JP2639562B2 - Zeolite adsorbent for hydrogen PSA and method for producing the same - Google Patents

Zeolite adsorbent for hydrogen PSA and method for producing the same

Info

Publication number
JP2639562B2
JP2639562B2 JP63135069A JP13506988A JP2639562B2 JP 2639562 B2 JP2639562 B2 JP 2639562B2 JP 63135069 A JP63135069 A JP 63135069A JP 13506988 A JP13506988 A JP 13506988A JP 2639562 B2 JP2639562 B2 JP 2639562B2
Authority
JP
Japan
Prior art keywords
weight
adsorbent
zeolite
type zeolite
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63135069A
Other languages
Japanese (ja)
Other versions
JPH01304042A (en
Inventor
誠 南
敬三 榎本
栄一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KOGYO KK
Original Assignee
NIPPON KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KOGYO KK filed Critical NIPPON KAGAKU KOGYO KK
Priority to JP63135069A priority Critical patent/JP2639562B2/en
Publication of JPH01304042A publication Critical patent/JPH01304042A/en
Application granted granted Critical
Publication of JP2639562B2 publication Critical patent/JP2639562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゼオライト吸着剤およびその製造法に係
り、更に言えば圧力振動吸着(Pressure Swing Adsorpt
ion:以下「PSA」という)法により、気体混合物より目
的成分を分離、精製する技術に関し、特に石油化学プラ
ントからのオフガス、天然ガスやナフサの水蒸気改質ガ
ス、コークス炉ガスなどの水素含有ガスからCO,CO2,メ
タン,窒素などの不純成分を吸着除去して、高純度水素
ガスを得る水素PSAプロセスに用いるCOなどの不純成分
の分離能が優れたゼオライト吸着剤を提供するものであ
る。
The present invention relates to a zeolite adsorbent and a method for producing the zeolite adsorbent, and more particularly, to pressure swing adsorption (Pressure Swing Adsorpt).
ion: hereinafter referred to as "PSA"), a technique for separating and refining target components from gaseous mixtures, particularly hydrogen-containing gases such as offgas from petrochemical plants, steam reformed gas of natural gas and naphtha, and coke oven gas. It is intended to provide a zeolite adsorbent with excellent ability to separate impure components such as CO used in the hydrogen PSA process to obtain high-purity hydrogen gas by adsorbing and removing impure components such as CO, CO 2 , methane, and nitrogen. .

〔従来の技術〕[Conventional technology]

水素は最近のエネルギー転換の問題を始め、直接発電
や石油化学工業、メタノールの合成などの、主原材料と
して大幅な需要の増加が期待されている。現在、水素の
多くは、ナフサ,天然ガスなどを原料とした水蒸気改質
法などで製造されている。ここで得られる水素は粗製水
素であり、その精製方法としては、近時、水素以外のC
O,CO2,メタン,窒素などの不純物を、吸着除去するため
PSA法が工業的に有利であるために採用されるケースが
増加している。
Hydrogen is expected to have a significant increase in demand as a main raw material, including the recent energy conversion problem, direct power generation, the petrochemical industry, and the synthesis of methanol. At present, most of hydrogen is produced by a steam reforming method using naphtha, natural gas or the like as a raw material. The hydrogen obtained here is crude hydrogen.
To adsorb and remove impurities such as O, CO 2 , methane, and nitrogen
The PSA method is increasingly used because of its industrial advantages.

PSA法による混合気体の分離,精製に関しては、例え
ば、特公昭38−25969号公報、特公昭39−8204号公報に
2塔式,3塔式のPSA装置の基本技術が開示されている。
その後、多くのPSAの装置に係る改良技術が考案され、
今日に至っている。従って、最近はかかるPSA用装置に
追従できるゼオライト吸着剤の性能改良の開発がPSAの
正否の重要なポイントであると言っても過言ではない。
PSA用吸着剤、特に水素PSA用のゼオライト吸着剤に関し
ては、例えば、特開昭58−84101号公報においては、カ
ルシウムイオン交換率が50%以上で、SiO2/Al2O3=2〜
3であるCa−X型ゼオライト顆粒を吸着剤とし、PSA法
により水素含有気体から不純物を除去する水素の回収に
適していると述べられている。
Regarding the separation and purification of a mixed gas by the PSA method, for example, Japanese Patent Publication No. 38-25969 and Japanese Patent Publication No. 39-8204 disclose the basic technology of a two-column or three-column PSA apparatus.
After that, many improved techniques for PSA equipment were devised,
It has reached today. Therefore, it is no exaggeration to say that the development of the performance improvement of the zeolite adsorbent that can follow such a PSA device is an important point for the success or failure of PSA recently.
Regarding the adsorbent for PSA, particularly the zeolite adsorbent for hydrogen PSA, for example, in JP-A-58-84101, a calcium ion exchange rate is 50% or more, and SiO 2 / Al 2 O 3 = 2
It is stated that the Ca-X type zeolite granule 3, which is an adsorbent, is suitable for recovering hydrogen by removing impurities from a hydrogen-containing gas by a PSA method.

また、特開昭60−139337号公報においては、アルカリ
金属およびアルカリ土類金属を含有し、かつ一酸化炭素
を含む雰囲気で加熱処理したA型,X型,モルデナイト系
ゼオライト一酸化炭素吸着剤が開示されている。
JP-A-60-139337 discloses an A-type, X-type, mordenite-type zeolite carbon monoxide adsorbent which contains an alkali metal and an alkaline earth metal and is heat-treated in an atmosphere containing carbon monoxide. It has been disclosed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、Ca−X型ゼオライト吸着剤はCOの吸着
量はCa−A型ゼオライトに比較して多いが低圧でのCOの
吸着容量も多いので最近の省エネルギータイプ(減圧−
常圧サイクル)の装置では水素収率が低下する問題があ
る。
However, the Ca-X type zeolite adsorbent has a larger amount of CO adsorbed than the Ca-A type zeolite, but also has a larger CO adsorption capacity at low pressure.
There is a problem that the hydrogen yield is reduced in the apparatus of the normal pressure cycle.

