JPS63279914A - Control method for active suspension device for automobile - Google Patents

Control method for active suspension device for automobile

Info

Publication number
JPS63279914A
JPS63279914A JP11214287A JP11214287A JPS63279914A JP S63279914 A JPS63279914 A JP S63279914A JP 11214287 A JP11214287 A JP 11214287A JP 11214287 A JP11214287 A JP 11214287A JP S63279914 A JPS63279914 A JP S63279914A
Authority
JP
Japan
Prior art keywords
air
suspension
controller
vehicle
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11214287A
Other languages
Japanese (ja)
Inventor
Katsumi Kamimura
勝美 上村
Saiichiro Oshita
宰一郎 大下
Atsushi Mine
美禰 篤
Minoru Hiwatari
穣 樋渡
Toshihiro Konno
稔浩 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP11214287A priority Critical patent/JPS63279914A/en
Publication of JPS63279914A publication Critical patent/JPS63279914A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/512Pressure in suspension unit in spring
    • B60G2400/5122Fluid spring
    • B60G2400/51222Pneumatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs

Abstract

PURPOSE:To improve performance of active suspension by a method wherein the loading state of a vehicle is discriminated, and an amount of command of a controller to a control valve is varied and controlled responding to the discriminating result. CONSTITUTION:A controller 6 computes a command air flow rate by means of detecting signals from a vertical acceleration sensor 5 and a relative displacement sensor 4. The injecting valve or the discharge valve of a control valve 7 is controlled, and injection and discharge are controlled so that a command flow rate is adjusted to a total value. In this case, a signal detected by a pressure sensor 3 is inputted to a loading condition deciding circuit to decide a loading condition. A gain value is inputted to the gain value switching part of the controller 6 to steppedly switch the gain value to change a command flow rate. This constitution, since a command amount is corrected according to a loading state, enables improvement of performance of an active suspension device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車用アクティブサスペンション装置の制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of controlling an active suspension system for an automobile.

従来の技術 自動車において、車輪軸と車体との上下方向の相対変位
(相対変位量)と該相対変位の時間変化率(上下方向相
対変位速度)とにより、気液流体ばねを用いたサスペン
ションの該気液流体ばねによる減衰力特性を可変的に制
御するようにしたアクティブ・サスペンションが従来よ
り開発され、既に特開昭59−213510号公報にて
公開されている。
Conventional technology In automobiles, the relative displacement (amount of relative displacement) in the vertical direction between the wheel axle and the vehicle body and the time rate of change of this relative displacement (relative displacement speed in the vertical direction) are used to determine the relative displacement of a suspension using a gas-liquid fluid spring. An active suspension in which the damping force characteristics of a gas-liquid fluid spring are variably controlled has been developed and has already been disclosed in Japanese Patent Application Laid-Open No. 59-213510.

発明が解決しようとする問題点 上記のようなアクティブサスペンションにおいて、ばね
上とばね下との相対変位を検知するセンサ等車両の走行
時及び停止時のサスペンションの種々の挙動を検知する
センサ類とそれらセンサ類からの信号に基づき制御弁の
弁開閉を指示するコントローラを組合せサスペンション
への流体の出し入れ制御を行なうようにすると、車両の
種々の情況に応じてダンパ特性。
Problems to be Solved by the Invention In the active suspension as described above, sensors that detect various behaviors of the suspension when the vehicle is running and when the vehicle is stopped, such as a sensor that detects the relative displacement between the sprung mass and the unsprung mass, and those sensors. By combining a controller that instructs the opening and closing of control valves based on signals from sensors to control the flow of fluid into and out of the suspension, damper characteristics can be adjusted according to various vehicle conditions.

ばね特性等サスペンションの品持性を可変的に制御する
と共に車の姿勢制御をも行い得るアクティブサスペンシ
ョン装置を得ることができる。
It is possible to obtain an active suspension device that can variably control the quality of the suspension, such as spring characteristics, and can also control the attitude of the vehicle.

このようなアクティブサスペンション装置においては、
通常コントローラが求めた指示量は制御弁(注入弁及び
排出弁)の開弁時間や開弁量に変換されて弁開閉信号が
発せられるようになっているのが普通である。
In such an active suspension device,
Normally, the command amount determined by the controller is converted into the valve opening time and valve opening amount of the control valves (injection valve and discharge valve), and a valve opening/closing signal is issued.

ところが実際に注入弁及び排出弁を通過する流体量は、
注入時は高圧側タンクとサスペンション内流体の圧力差
、排出時はサスペンションと低圧側タンクとの流体の圧
力差によって変動する。
However, the amount of fluid that actually passes through the injection valve and discharge valve is
It varies depending on the pressure difference between the high-pressure tank and the fluid in the suspension during injection, and the pressure difference between the suspension and the low-pressure tank during discharge.

従って高圧側タンクと低圧側タンクの内圧はそれぞれに
設けた圧力センサの信号によるコ゛ンブレッサの作動制
御によってほぼ設定値に保たれてはいても、サスペンシ
ョンの内圧は例えば1人乗車の場合とフル積載の場合と
ではかなり大きく異なり、特にリヤサスペンションは運
転者の1人乗車のときと後席に複数人が乗車し且つリヤ
のトランクルームに荷物を積み込んだときとでは内圧は
大きく変化するので、積載条件が異なると同一指示量に
対する実際の注入、排出量が大きく変わり、アクティブ
サスペンション装置の本来の機能を充分に発揮すること
ができないと言う問題を有している。
Therefore, even though the internal pressures of the high-pressure side tank and low-pressure side tank are maintained at approximately the set value by controlling the operation of the combresor based on the signals from the pressure sensors installed in each, the internal pressure of the suspension differs between, for example, when a single passenger is riding and when the vehicle is fully loaded. In particular, the internal pressure of the rear suspension changes greatly between when the driver is alone and when multiple people are in the rear seats and luggage is loaded into the rear trunk, so the loading conditions If they are different, the actual injection and discharge amounts for the same instructed amount will vary greatly, resulting in a problem that the active suspension device cannot fully demonstrate its original function.

