 Miro Gudzulic Air spring device for a motor vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352697B1 (en) * 1988-07-25 1996-11-20 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
EP0357039B1 (en) * 1988-08-31 1995-10-25 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
JP2597160B2 (en) * 1988-09-02 1997-04-02 富士写真フイルム株式会社 Electrophotographic photoreceptor
DE19546727A1 (en) * 1995-12-14 1997-06-19 Wabco Gmbh Level control device
KR100471034B1 (en) * 1997-07-16 2005-07-07 현대자동차주식회사 Air suspension control device
FR2771680B1 (en) * 1997-11-28 2000-01-07 Renault PNEUMATIC SUSPENSION OF MOTOR VEHICLE
JP2000016047A (en) * 1998-07-06 2000-01-18 Toyota Motor Corp Sprung mass estimating device
DE102004033524A1 (en) 2004-07-10 2006-02-16 Continental Aktiengesellschaft Method for load-dependent air volume control in an air spring system
CN113147299B (en) * 2021-05-05 2022-10-14 岚图汽车科技有限公司 Inflation-free automobile air suspension system
CN114211927B (en) * 2022-01-20 2024-01-30 同济大学 Electromagnetic valve control method, device, equipment and storage medium based on air suspension
CN115929594B (en) * 2022-12-28 2024-02-09 山东泰展机电科技股份有限公司 Air circulation cooling device of automobile air pump and circulation cooling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335917A1 (en) * 2016-12-13 2018-06-20 Miro Gudzulic Air spring device for a motor vehicle

Also Published As

Publication number Publication date
JPH01293211A (en) 1989-11-27

Similar Documents

Publication Publication Date Title
JP2639691B2 (en) Active suspension control device
JP4158150B2 (en) Vehicle height adjustment device
US7100628B1 (en) Electromechanically-assisted regulator control assembly
US4858895A (en) Vehicle fluid suspension circuit with equalized supply and discharge speeds
JPH0829654B2 (en) Vehicle height adjustment device
JP2631490B2 (en) Air suspension control device
JP2502372B2 (en) Vehicle fluid pressure supply device
JPH02189212A (en) Suspension system for vehicle
JPH03118205A (en) Suspension device for vehicle
JP3402815B2 (en) Damper and control system for semi-active control
JPH01289709A (en) Control method of active suspension
JPH06108923A (en) Exhaust gas reflux controller
JPH051444Y2 (en)
JP3009806B2 (en) Air suspension compressed air supply / discharge device
JPS63251317A (en) Suspension for vehicle
JPS6313928A (en) Air spring
JPS63279914A (en) Control method for active suspension device for automobile
JPS59130718A (en) Starting method of car height adjuster
JPS6357634B2 (en)
JP3067536B2 (en) Hydraulic power source device
JPH02189220A (en) Suspension system for vehicle
JPS60107406A (en) Car-height adjuster
JPS5815793A (en) No-load operation control device of compressor
JPH01218912A (en) Air suspension control device
JPH05246218A (en) Tire pressure regulating valve