また、特開昭60−139337号公報のような可燃性、毒性
ガスの一酸化炭素気流中で焼成することは安全上の問題
もあり、工業的な不経済性を伴う。
Further, firing in a flammable and toxic gas of carbon monoxide as disclosed in JP-A-60-139337 has a safety problem and involves industrial uneconomics.

従来、5A型ゼオライト(Ca−A型ゼオライト)成形体
の製造方法としては、一般にはNa−A型ゼオライト粉末
を塩化カルシウム、硝酸カルシウムなどのカルシウム塩
水溶液でイオン交換した後、得られる5A型ゼオライトを
粘土系バインダーと混合、混練、成形体としたのち、成
形体を500〜700℃で焼成しCa−A型ゼオライト吸着剤を
製造している。このような従来の方法で得られるCa−A
型ゼオライト吸着剤は、通常、COの吸着容量が最大で20
ml/g(25℃,1atm)までのものが多く、また他のガス選
択吸着性も満足できるものではない。
Conventionally, as a method for producing a 5A-type zeolite (Ca-A-type zeolite) compact, generally, a 5A-type zeolite obtained after ion-exchanging a Na-A-type zeolite powder with an aqueous solution of a calcium salt such as calcium chloride or calcium nitrate is used. Is mixed with a clay-based binder, kneaded, and formed into a compact, and then the compact is fired at 500 to 700 ° C. to produce a Ca-A type zeolite adsorbent. Ca-A obtained by such a conventional method
Zeolite adsorbents typically have a CO adsorption capacity of up to 20
Many are up to ml / g (25 ° C, 1 atm), and other gas selective adsorption properties are not satisfactory.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

従来よりゼオライト吸着剤のガス吸着容量に影響を与
える因子としては、ゼオライトの種類、イオン交換カチ
オンの種類、その交換率、焼成条件などが考えられる。
Conventionally, factors that affect the gas adsorption capacity of a zeolite adsorbent include the type of zeolite, the type of ion-exchange cation, the exchange rate, and the firing conditions.

発明者らはこれらの要因について鋭意検討を行ない、
Na−A型ゼオライトの成形、焼成物を、加湿により水和
した後カルシウムイオン交換を行い次いでこれを、500
℃以下の温度で活性化することによりCO吸着容量の大き
なCa−A型ゼオライト吸着剤が得られることを見出し、
本発明を完成することに至った。
The inventors have conducted intensive studies on these factors,
The molded and calcined product of the Na-A type zeolite was hydrated by humidification, and then subjected to calcium ion exchange.
It has been found that a Ca-A type zeolite adsorbent having a large CO adsorption capacity can be obtained by activating at a temperature of not more than ℃.
The present invention has been completed.

すなわち、本発明は、Caイオン交換率が60%以上のCa
−A型ゼオライトを75重量%以上含有する吸着剤であっ
て、かつ該吸着剤の25℃,760mmHgにおけるガス吸着特性
が次の関係を有することを特徴とする水素PSA用ゼオラ
イト吸着剤に関するものである。
That is, the present invention provides a Ca ion exchange rate of 60% or more.
An adsorbent containing at least 75% by weight of zeolite A, wherein the gas adsorbent at 25 ° C. and 760 mmHg has the following relationship: is there.

更に本発明は、ゼオライト吸着剤が下記の工程を終る
ことを特徴とする水素PSA用ゼオライト吸着剤の製造法
に係るものである。
Further, the present invention relates to a method for producing a zeolite adsorbent for hydrogen PSA, wherein the zeolite adsorbent completes the following steps.

(1) A型ゼオライト75重量%以上および粘土系結合
剤25重量%以下の混合物を成形、乾燥および焼成して成
形体を調製する工程 (2) 該成形体を加湿して水和する工程 (3) 水和させた成形体をカルシウム塩水溶液でイオ
ン交換する工程 (4) Caイオン交換したCa−A型ゼオライト成形体を
200〜500℃の温度により加熱して活性化する工程 以下、本発明について詳細に説明する。
(1) A step of forming, drying, and firing a mixture of 75% by weight or more of A-type zeolite and 25% by weight or less of a clay-based binder to prepare a molded body. (2) A step of humidifying and hydrating the molded body ( 3) Step of ion-exchanging the hydrated compact with an aqueous solution of calcium salt (4) Ca-A-exchanged Ca-A type zeolite compact
Step of activating by heating at a temperature of 200 to 500 ° C. Hereinafter, the present invention will be described in detail.

本発明に係る水素PSA用ゼオライト吸着剤は、粘土系
結合剤により成形したCa−A型ゼオライト成形体であっ
て、その含有量は75重量%以上になっているのである。
The zeolite adsorbent for hydrogen PSA according to the present invention is a Ca-A type zeolite molded article molded with a clay-based binder, and its content is 75% by weight or more.

かかるゼオライトは、酸化物のモル比で表わした一般
式が (xM2O・yCaO)・Al2O3・ (1.85±0.5)SiO2・nH2O 〔式中、Mはアルカリ金属、x+y=1.0±0.2,n≦4.5
を表わす〕 で示される組成をもち、Caイオン交換率が60%以上にあ
り、いわゆる5A型ゼオライトである。
Such a zeolite has a general formula expressed by a molar ratio of oxides as (xM 2 O · yCaO) · Al 2 O 3 · (1.85 ± 0.5) SiO 2 · nH 2 O [wherein, M is an alkali metal, x + y = 1.0 ± 0.2, n ≦ 4.5
This is a so-called 5A zeolite having a composition represented by the following formula, having a Ca ion exchange rate of 60% or more.

また、多くの場合、このゼオライトは、0.5〜5.0μm
の範囲のものが80重量%以上の粒度分布を有し、かつ平
均粒子系は1〜4μmの範囲にあるものが好ましい。
Also, in many cases, this zeolite is 0.5-5.0 μm
Are preferred to have a particle size distribution of 80% by weight or more, and have an average particle size in the range of 1 to 4 μm.