問題点を解決するための手段 本発明は、上記のような流体の閉回路システムを用い、
車両の挙動を検出するセンサ類の信号に基づきコントロ
ーラが該信号値にゲイン値を乗算して指示量を算出し、
該指示量に基づき弁開閉信号を発して制御弁の開閉を制
御することにより、サスペンションの流体注入及び排出
を制御するようにした自動車のアクティブサスペンショ
ン装置において、車両の積載状態を検出するセンサと、
該センナの信号によって車両の積載情況を判断する回路
と、その回路の判断により上記ゲイン値を積載情況に合
致した値に切換える手段とを上記コントローラに設け、
積載状況に応じてコントローラが算出する指示量を変更
制御することを特徴とするものである。
Means for Solving the Problems The present invention uses a fluid closed circuit system as described above,
Based on the signals of sensors that detect the behavior of the vehicle, the controller multiplies the signal value by a gain value to calculate the instruction amount,
In an active suspension system for an automobile that controls fluid injection and discharge into a suspension by issuing a valve opening/closing signal based on the instruction amount and controlling opening/closing of a control valve, a sensor detects a loading state of the vehicle;
The controller is provided with a circuit that determines the loading status of the vehicle based on the signal from the senna, and a means for switching the gain value to a value that matches the loading status based on the judgment of the circuit,
This system is characterized by changing and controlling the instruction amount calculated by the controller according to the loading situation.

作   用 上記により、例えば1人乗車等の軒端状況ではサスペン
ション内の流体圧力は低く注入弁部を°通過する実注入
量は定植状況より多くなり排出弁部を通過する実排出量
は定積状況より少なくなるので、軒端状況のときは注入
側の指示量は定植時より少くし排出側の指示量は定植時
より多くする。又フル積載時は逆に注入側の指示量は定
積時より多くし排出側の指示量は定植時より少くする。
As a result of the above, in eaves-edge situations such as when one person is riding, the fluid pressure inside the suspension is low and the actual amount of injection passing through the injection valve section is higher than in the planting situation, and the actual amount of discharge passing through the discharge valve section is in a constant volume situation. Therefore, at the edge of the eaves, the amount specified on the injection side should be smaller than when planting, and the amount specified on the discharge side should be larger than when planting. Conversely, when fully loaded, the indicated amount on the injection side is greater than when the load is constant, and the indicated amount on the discharge side is smaller than when planting.

このようにすることにより同じ車両挙動条件では積載状
況が変っても常に実注入、排出量が同じとなり、アクテ
ィブサスペンション性能の著ししい向上をはかり得る。
By doing this, under the same vehicle behavior conditions, the actual injection and discharge amounts will always be the same even if the loading situation changes, making it possible to significantly improve the active suspension performance.

実施例 以下本発明の一実施例を附図を参照して説明する。Example An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明を適用した閉空気回路システム図であり
、lはエアサスペンションであり、該エアサスペンショ
ンlはばね上部材即ち車体側部材2とばね下部材即ち図
示しない車輪軸支持部材との間に設けられ、車体重量を
エアサスペンションl内に封入した空気の容積弾性にて
ばね支持するようになっており、該ニアサスベンジ言ン
l内に空気を注入したりエアサスペンジオン内の空気を
排出したりすることにより車輪軸に対する車体側部材2
の高さ即ち車高を変え且つばね定数を変えることができ
るようになっている。
FIG. 1 is a diagram of a closed air circuit system to which the present invention is applied, where l is an air suspension, and the air suspension l consists of a sprung member, that is, a vehicle body side member 2, and an unsprung member, that is, a wheel axle support member (not shown). The spring is installed between the air suspension and supports the weight of the vehicle using the volumetric elasticity of the air sealed in the air suspension. The vehicle body side member 2 relative to the wheel axle is
The height of the vehicle, that is, the vehicle height, and the spring constant can be changed.

上記のエアサスペンションlは前後左右のすべてのサス
ペンションにそれぞれ設けられており、それらの各エア
サスペンション部には、ばね上部材とばね下部材との上
下方向の相対変位を検出する相対変位センサ4と、ばね
上部材の上下加速度を検出する上下加速度センサ5と、
エアサスペンション内の空気圧を検出する圧力センサ3
とがそれぞれ設けられ、これらの各センサ3,4.5の
各信号は後述するコントローラ6にインプットされるよ
うになっているが、第1図では説明を簡略化する為に前
後左右の各サスペンションのうちの1個のエアサスペン
ションのみを図示し、他は省略している。
The above-mentioned air suspension l is provided in each of the front, rear, left and right suspensions, and each air suspension section is equipped with a relative displacement sensor 4 that detects the relative displacement in the vertical direction between the sprung member and the unsprung member. , a vertical acceleration sensor 5 that detects vertical acceleration of the sprung member;
Pressure sensor 3 that detects air pressure inside the air suspension
The signals from these sensors 3, 4.5 are input to a controller 6, which will be described later, but in order to simplify the explanation, FIG. Only one of the air suspensions is shown, and the others are omitted.