なお、上記において、粒度分布はコールターカウンタ
ー法による測定法で求めたものである。
In the above description, the particle size distribution is obtained by a measuring method based on the Coulter counter method.

かかるゼオライト吸着剤は、前記したようなガス吸着
特性を有することが特徴の1つとなっており、得に水素
PSA用吸着剤に適しているものである。
One of the features of such a zeolite adsorbent is that it has the gas adsorption characteristics as described above.
It is suitable as an adsorbent for PSA.

例えば、コークス炉から得られる粗製水素ガスの組成
の一例を表−1に挙げる。
For example, Table 1 shows an example of the composition of crude hydrogen gas obtained from a coke oven.

上記の組成から明らかなように、CH4,CO,N2,O2などの
不純ガスに対する吸着容量の大きいものが、H2−PSA用
吸着剤として重要であるが、本発明に係るゼオライト吸
着剤はこれに好適なものである。
As apparent from the above composition, CH 4, CO, having a large adsorption capacity for impurity gases such as N 2, O 2 is is important as adsorbents for H 2-PSA, zeolite adsorption according to the present invention Agents are suitable for this.

更に、本発明に係るゼオライト吸着剤は、後記で定義
する含水率が3重量%以下であることが特に好ましい。
Furthermore, the zeolite adsorbent according to the present invention particularly preferably has a water content of 3% by weight or less as defined below.

この理由は、第1図に示すように含水率が約3重量%
以下でCO吸着容量の比率が最大かつ臨界的に安定となる
ことによる。
This is because the water content is about 3% by weight as shown in FIG.
This is because the ratio of the CO adsorption capacity becomes maximum and critically stable below.

かかる成形物の形状や大きさは、専ら用途や成形方法
により異なるので、特に限定はないが多くの場合、球
状,だ円形状,棒状など適宜所望の形状や大きさを設計
すればよい。
The shape and size of such a molded product differ depending on the application and the molding method, and are not particularly limited. In many cases, a desired shape and size such as a sphere, an ellipse, and a bar may be appropriately designed.

次に、本発明に係る吸着剤の製造法について説明す
る。
Next, a method for producing the adsorbent according to the present invention will be described.

(1) 成形体の調製工程 この工程では、Na−A型ゼオライト粒子と粘土系結合
剤からなる混合物を混練し、成形し、乾燥および焼成し
て強度のある成形体を調製することにある。
(1) Step of Preparing Molded Body In this step, a mixture comprising Na-A type zeolite particles and a clay-based binder is kneaded, molded, dried and calcined to prepare a molded body having strength.

Na−A型ゼオライトは、公知であり、また前記した粒
度特性を有する。
Na-A zeolites are known and have the above-mentioned particle size characteristics.

他方、粘土系結合剤としては、例えばカオリナイト、
ハロイサイト、ボルクレー、ベントナイト、酸性白土、
アタパルジャイト、ヘクトライト、木節粘土、セピオラ
イトなどのカオリン系、スメクタイト族、パリゴルスカ
イト族の可塑性粘土が使用できる。上記、粘土結合剤の
添加量は、少ない方が好ましいが、成形体の強度などと
の兼ね合いから、ゼオライト成形体中の非ゼオライト成
分が25重量%以下、多くの場合10〜25%の範囲と成るよ
うに配合される。
On the other hand, as the clay-based binder, for example, kaolinite,
Halloysite, Volclay, bentonite, acid clay,
Kaolin-based plastics such as attapulgite, hectorite, kibushi clay, sepiolite, smectites, and palygorskite plastics can be used. The amount of the clay binder added is preferably as small as possible.However, in consideration of the strength of the molded body, the amount of the non-zeolitic component in the zeolite molded body is 25% by weight or less, and is often in the range of 10 to 25%. It is blended so that it becomes.

なお、所望により、粘土系結合剤のほかに、成形体の
マクロポアを調整するためにセルロースパウダーや水溶
性高分子を少量配合させてもよい。
If desired, a small amount of cellulose powder or a water-soluble polymer may be blended in addition to the clay-based binder in order to adjust the macropores of the molded article.

かかる混合物を適量の水と共に充分に混練したのち、
所望の成形機で成形又は造粒するが一般的には押出し成
形又は転動造粒法が好適である。
After sufficiently kneading such a mixture with an appropriate amount of water,
Molding or granulation is performed by a desired molding machine, but extrusion molding or tumbling granulation is generally preferred.

得られた成形体は初期強度を得るために乾燥するが、
多くの場合110℃前後で1〜3時間行う。
The obtained molded body is dried to obtain the initial strength,
In many cases, it is performed at about 110 ° C. for 1 to 3 hours.

次いで、所望の加熱炉を用い500〜700℃の温度で焼成
して強度のある成形体を得る。約500℃以下において
は、粘土系結合剤の水酸基が残存しているため成形体の
強度が不充分であり、また、700℃以上ではゼオライト
が、分解を始める。
Next, it is fired at a temperature of 500 to 700 ° C. in a desired heating furnace to obtain a strong molded body. At a temperature of about 500 ° C. or lower, the strength of the molded body is insufficient because the hydroxyl groups of the clay-based binder remain, and at a temperature of 700 ° C. or higher, the zeolite starts to decompose.

(2) 水和工程 この工程は、前工程で得られた焼成成形物を穏和な条
件で水和させることにあり、本発明の特徴の1つとなっ
ている。
(2) Hydration step This step is to hydrate the calcined molded product obtained in the previous step under mild conditions, which is one of the features of the present invention.

このため、この水和工程では、水蒸気で加湿すること
により行い、直接水に浸漬水和することは避けるべきで
ある。
For this reason, this hydration step is performed by humidification with steam, and should not be directly immersed and hydrated in water.

この理由は、焼成成形体とそのままカルシウム塩水溶
液中でイオン交換すると吸水又は熱衝撃を伴う崩壊が生
じ、安定な成形体が維持できないことによる。
The reason for this is that if ion exchange with the calcined molded body is directly performed in a calcium salt aqueous solution, collapse accompanied by water absorption or thermal shock occurs, and a stable molded body cannot be maintained.

加湿による水和は得に限定する必要はないが、一般的
に言えば含水率が5〜20重量%好ましくは7〜18重量%
の範囲が適当である。
Hydration by humidification does not need to be particularly limited, but generally speaking, the water content is 5 to 20% by weight, preferably 7 to 18% by weight.
Is appropriate.

(3) イオン交換工程 この工程は、水和成形体の状態にてカルシウム塩水溶
液を用いてCaイオン交換処理を行うものであって、イオ
ン交換操作は、この分野では極めて公知となっている。
(3) Ion exchange step In this step, Ca ion exchange treatment is performed using a calcium salt aqueous solution in the state of a hydrated molded body, and the ion exchange operation is extremely known in this field.

この処理では、Caイオン交換率が60%以上であるよう
な操作を行う。
In this process, an operation is performed such that the Ca ion exchange rate is 60% or more.

前記したように、一般的には、Ca−A型ゼオライト吸
着剤はNa−A型ゼオライト粒子を予めイオン交換してCa
−A型ゼオライト粉末を出発原料にして、これを成形お
よび焼成して吸着剤とするが、本発明では、これと全く
逆に成形後イオン交換するところがその特徴の1つとな
っている。
As described above, generally, the Ca-A-type zeolite adsorbent ion-exchanges the Na-A-type zeolite particles in advance to obtain a Ca-type zeolite.
-A type zeolite powder is used as a starting material, which is molded and calcined to obtain an adsorbent. One of the features of the present invention is that ion exchange is performed after molding, which is completely opposite to the above.

(4) 活性化工程 この工程は、Ca−A型ゼオライト成形体につき所望の
ガス吸着特性を得るために焼成して活性化させるところ
にある。
(4) Activation Step In this step, the Ca-A type zeolite compact is fired and activated to obtain desired gas adsorption characteristics.

即ち、前工程で得られたCa−A型ゼオライトは水洗お
よび所望により乾燥後、200〜500℃の温度により加熱処
理を行い活性化させる。
That is, the Ca-A-type zeolite obtained in the previous step is activated by performing a heat treatment at a temperature of 200 to 500 ° C. after washing with water and, if desired, drying.

この理由は、200℃未満では長時間加熱しても充分に
水分を除くことができず、また、500℃を越えるとCOガ
スの吸着容量が低下することによる。この場合、活性化
後のCa−A型ゼオライトの含水率が3重量%以下となる
ようにする。水の吸着の場合は含水率の増加分のみが水
の吸着容量を減ずるが、第1図をもって前記したように
一酸化炭素の吸着容量に関しては、含水率が3重量%を
越えると大きく減少することになるからである。本発明
では、ゼオライト成形体を以上のような各工程を経て、
かつ厳格に管理することにより前記したガス吸着容量の
大きなCa−A型ゼオライト成形体が得られ、特にH2−PS
A用吸着剤として好適なものを製造することができる。
The reason for this is that if the temperature is lower than 200 ° C., water cannot be sufficiently removed even if heated for a long time, and if the temperature exceeds 500 ° C., the adsorption capacity of CO gas decreases. In this case, the water content of the activated Ca-A type zeolite is adjusted to 3% by weight or less. In the case of water adsorption, only the increase in the water content decreases the water adsorption capacity, but as described above with reference to FIG. 1, the carbon monoxide adsorption capacity is greatly reduced when the water content exceeds 3% by weight. Because it will be. In the present invention, the zeolite molded body through the above steps,
By the strict control and the above-mentioned Ca-A type zeolite molded body having a large gas adsorption capacity can be obtained, especially H 2 -PS
Suitable adsorbents for A can be produced.

〔実 施 例〕〔Example〕

以下、本発明の実施例および比較例について説明す
る。
Hereinafter, examples and comparative examples of the present invention will be described.

実施例 1 0.5〜5μmのものが80重量%以上、かつ平均粒子径
2.3μmのNa−A型ゼオライト粉末(0.98Na2O・Al2O3
1.98SiO2・3.9H2O)125重量部、カオリン粘土25重量部
を混合後、水40重量部を加えて捏和する。次いで押出成
形機(不二パウダル製、EXD−60型)ダイス径1.5mmで押
出し、円柱状成形物を得た。得られた成形物を110℃、
2時間乾燥後600℃、2時間焼成して直径1.5mmのNa−A
型ゼオライト成形体とした。この成形体100重量部を蒸
気で加湿しその含水率を測定したところ9.8重量%であ
った。加湿物に塩化カルシウム2水塩55.8重量部、水83
3.3重量部を加え70℃に加温して5時間イオン交換を行
った。イオン交換後、水洗,乾燥,400℃で2時間焼成し
てCa−A型ゼオライト吸着剤を得た。そのカルシウムイ
オン交換率は、65.4%、含水率は2.2重量%であった。
Example 1 80% or more by weight of 0.5 to 5 μm and average particle diameter
2.3 μm Na-A type zeolite powder (0.98 Na 2 O.Al 2 O 3.
After mixing 125 parts by weight of 1.98 SiO 2 and 3.9 H 2 O) and 25 parts by weight of kaolin clay, 40 parts by weight of water are added and kneaded. Next, an extrusion molding machine (manufactured by Fuji Paudal, EXD-60 type) was extruded with a die diameter of 1.5 mm to obtain a cylindrical molded product. The obtained molded product is 110 ° C,
After drying for 2 hours, baking at 600 ° C for 2 hours, Na-A with a diameter of 1.5 mm
A molded zeolite was obtained. 100 parts by weight of this molded body was humidified with steam and the water content was measured, and it was 9.8% by weight. 55.8 parts by weight of calcium chloride dihydrate, water 83
3.3 parts by weight were added, and the mixture was heated to 70 ° C. and subjected to ion exchange for 5 hours. After ion exchange, it was washed with water, dried and calcined at 400 ° C. for 2 hours to obtain a Ca-A type zeolite adsorbent. Its calcium ion exchange rate was 65.4% and its water content was 2.2% by weight.