7はエアサスペンションlへの空気の注入を行う注入弁
71とエアサスペンションl内空気の排出を行う排出弁
72とからなる流量制御弁であり、該流量制御弁7は注
入と排出の2つの弁71.72を1組として、これを4
組備えており、前後左右の各エアサスペンションの空気
の注入、排出はそれぞれ独立して制御されるようになっ
ている。
Reference numeral 7 denotes a flow control valve consisting of an injection valve 71 for injecting air into the air suspension l and a discharge valve 72 for discharging the air inside the air suspension l.The flow control valve 7 has two valves for injection and discharge. 71.72 is taken as one set, and this is 4
The front, rear, left, and right air suspensions each have air injection and exhaust that can be controlled independently.

8は高圧エアタンク、9は低圧エアタンクであり、高圧
エアタンク8は上記注入弁71が開となったとき直ちに
エアサスペンションl内に空気を注入することができる
ようエアサスペンション内空気圧より充分高い空気圧に
設定され、低圧エアタンク9は上記排出弁72が開いた
ときエアサスペンション1内の空気が直ちに低圧エアタ
ンク9内に排出されるようエアサスペンションl内の空
気圧より充分低い空気圧に設定され、高圧エアタンク1
内の空気圧が設定値以下になるとニアコンプレッサ10
が作動して低圧エアタンク9内の空気を吸出圧縮して高
圧エアタンク8内に圧入し、又低圧エアタンク9内の空
気圧が設定値を越えると上記ニアコンプレッサ10が作
動して上記と同様高圧エアタンク8内に圧入するよう制
御される。上記高圧エアタンク8.低圧エアタンク9の
バランスがくずれた場合でシステム内の空気量が多過ぎ
た場合は高圧タンク8より図示していないチェックバル
ブを開きサイレンサを介して大気中に排気し、又空気量
が不足すると図示してない低圧側チェックバルブが開き
、大気をコンプレッサlOがすい込むようになっている
が、原則的にはエアサスペンションの空気の出し入れは
ほぼバランスしているのでそのバランスによって大気中
への空気の排出又は大気中からの空気の補充はほとんど
なしに高圧エアタンク8.低圧エアタンク9の空気圧は
ほぼ設定圧範囲に常に保持され空気の閉回路を構成して
いる。
8 is a high pressure air tank, 9 is a low pressure air tank, and the high pressure air tank 8 is set to a sufficiently higher air pressure than the air pressure inside the air suspension so that air can be immediately injected into the air suspension l when the injection valve 71 is opened. The low-pressure air tank 9 is set at a sufficiently lower air pressure than the air pressure inside the air suspension 1 so that when the discharge valve 72 opens, the air inside the air suspension 1 is immediately discharged into the low-pressure air tank 9.
When the air pressure in the near compressor 10 falls below the set value,
operates to suck out and compress the air in the low-pressure air tank 9 and pressurize it into the high-pressure air tank 8. When the air pressure in the low-pressure air tank 9 exceeds a set value, the near compressor 10 operates to compress the air in the high-pressure air tank 8 in the same way as above. It is controlled so that it is press-fitted inside. High pressure air tank 8. If the balance of the low-pressure air tank 9 is lost and the amount of air in the system is too large, a check valve (not shown) is opened from the high-pressure tank 8 and the air is exhausted to the atmosphere via a silencer. The low-pressure side check valve (not shown) opens, allowing atmospheric air to flow into the compressor lO, but in principle, the air intake and extraction from the air suspension is almost balanced, so depending on that balance, the flow of air into the atmosphere is controlled. High pressure air tank with little venting or replenishment of air from the atmosphere 8. The air pressure in the low-pressure air tank 9 is always maintained substantially within the set pressure range, forming a closed air circuit.

次にコントローラ6による制御態様について第2図を参
照して説明する。
Next, the control mode by the controller 6 will be explained with reference to FIG. 2.

第2図は前後左右の4つのサスペンションのうち1つの
制御回路を示しており、コントローラ6にはこの第2図
に示すような制御回路が4組装備されそれぞれのサスペ
ンションは独立して以下に記載するような制御を行う。
Figure 2 shows a control circuit for one of the four front, rear, left and right suspensions, and the controller 6 is equipped with four sets of control circuits as shown in Figure 2, and each suspension is independently described below. control.

即ち、車体の上下加速度を検出しその上下加速度に応じ
た上下加速度信号を発する上下加速度センサ5の上下加
速度信号Xは、バイパスフィルタ51にて低周波域(例
えば0.1Hz近傍以下の範囲)をカットされ、微分回
路5aを通った上下加速度センサ 加速度センサとの2通りに分かれ、それぞれゲインGI
IG2が掛合されて指示空気流m Q 1及びG2に変
換される。
That is, the vertical acceleration signal X of the vertical acceleration sensor 5, which detects the vertical acceleration of the vehicle body and emits a vertical acceleration signal corresponding to the vertical acceleration, is filtered in a low frequency range (for example, a range around 0.1 Hz or less) by the bypass filter 51. The vertical acceleration sensor and the acceleration sensor are cut and passed through the differentiating circuit 5a, and the acceleration sensor is divided into two types, each with a gain GI.
IG2 is multiplied and converted into indicated airflow m Q 1 and G2.