実施例 2 実施例1で用いたと同じNa−A型ゼオライト粉末125
重量部、カオリン粘土25重量部を混合し、その混合物を
皿型造粒機(直径600mm)に給粉しながら、水を噴霧し
た転動造粒を行った。造粒後、造粒物をふるいで分級し
直径2〜4mmの球状成形体を得た。得られた成形体を110
℃、2時間乾燥後650℃で2時間焼成して、球状のNa−
A型ゼオライト成形体とした。この成形体100重量部を
蒸気で加湿しその含水率を測定したところ11.2重量%で
あった。加湿物に塩化カルシウム2水塩55.8重量部、水
831.6重量部を加え、60℃に加温して5時間イオン交換
を行った。イオン交換後、水洗、乾燥、350℃で3時間
焼成してCa−A型ゼオライト吸着剤を得た。そのカルシ
ウムイオン交換率は、64.8%、含水率は、2.8重量%で
あった。
Example 2 Same Na-A type zeolite powder 125 used in Example 1
By weight, 25 parts by weight of kaolin clay were mixed, and the mixture was subjected to tumbling granulation by spraying water while feeding the mixture to a dish-type granulator (600 mm in diameter). After the granulation, the granulated product was classified by sieving to obtain a spherical molded body having a diameter of 2 to 4 mm. The obtained molded body is 110
At 650 ° C for 2 hours after drying for 2 hours.
An A-type zeolite molded body was obtained. 100 parts by weight of this molded body was humidified with steam and the water content was measured. As a result, it was 11.2% by weight. 55.8 parts by weight of calcium chloride dihydrate, water
831.6 parts by weight were added, and the mixture was heated to 60 ° C. and subjected to ion exchange for 5 hours. After ion exchange, it was washed with water, dried, and calcined at 350 ° C. for 3 hours to obtain a Ca-A type zeolite adsorbent. Its calcium ion exchange rate was 64.8% and its water content was 2.8% by weight.

実施例 3 実施例1と同じNa−A型ゼオライト粉末125重量部、
カオリン粘土15重量部、ベントナイト粘土10重量部を混
合後、水40重量部を加えて捏和する。次いで押出成形機
(不二パウダル製、EXD−60型)ダイス径2.0mmで押出
し、円柱状成形物を得た。得られた成形物を転動球形整
粒機(不二パウダル製、マルメライザー Q−400型)
で球状に成形し、120℃、2時間乾燥後、700℃、2時間
焼成して直径2〜4mmのNa−A型ゼオライト成形体とし
た。この成形体は100重量部を温度24℃、相対湿度78%
の室内で1昼夜放置し吸湿させた。吸湿した試料の含水
率を測定したところ6.8重量%であった。吸湿材料に塩
化カルシウム2水塩64.4重量部、水828.3重量部を加
え、700℃に加温して5時間イオン交換を行った。イオ
ン交換後、水洗、乾燥、250℃で12時間焼成してCa−A
型ゼオライト吸着剤を得た。そのカルシウムイオン交換
率は、71.8%、含水率は2.5重量%であった。
Example 3 125 parts by weight of the same Na-A type zeolite powder as in Example 1,
After mixing 15 parts by weight of kaolin clay and 10 parts by weight of bentonite clay, 40 parts by weight of water are added and kneaded. Next, an extruder (made by Fuji Paudal, EXD-60 type) was extruded with a die diameter of 2.0 mm to obtain a columnar molded product. Rolled spherical granulator (Fuji Paudal, Malmerizer Q-400 type)
And dried at 120 ° C. for 2 hours, and calcined at 700 ° C. for 2 hours to obtain a molded body of Na-A type zeolite having a diameter of 2 to 4 mm. This molded body is 100 parts by weight at a temperature of 24 ° C and a relative humidity of 78%.
In the room for one day and night to absorb moisture. The moisture content of the sample having absorbed moisture was measured to be 6.8% by weight. 64.4 parts by weight of calcium chloride dihydrate and 828.3 parts by weight of water were added to the hygroscopic material, and the mixture was heated to 700 ° C. and subjected to ion exchange for 5 hours. After ion exchange, wash with water, dry and calcine at 250 ° C for 12 hours to obtain Ca-A
A zeolite adsorbent was obtained. Its calcium ion exchange rate was 71.8% and its water content was 2.5% by weight.

実施例 4 実施例1と同じNa−A型ゼオライト粉末125重量部、
カオリン粘土10重量部、セピオライト(武田薬品製 エ
ードプラス)10重量部を混合後、水43重量部を加えて捏
和する。次いで押出成形機(不二パウダル製、EXD−60
型)ダイス径1.5mmで押出し、円柱状成形物を得た。得
られた成形物を110℃、2時間乾燥後600℃、2時間焼成
して直径1.5mmのNa−A型ゼオライト成形体とした。こ
の成形体100重量部を蒸気で加湿しその含水率を測定し
たところ16.1重量部であった。加湿物に塩化カルシウム
2水塩55.8重量部、水825.0重量部を加え、60℃に加温
して6時間イオン交換を行った。イオン交換後、水洗、
乾燥、480℃で2時間焼成してCa−A型ゼオライト吸着
剤を得た。そのカルシウムイオン交換率は、63.2%、含
水率は1.9重量%であった。
Example 4 125 parts by weight of the same Na-A type zeolite powder as in Example 1,
After mixing 10 parts by weight of kaolin clay and 10 parts by weight of sepiolite (Adeplus manufactured by Takeda Pharmaceutical Co., Ltd.), 43 parts by weight of water is added and kneaded. Next, an extruder (Fuji Paudal EXD-60
Mold) Extruded with a die diameter of 1.5 mm to obtain a cylindrical molded product. The obtained molded product was dried at 110 ° C for 2 hours and calcined at 600 ° C for 2 hours to obtain a 1.5 mm diameter Na-A type zeolite molded product. 100 parts by weight of this molded body was humidified with steam and the water content was measured. As a result, it was 16.1 parts by weight. 55.8 parts by weight of calcium chloride dihydrate and 825.0 parts by weight of water were added to the humidified substance, and the mixture was heated to 60 ° C. and subjected to ion exchange for 6 hours. After ion exchange, wash with water,
It was dried and calcined at 480 ° C. for 2 hours to obtain a Ca-A type zeolite adsorbent. Its calcium ion exchange rate was 63.2% and its water content was 1.9% by weight.