車体と車輪との上下方向相対変位を検出しその相対変位
に応じた相対変位信号を発する相対変位センサ4の相対
変位信号■は、後述する車高調整スイッチ11の選択に
より基準位置指令回路11aを経て出力された基準位置
信号VOを引き算されることにより、基準位置からの実
相対変位信号りとなり、微分回路4aを通った実相対変
位速度信号すと、そのままの実相対変位信号りとの2通
りに分かれ、それぞれゲインG3.G4が掛けられて指
示空気流ff1ch及びQs に変換される。
The relative displacement signal (■) of the relative displacement sensor 4, which detects the vertical relative displacement between the vehicle body and the wheels and generates a relative displacement signal according to the relative displacement, is sent to the reference position command circuit 11a by selection of the vehicle height adjustment switch 11, which will be described later. By subtracting the reference position signal VO outputted through the differential circuit 4a, the actual relative displacement signal from the reference position is obtained. It is divided into two groups, each with a gain of G3. G4 is multiplied and converted to the commanded airflow ff1ch and Qs.

車高調整スイッチ11は、例えばノーマル車高からハイ
車高に切換える切換スイッチであり、該車高調整スイッ
チ11をノーマルからハイに切換えるとエアサスペンシ
ョンlに空気が注入されて車輪軸に対する車体部材2の
高さを設定値だけ高くしてその高さを基準車高とし。
The vehicle height adjustment switch 11 is, for example, a changeover switch for switching from normal vehicle height to high vehicle height. When the vehicle height adjustment switch 11 is switched from normal to high, air is injected into the air suspension l and the vehicle body member 2 relative to the wheel axle is injected. Increase the height by the set value and use that height as the standard vehicle height.

上記小高調整スイッチ11をハイからノーマルに切換え
るとエアサスペンションl内空気を排出して車高を低い
ノーマル基準車高とするものである。
When the small height adjustment switch 11 is switched from high to normal, the air inside the air suspension l is exhausted and the vehicle height is set to a low normal standard vehicle height.

従って相対変位センサ4を、ノーマル基準車高を基準位
置としその基準位置からの相対変位を検出するよう設定
しておくと、上記車高7A整スイツチllをハイに切換
えた場合、相対変位センサ4が検出した相対変位から、
ノーマル基準車高とハイ基準車高との差だけ引き算した
値がハイ基準車高を基準位置とした実相対変位となるの
である。
Therefore, if the relative displacement sensor 4 is set to detect the relative displacement from the normal reference vehicle height as its reference position, when the vehicle height adjustment switch 7A is switched to high, the relative displacement sensor 4 From the relative displacement detected by
The value obtained by subtracting the difference between the normal reference vehicle height and the high reference vehicle height becomes the actual relative displacement with the high reference vehicle height as the reference position.

尚り記のような車高調整はマニアルスイッチ以外に車速
等の信号による自動切換とする場合もある。
In addition to the manual switch, vehicle height adjustment as described above may also be performed automatically using signals such as vehicle speed.

但し上記車高調整スイッチ11等による車高調整機構を
もたない自動型であれば、常に相対変位センサ4の相対
変位信号Vが実相対変位信号りと等しくなることは言う
までもない。
However, if the vehicle is an automatic type that does not have a vehicle height adjustment mechanism such as the vehicle height adjustment switch 11, it goes without saying that the relative displacement signal V of the relative displacement sensor 4 will always be equal to the actual relative displacement signal.

上記のようにして得られた指示空気流量Q+  、Q2
  、(h及びQ4は加算回路12にて加算されて総指
示空気流量Qとなり、弁制御信号発生回路13から流量
制御弁7に出力が発せられ、流量制御弁7の住人弁又は
排出弁のいずれか一方が開となり、前記総指示流量Qに
見合う注入又は排出が行われるようになっている。
Indicated air flow rate Q+, Q2 obtained as above
, (h and Q4 are added in the adder circuit 12 to obtain the total commanded air flow rate Q, and an output is issued from the valve control signal generation circuit 13 to the flow rate control valve 7, and either the resident valve or the discharge valve of the flow rate control valve 7 One side is opened, and injection or discharge corresponding to the total instructed flow rate Q is performed.

一般に流量制御弁は本来流量制御特性として積分効果を
もっているので、上記コントローラ6の制御要素のうち
の上下加速度センサl内空気御はサスペンション部では
上下加速度項の制御となり車体の慣性力即ち車体の見か
け上の質量を変える働らきをし、同様に上下加速度信号
Xによる制御はサスペンション部では上下速度積の制御
となって車体の上下振動を止めようとするダンパ特性を
変える働らきをし、更に実相対変位速度信号すによる制
御は相対変位項の制御となってサスペンション部のスプ
リング特性を変える働らきをし、又実相対変位信号りに
よる制御は相対変位の積分項の制御となって基準位置か
らのずれ(相対変位)を無くし車高を基準車高に復元さ
せようとする働らきをする。
In general, the flow control valve originally has an integral effect as a flow control characteristic, so the air control in the vertical acceleration sensor l, which is one of the control elements of the controller 6, becomes control of the vertical acceleration term in the suspension section, and the inertia force of the vehicle body, that is, the apparent appearance of the vehicle body. Similarly, the control using the vertical acceleration signal Control based on the relative displacement speed signal controls the relative displacement term, which works to change the spring characteristics of the suspension section, and control based on the actual relative displacement signal controls the integral term of the relative displacement, which changes the spring characteristics from the reference position. The function is to eliminate the deviation (relative displacement) and restore the vehicle height to the standard vehicle height.