実施例 5 実施例1と同じNa−A型ゼオライト粉末125重量部、
カオリン粘土25重量部を混合後、水40重量部を加えて捏
和する。次いで押出成形機(不二パウダル製、EXD−60
型)ダイス径1.5mmで押出し、円柱状成形物を得た。得
られた成形物を110℃、2時間乾燥後550℃、2時間焼成
して直径3.0mmのNa−A型ゼオライト成形体とした。こ
の成形体100重量部を蒸気で加湿しその含水率を測定し
たところ8.3重量%であった。加湿物に塩化カルシウム
2水塩43.0重量部、水849.9重量部を加え、25℃におい
て24時間イオン交換を行った。イオン交換終了後、水洗
して再度塩化カルシウム2水塩43.0重量部、水を加えて
全量を1000重量部とし24時間イオン交換を行った。イオ
ン交換を全部で5回行った後、水洗、乾燥、450℃で2
時間焼成してCa−A型ゼオライト吸着剤を得た。そのカ
ルシウムイオン交換率は、86.5%、含水率は1.9重量%
であった。
Example 5 125 parts by weight of the same Na-A type zeolite powder as in Example 1,
After mixing 25 parts by weight of kaolin clay, 40 parts by weight of water are added and kneaded. Next, an extruder (Fuji Paudal EXD-60
Mold) Extruded with a die diameter of 1.5 mm to obtain a cylindrical molded product. The obtained molded product was dried at 110 ° C for 2 hours and calcined at 550 ° C for 2 hours to obtain a Na-A type zeolite molded product having a diameter of 3.0 mm. 100 parts by weight of this molded body was humidified with steam, and its water content was measured to be 8.3% by weight. 43.0 parts by weight of calcium chloride dihydrate and 849.9 parts by weight of water were added to the humidified substance, and ion exchange was performed at 25 ° C. for 24 hours. After the completion of the ion exchange, the mixture was washed with water and again 43.0 parts by weight of calcium chloride dihydrate and water were added to make the total amount 1000 parts by weight, and ion exchange was performed for 24 hours. After performing ion exchange a total of 5 times, wash with water, dry, and
After calcining for a time, a Ca-A type zeolite adsorbent was obtained. Its calcium ion exchange rate is 86.5%, moisture content is 1.9% by weight
Met.

比較例 1 実施例1で用いたと同じNa−A型ゼオライト粉末を用
いてCaイオン交換処理して得られたCa−A型ゼオライト
粉末(0.68CaO・0.30Na2O・Al2O3・1.96SiO2・4.2H2O)
128重量部、カオリン系粘土25重量部を混合後、水40重
量部を加えて捏和する。次いで押出成形機(不二パウダ
ル製、EXD−60型)ダイス径1.5mmで押出し、円柱状成形
物を得た。得られた成形物を110℃、2時間乾燥後600、
2時間焼成して直径1.5mmのCa−A型ゼオライト成形体
とした。そのカルシウムイオン交換率は、69.4%、含水
率は1.1重量%であった。
Comparative Example 1 A Ca-A type zeolite powder (0.68 CaO.0.30 Na 2 O.Al 2 O 3 .1.96 SiO) obtained by performing a Ca ion exchange treatment using the same Na-A type zeolite powder used in Example 1 2・ 4.2H 2 O)
After mixing 128 parts by weight and 25 parts by weight of kaolin-based clay, 40 parts by weight of water is added and kneaded. Next, an extrusion molding machine (manufactured by Fuji Paudal, EXD-60 type) was extruded with a die diameter of 1.5 mm to obtain a cylindrical molded product. The obtained molded product is dried at 110 ° C. for 2 hours, 600,
It was calcined for 2 hours to obtain a 1.5 mm diameter Ca-A type zeolite compact. Its calcium ion exchange rate was 69.4% and its water content was 1.1% by weight.

比較例 2 実施例1と同じNa−A型ゼオライト粉末125重量部、
カオリン系粘土25重量部を混合後、水40重量部を加えて
捏和する。次いで押出成形機(不二パウダル製、EXD−6
0型)ダイス径1.5mmで押出し、円柱状成形物を得た。得
られた成形物を110℃、2時間乾燥後600℃、2時間焼成
して直径1.5mmのNa−A型ゼオライト成形体とした。こ
の成形体100重量部を蒸気で加湿しその含水率を測定し
たところ9.8重量%であった。加湿物に塩化カルシウム
2水塩54.3重量部、水834.8重量部を加え、70℃に加温
して5時間イオン交換を行った。イオン交換後、水洗、
乾燥、600℃で2時間焼成してCa−A型ゼオライト吸着
剤を得た。そのカルシウムイオン交換率は、64.4%、含
水率は1.3重量%であった。
Comparative Example 2 125 parts by weight of the same Na-A type zeolite powder as in Example 1,
After mixing 25 parts by weight of kaolin-based clay, 40 parts by weight of water are added and kneaded. Next, an extruder (made by Fuji Paudal, EXD-6
(Type 0) Extruded with a die diameter of 1.5 mm to obtain a cylindrical molded product. The obtained molded product was dried at 110 ° C for 2 hours and calcined at 600 ° C for 2 hours to obtain a 1.5 mm diameter Na-A type zeolite molded product. 100 parts by weight of this molded body was humidified with steam and the water content was measured, and it was 9.8% by weight. 54.3 parts by weight of calcium chloride dihydrate and 834.8 parts by weight of water were added to the humidified substance, and the mixture was heated to 70 ° C. and subjected to ion exchange for 5 hours. After ion exchange, wash with water,
It was dried and calcined at 600 ° C. for 2 hours to obtain a Ca-A type zeolite adsorbent. Its calcium ion exchange rate was 64.4% and its water content was 1.3% by weight.

比較例 3 実施例1と同じNa−A型ゼオライト粉末125重量部、
カオリン系粘土25重量部を混合後、水40重量部を加えて
捏和する。次いで押出成形機(不二パウダル製、EXD−6
0型)ダイス径1.5mmで押出し、円柱状成形物を得た。得
られた成形物を110℃、2時間乾燥後、2時間焼成して
直径1.5mmのNa−A型ゼオライト成形体とした。この成
形体100重量部を蒸気で加湿せずにその含水率を測定し
たところ1.1重量%であった。また、無加湿のゼオライ
ト成形体に塩化カルシウム2水塩54.3重量部、水834.8
重量部を加え、70℃に加温して5時間イオン交換を行っ
た。イオン交換後、Ca−A型ゼオライト成形体を取り出
したところ、成形体の1部が注水の際のサーマルショッ
クで破壊していた。
Comparative Example 3 125 parts by weight of the same Na-A type zeolite powder as in Example 1,
After mixing 25 parts by weight of kaolin-based clay, 40 parts by weight of water are added and kneaded. Next, an extruder (made by Fuji Paudal, EXD-6
(Type 0) Extruded with a die diameter of 1.5 mm to obtain a cylindrical molded product. The obtained molded product was dried at 110 ° C. for 2 hours and calcined for 2 hours to obtain a 1.5 mm diameter Na-A type zeolite molded product. When the water content of 100 parts by weight of this molded body was measured without being humidified by steam, it was 1.1% by weight. 54.3 parts by weight of calcium chloride dihydrate and 834.8 parts of water were added to a non-humidified zeolite compact.
A part by weight was added, and the mixture was heated to 70 ° C. and subjected to ion exchange for 5 hours. After the ion exchange, when the Ca-A type zeolite molded body was taken out, a part of the molded body was broken by thermal shock at the time of water injection.

以上の各実施例および比較例から得られた成形体につ
き下記の方法で評価した。
The molded articles obtained from the above Examples and Comparative Examples were evaluated by the following methods.

(I)ガス吸着特性 i)ガス吸着容量の測定 ガス吸着量測定装置((米)カンタクローム社製、オ
ートソーブ1)を用いて予め300℃で真空脱気したゼオ
ライト吸着剤の試料につき25℃における各測定点の平衡
吸着圧力とそれぞれガス吸着量を測定する。求めた平衡
吸着圧力と吸着量をグラフにプロットして、吸着等温線
を作成する。選られた吸着等温線より760mmHgにおける
ガス吸着容量を求める。
(I) Gas adsorption characteristics i) Measurement of gas adsorption capacity A sample of a zeolite adsorbent which was previously degassed in vacuum at 300 ° C using a gas adsorption amount measuring device (manufactured by Cantachrome Co., Ltd., Autosorb 1) at 25 ° C The equilibrium adsorption pressure at each measurement point and the gas adsorption amount are measured. The obtained equilibrium adsorption pressure and adsorption amount are plotted on a graph to create an adsorption isotherm. The gas adsorption capacity at 760 mmHg is determined from the selected adsorption isotherm.

ii)含水率 焼成前の重量(W1)を測定する。試料を800℃で2時
間焼成しその重量を(W2)として含水率を求める iii)測定結果 表−2に示すとおり、本発明に係る吸着剤は、COなど
の吸着容量の大きいものであることが判った。
ii) Moisture content Measure the weight (W 1 ) before firing. The sample is fired at 800 ° C for 2 hours, and the weight is (W 2 ) to determine the water content. iii) Measurement results As shown in Table 2, the adsorbent according to the present invention was found to have a large adsorption capacity for CO and the like.

(II)吸着剤の含水率とCO吸着容量との関係 i)測定方法 実施例2で得られたイオン交換後、水洗処理した成形
体を110℃、2時間乾燥後のものを試料として4gを取
り、オートソーブ試料管に充填したものにつき、真空脱
気してそれぞれ残留水分の異なる試料を調製する。
(II) Relationship between the water content of the adsorbent and the CO adsorption capacity i) Measurement method After ion exchange obtained in Example 2, the water-washed molded body was dried at 110 ° C. for 2 hours, and 4 g was used as a sample. The sample filled in the autosorb sample tube is degassed in vacuum to prepare samples having different residual moisture.

この各試料の含水率は別に800℃、2時間焼成して求
める。
The water content of each sample is separately determined by firing at 800 ° C. for 2 hours.

他方、残留水分の異なる試料につき、25℃、760mmHg
における、COガス吸着容量を前記と同様な測定法にて求
め、含水量とCOガス吸着容量との関係を評価する。
On the other hand, for samples with different residual moisture, 25 ° C, 760 mmHg
, The CO gas adsorption capacity is determined by the same measurement method as described above, and the relationship between the water content and the CO gas adsorption capacity is evaluated.

ii)測定結果 表−3に示すとおりであり、これを図示すると第1図
のようになる。
ii) Measurement result It is as shown in Table-3, which is illustrated in FIG.

この結果から明らかなように、吸着剤の含水率は3重
量%以下において、COガス吸着容量が最大かつ安定とな
る。
As is clear from the results, when the water content of the adsorbent is 3% by weight or less, the CO gas adsorption capacity becomes maximum and stable.

なお、本結果は、実施例2における成形体につき求め
られたものであるが、他の実施例における成形体につい
ても同様である。
In addition, although this result was calculated | required about the molded object in Example 2, it is the same about the molded object in other Examples.