従って、基本的には各車輪のサスペンション毎に、車体
の上下顎加速度、上下加速度共に上向きであるとエアサ
スペンション1のエアチャンバー内の空気を排出し下向
きであるとエアチャンバーに空気を注入する制御を行い
、車体の上下振動を制振する方向に働ら〈、即ち路面か
らの入力に対してはエアサスペンション1は柔らかくな
り車体側に振動を伝えない方向に制御され、旋回時や急
加減速時の荷重移動に対しては車体のロールやピッチン
グを制御する方向(見かけ上エアサスペンションlの剛
性アップ方向)に1動らく。
Therefore, basically, for each wheel suspension, control is performed to exhaust the air in the air chamber of air suspension 1 when both the vertical and maxillary accelerations of the vehicle body are upward, and to inject air into the air chamber when they are downward. The air suspension 1 becomes soft in response to input from the road surface and is controlled in a direction that does not transmit vibrations to the vehicle body, thereby suppressing vertical vibrations of the vehicle body. With respect to the load movement at the time, the air suspension moves one step in the direction that controls the roll and pitching of the vehicle body (apparently in the direction of increasing the rigidity of the air suspension l).

サスペンションの上下相対変位速度、上下相対変位は、
エアサスペンション1の伸び方向であればエアチャンバ
内の空気を排出し縮み方向であれば空気をエアチャンバ
内に注入することでサスペンションの相対変位を基準位
置に戻す方向に働らく。
The vertical relative displacement speed and vertical relative displacement of the suspension are
If the air suspension 1 is in the direction of extension, the air in the air chamber is exhausted, and if it is in the direction of contraction, air is injected into the air chamber, thereby working to return the relative displacement of the suspension to the reference position.

荷重移動等車体側の入力に対しては、上記上下加速度セ
ンサ5と相対変位センサ4の各信号を用いた制御は共に
同方向に働らき、車体を常に水平状態に保つ制御が容易
となる。
For inputs from the vehicle body, such as load movement, control using signals from the vertical acceleration sensor 5 and relative displacement sensor 4 both work in the same direction, making it easy to maintain the vehicle body in a horizontal state at all times.

上下加速度センサ5を用いて上記のように上下顎加速度
及び上下加速度が上向きのときはエアサスペンションl
の空気を排出し下向きのときはエアサスペンションlに
空気を注入する制御を行うと、例えば登板路にさしかか
って上向きの加速度が発生したときは空気を排出し続け
たり、或は降板路にさしかかったときは空気を注入し続
けたりすることになり極めて不都合であるが、このよう
に坂路にさしかかったときの車体の上下加速度の周波数
は凹凸路面での上下加速度周波数に比し極低周波である
ので、第2図示のように上下加速度センサ5の信号回路
にバイパスフィルタ51を介在させ極低周波信号をカッ
トするよう構成したことにより、上記登板時又は降板時
における上下加速度センサ5の発生信号はカットされ、
相対変位センサ4の信号を用いたサスペンションを基準
位置に戻す制御機能のみが働らいて一定車高を保ったま
ま登降坂走行を行うことができるものである。
Using the vertical acceleration sensor 5, when the vertical acceleration and the vertical acceleration are upward as described above, the air suspension l
If the air is discharged and the air is injected into the air suspension l when the vehicle is heading downward, for example, when the vehicle approaches the uphill road and upward acceleration occurs, the air continues to be discharged, or when the vehicle approaches the downhill road. This is extremely inconvenient as it requires continuous air injection, but the frequency of the vertical acceleration of the vehicle body when approaching a slope is extremely low compared to the frequency of vertical acceleration on an uneven road surface. As shown in the second figure, by interposing a bypass filter 51 in the signal circuit of the vertical acceleration sensor 5 to cut extremely low frequency signals, the signal generated by the vertical acceleration sensor 5 when climbing or descending is cut. is,
Only the control function that returns the suspension to its reference position using the signal from the relative displacement sensor 4 operates, allowing the vehicle to travel up and down hills while maintaining a constant vehicle height.

又第2図において、ト下加速センサ5のセンサ信号入力
回路又は該り下顎速度センサ5と相対変位センサ4のセ
ンサ信号入力回路に例えば4〜5Hz程度以りの高周波
成分をカットするローパスフィルタを設け、高岡波数域
の振動に対する空気の出し入れ制御を大きく絞ることで
使用空気の消費を大幅に減少させるようにすることもで
きる。
In addition, in FIG. 2, a low-pass filter is provided in the sensor signal input circuit of the lower jaw acceleration sensor 5 or the sensor signal input circuit of the lower jaw speed sensor 5 and the relative displacement sensor 4 to cut high frequency components of, for example, about 4 to 5 Hz. It is also possible to significantly reduce the consumption of air by greatly restricting the air intake/extraction control for vibrations in the Takaoka wavenumber range.

L記のような制御は、コントローラが指令した総指示流
量Q通りに的確にエアサスペンション1への注、排気が
行われることによって上記したような機能を果し得るも
のであるが、実際に注入弁71及び排出弁72を通過す
る実流量は、高圧エアタンク8とエアサスペンション1
の圧力差、エアサスペンション1と低圧エアタンク9と
の圧力差の変化によってかなり変化する。上記圧力差は
、高圧と低圧の両エアタンク8,9がほぼ一定圧範囲に
常時保持されているものとすれば、車両の積載条件によ
って変化することになる。
The control described in L can perform the above-mentioned functions by accurately injecting and exhausting the air suspension 1 according to the total flow rate Q commanded by the controller. The actual flow rate passing through the valve 71 and the discharge valve 72 is the same as that of the high pressure air tank 8 and the air suspension 1.
The pressure difference between the air suspension 1 and the low pressure air tank 9 varies considerably depending on the pressure difference between the air suspension 1 and the low pressure air tank 9. Assuming that both the high-pressure and low-pressure air tanks 8 and 9 are always maintained within a substantially constant pressure range, the pressure difference will vary depending on the loading conditions of the vehicle.

そこで本発明ではエアサスペンションに圧力センサ3を
設け、この圧力センサ3の信号により例えば1人乗車の
場合のような軒端状態であるか又は定積状態であるか或
はフル積載状態であるか等のv1載条件を積載条件判断
回路3aにて判断し、該積載条件判断回路3aの積載条
件判断に基づきゲイン値切換部o、、o2  。
Therefore, in the present invention, a pressure sensor 3 is provided in the air suspension, and the signal from this pressure sensor 3 determines, for example, whether the vehicle is in an eaves-edge state such as when a single person is riding, a constant load state, or a fully loaded state. The loading condition determining circuit 3a determines the v1 loading condition of the loading condition determining circuit 3a, and the gain value switching units o, , o2 based on the loading condition determination of the loading condition determining circuit 3a.

03.04を作動させ、各ゲイン値を段階的に切換え指
示流量を変化させる制御を行うものである。
03 and 04 to perform control to change the commanded flow rate by changing each gain value in stages.

即ち、上下加速度センサ5.相対変位センサ4からの各
出力信号に基づき上下加加速度項。
That is, the vertical acceleration sensor 5. Vertical jerk term based on each output signal from the relative displacement sensor 4.

上下加速度項、実相対変位速度項及び実相対変位項の各
指示流量Q+  、G2  、G3  、Qaを求める
為のそれぞれのゲイン値を、例えば定積状態でのゲイン
値G+  、G2  、G3 、Ga、と、定植状態の
ゲイン値より大なるゲイン値GI+cr 、G3 1G
4 と、定積状態のゲイン値より小なるゲイン値G i
’ 、 G2  、 GN3. G4との3段階に分け
、積載条件判断回路3aの判断結果とセンサ4,5側か
らの信号値が注入側か排出側かに基づいてゲイン値切換
部01 .02 103.04が上記3段階のゲイン値
のうちのいずれかを選択することにより、指示流−17
Q+。
The respective gain values for determining the indicated flow rates Q+ , G2 , G3 , and Qa of the vertical acceleration term, actual relative displacement velocity term, and actual relative displacement term are, for example, gain values G+ , G2 , G3 , Ga in a constant volume state. , and a gain value GI+cr greater than the gain value in the planted state, G3 1G
4 and a gain value G i smaller than the gain value in the constant volume state
', G2, GN3. Gain value switching unit 01 . 02 103.04 can be set to -17 by selecting one of the three gain values mentioned above.
Q+.

G2  、G3  、G4を車両の積載条件によって、
例えば軒端状態では注入弁71部を通過する実空気流量
は定植状態より多くなるので空気注入側の指示流量を定
植状態より小とし、フル積載状態では上記実空気流量は
定積状態より少くなるので空気注入側の指示流量を定積
状態より多くし、排出側の指示流量は上記とは逆にする
と言うように変更制御するものである。
G2, G3, G4 depending on the loading conditions of the vehicle,
For example, in the eaves edge state, the actual air flow rate passing through the injection valve 71 is higher than in the planted state, so the indicated flow rate on the air injection side is set smaller than in the planted state, and in the fully loaded state, the actual air flow rate is lower than in the fixed volume state. Change control is performed such that the indicated flow rate on the air injection side is made higher than in the constant volume state, and the indicated flow rate on the discharge side is reversed.

このように指示流量を積載条件により変更制御すること
により、あらゆる積載条件において適正な実空気流量を
得ることができ、前記したような走行条件に応じたエア
サスペンションのダンパ特性、ばね特性の可変的制御及
び車両の姿勢制御等のアクティブサスペンション本来の
機能の著しい向上をはかり得るものである。
By changing and controlling the indicated flow rate according to loading conditions in this way, it is possible to obtain an appropriate actual air flow rate under all loading conditions. It is possible to significantly improve the original functions of an active suspension, such as control and vehicle attitude control.

尚上記実施例ではゲイン値を3段階に設定した例を示し
ているが、これは2段階に設定しても良いし又4段階或
はそれ以上の段階に設定してよりきめ細かな積載条件に
応じた制御を行うようにしても良い。
Although the above embodiment shows an example in which the gain value is set in three stages, it may be set in two stages, or it can be set in four stages or more to obtain more detailed loading conditions. Control may be performed accordingly.

又本発明の積載条件による指示流量の変更制御は、上下
加加速度項を省略し上下加速度項と相対変位速度項と相
対変位項との指示流量の加算によって総指示流量を求め
る方法のもの。
Further, the control for changing the indicated flow rate according to the loading conditions of the present invention is a method of omitting the vertical jerk term and calculating the total indicated flow rate by adding the indicated flow rate of the vertical acceleration term, relative displacement velocity term, and relative displacement term.

或は相対変位速度項と相対変位項のみで総指示流量を求
める方法のもに等、車両の挙動を検知する任意のセンサ
類の信号に基づきゲイン値を掛は合せて指示流量を算出
しその指示流量に基づき流量制御弁を作動させるべき弁
開閉信号J、Kを発するあらゆるタイプのアクティブサ
スペンションに適用可能である。
Alternatively, such as the method of calculating the total indicated flow rate using only the relative displacement speed term and the relative displacement term, the indicated flow rate is calculated by multiplying the gain value based on the signal of any sensor that detects the behavior of the vehicle. It is applicable to any type of active suspension that issues valve opening/closing signals J, K to operate a flow control valve based on a commanded flow rate.

尚上記実施例では空気をばねとして用いた工アサスペン
ションに本発明を適用した例を示しているが、空気の閉
回路において注入と排出のバランスが充分に保持され該
閉回路への空気の補給或は排出をほとんど行なわなくて
すむような構成とすれば、空気の代わりに空気以外の任
意の気体を採用することができ、又上記実施例では流量
制御弁を用いた例を示しているが、流埴制御弁以外に圧
力制御弁を設け、各センサ類からの信号に基づき注入又
は排出すべき気体の指示量を算出しその指示pに見合う
気体量を注入又は排出させるべく上記圧力制御弁の圧力
設定値を可変制御する信号を発する構成としたものに本
発明を適用しても良い。
The above embodiment shows an example in which the present invention is applied to a mechanical suspension using air as a spring, but the balance between injection and discharge is sufficiently maintained in a closed air circuit, and air is supplied to the closed circuit. Alternatively, if the configuration is such that almost no discharge is required, any gas other than air can be used instead of air, and although the above embodiment shows an example using a flow rate control valve. , a pressure control valve is provided in addition to the flow control valve, and the pressure control valve calculates the indicated amount of gas to be injected or discharged based on the signals from each sensor, and injects or discharges the amount of gas corresponding to the instruction p. The present invention may be applied to a device configured to emit a signal for variably controlling the pressure setting value.

更に又本発明は、ハイドロニューマチックサスペンショ
ンを用いた自動車にも適用可能であり、この場合はコン
トローラからの弁開閉信号によって流量制御弁の注入弁
又は排出弁を開とすることにより、オイルポンプにて高
圧側タンクであるアキュムレータ内に所定圧にて蓄圧さ
れているオイルがサスペンションのオイルシリンダ内に
注入されたり又はサスペンションのオイルシリンダ内の
オイルが低圧側タンクであるリザーバ内にドレーンされ
たりする制御となる。この場合もコントローラによる注
入及び排出の指示流量の算出及びそれに基づく流量制御
弁の開閉制御、その制御によって得られる機能等は前記
エアサスペンションの場合と同じである。
Furthermore, the present invention can also be applied to automobiles using hydropneumatic suspension. In this case, the oil pump can be operated by opening the injection valve or the discharge valve of the flow control valve in response to a valve opening/closing signal from the controller. The oil stored at a predetermined pressure in the accumulator, which is a high-pressure tank, is injected into the suspension oil cylinder, or the oil in the suspension oil cylinder is drained into the low-pressure tank, which is a reservoir. becomes. In this case as well, calculation of the instructed flow rates for injection and discharge by the controller, opening/closing control of the flow rate control valve based on the calculated flow rate, functions obtained by the control, etc. are the same as in the case of the air suspension.

発明の効果 上記のように本発明によれば、流体の出し入れ可能な流
体サスペンションと、流体の高圧タンクと低圧タンクと
コンプレッサと、サスペンションへの該流体の出し入れ
を制御する制御弁を有すると共に、前後左右の各車輪の
サスペンション部の挙動をそれぞれ検出するセンサ類の
信号に基づきコントローラが該信号値にゲインを乗算し
て流体出し入れの指示量を算出し上記制御弁を開閉作動
させるべき弁開閉信号を発するようにしたアクティブサ
スペンション装置において、センサ信号に基づき指示量
を算出する為のゲイン値を車両の積載条件により異った
値に選定し積載条件に応じて指示量を変更制御する方法
を採ることにより、どのような積載条件であても同じ車
両挙動に対する制御弁部通過流体の量は同じとなり、ア
クティブサスペンション装置の性能の著しい向上をはか
ることができるもので、構成が簡単で且つ安価なること
と相俟って実用上多大の効果をもたらし得るものである
Effects of the Invention As described above, the present invention includes a fluid suspension into which fluid can be taken in and out, a high pressure tank, a low pressure tank, a compressor, and a control valve that controls the fluid in and out of the suspension. Based on signals from sensors that detect the behavior of the suspension parts of each left and right wheel, the controller multiplies the signal value by a gain to calculate the amount of fluid intake/output instruction, and generates a valve opening/closing signal to open/close the control valve. In an active suspension device configured to emit a signal, a gain value for calculating the instruction amount based on the sensor signal is selected to be a different value depending on the loading conditions of the vehicle, and the instruction amount is changed and controlled according to the loading condition. As a result, the amount of fluid passing through the control valve is the same for the same vehicle behavior under any loading conditions, and the performance of the active suspension system can be significantly improved, and the configuration is simple and inexpensive. Together, they can bring about great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

附図は本発明の一実施例を示すもので、第1図はエアサ
スペンションの空気注入及び排出制御の為の空気制御系
統説明図、第2図はコントローラにおける制御態様の一
例を示すブロック図である。 1・・・エアサスペンション、3・・・圧力センサ。 4・・・相対変位センサ、5・・・上下加速度センサ、
6・・・コントローラ、7・・・流量制御弁、8・・・
高圧エアタンク、9・・・低圧エアタンク、10・・・
コンプレッサ、11・・・車高調整スイッチ。 第 1 図
The accompanying drawings show an embodiment of the present invention. Fig. 1 is an explanatory diagram of an air control system for controlling air injection and exhaust of an air suspension, and Fig. 2 is a block diagram showing an example of a control mode in a controller. . 1...Air suspension, 3...Pressure sensor. 4...Relative displacement sensor, 5...Vertical acceleration sensor,
6... Controller, 7... Flow rate control valve, 8...
High pressure air tank, 9...Low pressure air tank, 10...
Compressor, 11...Vehicle height adjustment switch. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 流体の圧力にて車体を支持するサスペンションの該流体
の排出及び注入を、コントローラからの指示量に基き作
動する制御弁と該流体を蓄える高圧タンクと低圧タンク
と該流体を加圧するコンプレッサとで構成した閉回路の
上記制御弁の作動にて行うよう構成し、サスペンション
部の挙動を検出するセンサ類のセンサ信号に基づき該信
号にゲイン値を乗算して指示量を算出し該指示量に基づ
き上記制御弁の弁開閉信号を発するコントローラを設け
た自動車のアクティブサスペンション装置において、車
両の積載状態を検出するセンサと、該センサの信号によ
って車両の積載状況を判断する回路と、その回路の判断
により上記ゲイン値を積載状況に合致した値に切換える
手段とを上記コントローラに設け、積載状況に応じてコ
ントローラが算出する指示量を変更制御することを特徴
とする自動車用アクティブサスペンション装置の制御方
法。
It consists of a control valve that operates based on the amount of instruction from a controller to discharge and inject fluid into the suspension that supports the vehicle body using fluid pressure, a high-pressure tank and a low-pressure tank that store the fluid, and a compressor that pressurizes the fluid. Based on the sensor signal of the sensors that detect the behavior of the suspension section, the signal is multiplied by a gain value to calculate the instruction amount, and the instruction amount is calculated based on the instruction amount. An active suspension system for an automobile is equipped with a controller that issues valve opening/closing signals of a control valve, and includes a sensor that detects the loading status of the vehicle, a circuit that determines the loading status of the vehicle based on the signal from the sensor, and the above-mentioned system based on the judgment of the circuit. A method for controlling an active suspension device for an automobile, characterized in that the controller is provided with means for switching the gain value to a value that matches the loading condition, and the instruction amount calculated by the controller is changed and controlled according to the loading condition.
JP11214287A 1987-05-08 1987-05-08 Control method for active suspension device for automobile Pending JPS63279914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214287A JPS63279914A (en) 1987-05-08 1987-05-08 Control method for active suspension device for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214287A JPS63279914A (en) 1987-05-08 1987-05-08 Control method for active suspension device for automobile

Publications (1)

Publication Number Publication Date
JPS63279914A true JPS63279914A (en) 1988-11-17

Family

ID=14579268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214287A Pending JPS63279914A (en) 1987-05-08 1987-05-08 Control method for active suspension device for automobile

Country Status (1)

Country Link
JP (1) JPS63279914A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492703A (en) * 1990-08-07 1992-03-25 Mitsubishi Motors Corp Active suspension device for vehicle
EP0779168A3 (en) * 1995-12-14 1998-04-01 WABCO GmbH Level control device
EP0779167A3 (en) * 1995-12-14 1998-04-08 WABCO GmbH Level control device
JP2006242277A (en) * 2005-03-03 2006-09-14 Nhk Spring Co Ltd Gas spring device
EP2246206A3 (en) * 2009-04-09 2011-06-29 ArvinMeritor Technology, LLC Ride height leveling control for dual air spring configuration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492703A (en) * 1990-08-07 1992-03-25 Mitsubishi Motors Corp Active suspension device for vehicle
EP0779168A3 (en) * 1995-12-14 1998-04-01 WABCO GmbH Level control device
EP0779167A3 (en) * 1995-12-14 1998-04-08 WABCO GmbH Level control device
JP2006242277A (en) * 2005-03-03 2006-09-14 Nhk Spring Co Ltd Gas spring device
EP2246206A3 (en) * 2009-04-09 2011-06-29 ArvinMeritor Technology, LLC Ride height leveling control for dual air spring configuration

Similar Documents

Publication Publication Date Title
JPH0667684B2 (en) Control device for automobile active suspension
KR910008700B1 (en) Vehicle suspension apparatus
GB2223992A (en) Controlling apparatus for active suspension system for automotive vehicle
US4639014A (en) Vehicle suspension apparatus
JPS62139709A (en) Active suspension system for automobile
JPH0659771B2 (en) Control device for automobile active suspension
US4625992A (en) Vehicle suspension apparatus
US4673193A (en) Vehicle suspension apparatus
JP2944148B2 (en) Vehicle suspension device
JPS63279914A (en) Control method for active suspension device for automobile
JP2823281B2 (en) Vehicle suspension device
JPH09169205A (en) Loading state distinguishing device
JPH01289709A (en) Control method of active suspension
JPH02303910A (en) Suspension device for vehicle
JP3048374B2 (en) Vehicle suspension device
JPS63269709A (en) Active suspension for automobile
JP2536146Y2 (en) Suspension device
JPS63279915A (en) Active suspension device for automobile
JPH05278429A (en) Lateral acceleration detecting method for vehicle and active suspension device using such method
JPH06171333A (en) Suspension device for vehicle
JP2954974B2 (en) Damping force control device for attenuator
JPH08165Y2 (en) Fluid suspension system
JP3015513B2 (en) Vehicle suspension device
JP2846012B2 (en) Vehicle suspension device
JP3085694B2 (en) Vehicle suspension device