〔発明の効果〕 本発明に係るゼオライト吸着剤は、CO,CH4,N2およびO
2等のガス吸着容量のすぐれたものであり、特にH2−PSA
用吸着剤として好適なものである。
[Effects of the Invention] The zeolite adsorbent according to the present invention comprises CO, CH 4 , N 2 and O
Excellent gas adsorption capacity of 2 etc., especially H 2 -PSA
It is suitable as an adsorbent for use.

また、本発明に係る製法によれば、H2−PSA用吸着剤
として優れたゼオライト吸着剤を有利に製造することが
できる。
Further, according to the production method of the present invention, an excellent zeolite adsorbent as an adsorbent for H 2 -PSA can be advantageously produced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に係る吸着剤の含水率とCO吸着容量と
の関係の1例を示すグラフである。
FIG. 1 is a graph showing an example of the relationship between the water content of the adsorbent according to the present invention and the CO adsorption capacity.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Caイオン交換率が60以上のCa−A型ゼオラ
イトを75重量%以上含有する吸着剤であって、かつ該吸
着剤の25℃,760mmHgにおけるガス吸着特性が次の関係を
有することを特徴とする水素PSA用ゼオライト吸着剤。
1. An adsorbent containing 75% by weight or more of Ca-A type zeolite having a Ca ion exchange rate of 60 or more, and the gas adsorption characteristics of the adsorbent at 25 ° C. and 760 mmHg have the following relationship. A zeolite adsorbent for hydrogen PSA, comprising:
【請求項2】ゼオライト吸着剤が下記の工程を経ること
を特徴とする水素PSA用ゼオライト吸着剤の製造法。 (1) A型ゼオライト75重量%以上および粘土系結合
剤25重量%以下の混合物を成形、乾燥および焼成して成
形体を調製する工程 (2) 該成形体を加湿して水和する工程 (3) 水和させた成形体をカルシウム塩水溶液でイオ
ン交換する工程 (4) Caイオン交換したCa−A型ゼオライト成形体を
200〜500℃の温度により加熱して活性化する工程
2. A method for producing a zeolite adsorbent for hydrogen PSA, wherein the zeolite adsorbent goes through the following steps. (1) A step of forming, drying, and firing a mixture of 75% by weight or more of A-type zeolite and 25% by weight or less of a clay-based binder to prepare a molded body. (2) A step of humidifying and hydrating the molded body ( 3) Step of ion-exchanging the hydrated compact with an aqueous solution of calcium salt (4) Ca-A-exchanged Ca-A type zeolite compact
Step of activating by heating at a temperature of 200 to 500 ° C
【請求項3】活性化工程(4)は、Ca−A型ゼオライト
成形体の含水率を3重量%以下とする請求項2記載の水
素PSA用ゼオライト吸着剤の製造法。
3. The method for producing a zeolite adsorbent for hydrogen PSA according to claim 2, wherein in the activation step (4), the water content of the Ca-A type zeolite molded product is 3% by weight or less.
JP63135069A 1988-05-31 1988-05-31 Zeolite adsorbent for hydrogen PSA and method for producing the same Expired - Fee Related JP2639562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135069A JP2639562B2 (en) 1988-05-31 1988-05-31 Zeolite adsorbent for hydrogen PSA and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135069A JP2639562B2 (en) 1988-05-31 1988-05-31 Zeolite adsorbent for hydrogen PSA and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01304042A JPH01304042A (en) 1989-12-07
JP2639562B2 true JP2639562B2 (en) 1997-08-13

Family

ID=15143131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135069A Expired - Fee Related JP2639562B2 (en) 1988-05-31 1988-05-31 Zeolite adsorbent for hydrogen PSA and method for producing the same

Country Status (1)

Country Link
JP (1) JP2639562B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292360A (en) * 1987-07-17 1994-03-08 Rhone-Poulenc Chimie 5A zeolite/kaolinite adsorbent for gas purification
JP3304383B2 (en) * 1992-02-07 2002-07-22 エヌオーケー株式会社 Hydrogen mixed gas adsorbent
US7404846B2 (en) * 2005-04-26 2008-07-29 Air Products And Chemicals, Inc. Adsorbents for rapid cycle pressure swing adsorption processes
CN114307950A (en) * 2021-12-31 2022-04-12 北京北大先锋科技股份有限公司 High-performance CaMgA molecular sieve adsorbent and preparation method thereof

Also Published As

Publication number Publication date
JPH01304042A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
KR100625359B1 (en) Molecular sieve adsorbent for gas purification and preparation thereof
JP5375890B2 (en) Carbon dioxide adsorption separation method
US5868818A (en) Adsorbent for air separation, production method thereof, and air-separation method using it
JPH1176810A (en) Agglomerated zeolite adsorbent, its production and use in separation of industrial gas at not extermely low temperature
CN1030534A (en) The method of separating nitrogen from the nitrogen mixture that contains the small amount of polar material
GB2109359A (en) Preparation of binderless 3a zeolite adsorbents
CA2013530A1 (en) Process for the purification of bulk gases using chabazite adsorbents
JP2639562B2 (en) Zeolite adsorbent for hydrogen PSA and method for producing the same
US6090738A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing methane from a gaseous mixture
US6030916A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing nitrogen from a gaseous mixture
KR100803771B1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JP4873108B2 (en) Carbon dioxide adsorption separation method
JP2000210557A (en) Molded product containing x-type zeolite, manufacture and use application thereof
JPH03295805A (en) X-type zeolite molded body and its production
JPH062575B2 (en) Clinoptilolite-type zeolite and method for producing the same
JPH0739752A (en) Adsorbent of carbon dioxide and manufacture thereof
JPH11246216A (en) Activated low-silica x-zeolite compact
JP3074816B2 (en) Method for producing 3A type zeolite molded body
JP2002018226A (en) Method for adsorptive separation of carbon dioxide
JPH02153818A (en) Production of zeolite moldings
JP2000211915A (en) Formed compact containing low-silica x type zeolite, its production and use thereof
JPH10101326A (en) Zeolite bead formed body having low wearing property and its production
JP2697040B2 (en) Ion exchange method for zeolite compacts
JPH0443696B2 (en)
JPH0141380B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees