JP2637492B2 - Deformation error correction structure for T-die lip driver - Google Patents
Deformation error correction structure for T-die lip driverInfo
- Publication number
- JP2637492B2 JP2637492B2 JP63197061A JP19706188A JP2637492B2 JP 2637492 B2 JP2637492 B2 JP 2637492B2 JP 63197061 A JP63197061 A JP 63197061A JP 19706188 A JP19706188 A JP 19706188A JP 2637492 B2 JP2637492 B2 JP 2637492B2
- Authority
- JP
- Japan
- Prior art keywords
- lip
- bellows
- displacement
- drive unit
- displacement sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/305—Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
- B29C48/31—Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
- B29C48/313—Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections by positioning the die lips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92019—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92076—Position, e.g. linear or angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92361—Extrusion unit
- B29C2948/92409—Die; Nozzle zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92514—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92904—Die; Nozzle zone
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はTダイリップ駆動部の変形誤差補正構造に関
するものである。Description: TECHNICAL FIELD The present invention relates to a deformation error correction structure for a T-die lip driving section.
(従来技術) 紙、アルミ箔、あるいはプラスチック等の基材に樹脂
をコーティングするラミネートプロセスでは、加工品
質、省樹脂化等の点からコーティング偏肉制御システム
に対するニーズが高まっている。本システムを実現する
ためには、溶融樹脂の流出量を制御することができるT
ダイが技術的ポイントとなる。(Prior Art) In a laminating process of coating a resin such as paper, aluminum foil, or plastic with a resin, the need for a coating uneven thickness control system is increasing in terms of processing quality, resin saving, and the like. In order to realize the present system, T
The die is the technical point.
従来、Tダイからの溶融樹脂の流出量は、リップ部に
設けられたギャップ調整用ボルトを人手により回転させ
ることによって調整されてきた。しかし、一部ではこれ
を自動化し「ヒートボルト方式」、「サーボモータ方
式」などの駆動方式を採用している。ヒートボルト方式
はボルトの熱膨張を利用する方法であるが、加熱・冷却
に時間を要し応答性が低い事が問題となっている。ま
た、サーボモータ方式は、1台ないし複数台のサーボモ
ータを用いてボルトを順次回転させる方式であり、これ
までの人手による作業をロボット化する思想に立ってい
る。しかし、全てのボルトを同時に駆動できず、結果と
して調整時間が大きくなるという問題がある。Conventionally, the amount of the molten resin flowing out of the T-die has been adjusted by manually rotating a gap adjusting bolt provided on the lip portion. However, some have automated this and adopted drive methods such as the "heat bolt method" and the "servo motor method". The heat bolt method is a method that utilizes the thermal expansion of a bolt, but has a problem in that it requires time for heating and cooling and has low response. Further, the servo motor system is a system in which one or a plurality of servo motors are used to sequentially rotate bolts, and is based on the idea of converting a conventional manual operation into a robot. However, there is a problem that all bolts cannot be driven at the same time, resulting in a longer adjustment time.
(発明が解決しようとする課題) 従来技術の問題点に鑑み、ギャップの調整を高速、且
つ精度よく行うことができるTダイリップ駆動部の構造
を提供せんとするものである。特に、溶融樹脂圧力の影
響をも考慮したTダイリップ駆動部の変形誤差補正構造
を提供しようとするものである。(Problems to be Solved by the Invention) In view of the problems of the prior art, it is an object of the present invention to provide a structure of a T-die lip drive unit capable of adjusting a gap at high speed and with high accuracy. In particular, it is an object of the present invention to provide a structure for correcting a deformation error of a T-die lip drive unit in consideration of the influence of molten resin pressure.
(発明による課題の解決手段) 本体構造体1と本体構造体1の側部に配設した複数個
のベローズ2と、上部で各ベローズ2に締着され、下部
でリップ部構造体12に締着されたベローズ2とリップ部
13を連結する駆動部構造体3とからなり、駆動部構造体
3はリップ部13の巾方向に複数のベローズ2に対応して
複数に分割され、かつ各分割された駆動部構造体3の上
部にその樹脂流圧力によるリップ部13の変位を検出する
変位センサー15を設け、該変位センサー15による検出値
をフィードバックして該変位センサー15による検出値と
変位量目標値とを比較し、比較された正負値を電空変換
器にてガス圧Paに変換し、該ガス圧Paをベローズ2に供
給して、リップ部開度を制御するようにした。(Means for Solving the Problems According to the Invention) The main body structure 1, a plurality of bellows 2 disposed on the side of the main body structure 1, are fastened to the respective bellows 2 at the upper portion, and fastened to the lip portion structure 12 at the lower portion. Weared bellows 2 and lip
The drive unit structure 3 is connected to the plurality of bellows 2 in the width direction of the lip 13, and the drive unit structure 3 is divided into a plurality of parts. A displacement sensor 15 for detecting displacement of the lip portion 13 due to the resin flow pressure is provided at an upper portion, and a detection value of the displacement sensor 15 is fed back to compare a detection value of the displacement sensor 15 with a displacement amount target value. The obtained positive / negative value is converted into a gas pressure Pa by an electropneumatic converter, and the gas pressure Pa is supplied to the bellows 2 to control the lip opening.
(作用) 上・下のベローズに圧縮空気を送るとベローズが伸
び、駆動部構造体からリップ部構造体を介してリップ部
にモーメントが作用して変位する。そしてその変位量を
変位センサーで検出し、その変位量をフィードバックし
て制御するようにしたので、樹脂圧力等によりリップ部
の変形があっても、これを直ちに補正し、高精度のリッ
プ開度制御ができる。(Operation) When compressed air is sent to the upper and lower bellows, the bellows expands, and a moment acts on the lip portion from the driving portion structure via the lip portion structure to be displaced. The displacement amount is detected by a displacement sensor, and the displacement amount is fed back and controlled. Therefore, even if the lip portion is deformed due to resin pressure, etc., this is immediately corrected, and a high-precision lip opening degree is obtained. Can control.
(実施例) 第1図は本発明を実施したTダイリップ部の斜視図で
ある。Tダイは大きくわけて3つの部分から構成されて
いる。即ち、本体構造体1、本体構造体1の長手方向側
部片側に配設した複数個のベローズ2…、ベローズ2と
リップ部13とを連結する駆動部構造体3…で構成されて
いる。これらの組合せにより、任意数の駆動部を構成す
ることができる。(Example) FIG. 1 is a perspective view of a T-die lip portion embodying the present invention. The T-die is roughly composed of three parts. That is, it is composed of a main body structure 1, a plurality of bellows 2 arranged on one side in the longitudinal direction of the main body structure 1, and a drive section structure 3 connecting the bellows 2 and the lip portion 13. An arbitrary number of drive units can be configured by these combinations.
第2図は第1図の側面図、第3図は第2図の下面図、
そして第4図は第2図のIV−IV断面図である。各ベロー
ズ2は本体構造体1にボルト8により固定されている。
又各ベローズ2は各駆動部構造体3に夫々2個宛(2aと
2b)ボルト7…で固定されている。各ボルトによる固定
部にはシール4又は5(第4図)が設けられ、ベローズ
2内からの圧縮空気の漏出を防止している。2 is a side view of FIG. 1, FIG. 3 is a bottom view of FIG. 2,
FIG. 4 is a sectional view taken along line IV-IV of FIG. Each bellows 2 is fixed to the main body structure 1 by bolts 8.
Also, each bellows 2 is addressed to each drive unit structure 3 by two (2a and 2a).
2b) It is fixed with bolts 7. A seal 4 or 5 (FIG. 4) is provided at a fixing portion of each bolt to prevent leakage of compressed air from inside the bellows 2.
本体構造体1のノズル部の近傍には弾性変形部11、及
びこれの下部にあってこれと一体のリップ部構造体12が
一体構造体として構成されている。リップ部構造体12と
駆動部構造体3とはボルト6によって一体に締め付けら
れている。An elastically deformable portion 11 is provided in the vicinity of the nozzle portion of the main body structure 1, and a lip portion structure 12 below and integrated with the elastically deformable portion 11 is formed as an integrated structure. The lip portion structure 12 and the drive portion structure 3 are integrally fastened by bolts 6.
分割された各駆動部構造体3(3a,3b…)には夫々上
下に2個宛のベローズ2aと2b(第4図)が取付けられて
いるが、これらベローズへの給気は本体構造体1に穿設
された給気口10から同じく本体構造体1内に設けた空気
通路9aを経てベローズ2aの底部に設けた空気通路9bを介
し片方(図の上方)のベローズ2aに送られる。又下側の
ベローズ2bにも共通の空気通路9aからベローズの底部に
設けた空気通路9cを介し供給される。Each of the divided drive unit structures 3 (3a, 3b ...) is provided with two bellows 2a and 2b (FIG. 4) which are respectively disposed on the upper and lower sides. Air is supplied from an air supply port 10 formed in the bellows 1 to an bellows 2a (upper part in the figure) via an air passage 9a provided in the bottom of the bellows 2a via an air passage 9a also provided in the main body structure 1. The lower bellows 2b is also supplied from a common air passage 9a through an air passage 9c provided at the bottom of the bellows.
駆動部構造体3は複数の構造体3a,3b,3c…3nに分割さ
れており(第1図では8つ、第2図では5つに分割され
ている)、且つ各リップ部構造体12には隣接するリップ
部構造体との間に分割溝14を有している。かくして各駆
動部は複数の独立した駆動機構及び隣接する構造体間の
干渉度の低い構造体とから構成される。The driving unit structure 3 is divided into a plurality of structures 3a, 3b, 3c... 3n (eight in FIG. 1 and five in FIG. 2), and each lip structure 12 Has a dividing groove 14 between the adjacent lip portion structures. Thus, each drive unit is composed of a plurality of independent drive mechanisms and a structure having a low degree of interference between adjacent structures.
15は駆動部構造体3の上部に固設した変位センサー
で、これにより本体構造体1との間のギャップgを検出
する。そして配線16を介して制御装置(図示しない)に
その検出値をフィードバックする。Reference numeral 15 denotes a displacement sensor fixed on the upper part of the drive unit structure 3, which detects a gap g between the drive unit structure 3 and the main body structure 1. Then, the detected value is fed back to a control device (not shown) via the wiring 16.
給気口10から各ベローズ2(2a,2b)に圧縮空気を供
給すると、本体構造体1と駆動部構造体3との間ではベ
ローズ2(2a,2b)の軸心方向の機械的剛性が他の構造
体に比べ低いため、第4図で矢印χ1方向の力が発生す
る。χ1方向の力は弾性変形部11に対してモーメントと
して伝達される。すると弾性変形部11は、本体構造体1
及び駆動部構造体3に比べその機械剛性が低いので、こ
の部分で弾性変形が発生し、リップ部13がχ2方向(第
4図)に移動する。この変位量はベローズ2(2a,2b)
より伝達されるモーメント、或はその源である圧縮ガス
圧力にほぼ比例している。When compressed air is supplied from the air supply port 10 to each of the bellows 2 (2a, 2b), the mechanical rigidity of the bellows 2 (2a, 2b) in the axial direction between the main body structure 1 and the drive unit structure 3 is reduced. Since it is lower than other structures, a force is generated in the direction indicated by the arrow 1 in FIG.力 The force in one direction is transmitted to the elastic deformation portion 11 as a moment. Then, the elastic deformation portion 11 is
And because the mechanical rigidity lower than that of the driving unit structure 3, the elastic deformation is generated in this portion, moves to the lip portion 13 is chi 2 direction (Figure 4). This displacement is bellows 2 (2a, 2b)
It is approximately proportional to the transmitted moment or the pressure of the compressed gas from which it is transmitted.
以上の如く、ベローズ2(2a,2b)に供給する圧縮ガ
ス圧力を制御する事により、リップ開度を任意に制御す
る事ができる。さらにそれぞれの駆動部構造体(3a,3b
…3n)へ供給するガス圧力を同時且つ独立に制御する事
により、多数の点のリップ開度を同時且つ独立に制御す
る事ができる。As described above, the lip opening can be arbitrarily controlled by controlling the pressure of the compressed gas supplied to the bellows 2 (2a, 2b). Further, each drive unit structure (3a, 3b
By simultaneously and independently controlling the gas pressure supplied to 3n), it is possible to simultaneously and independently control the lip openings of many points.
しかし、実際にはリップ部内部には溶融樹脂が流れて
おり、リップ部近傍で発生する樹脂圧力とベローズ内の
ガス圧力によって、始めてリップ部開度(変位量)が決
定される。換言すれば、樹脂圧力による変位誤差があ
る。ベローズによるガス圧制御方式は、この樹脂圧力あ
るいはその変動量が小さく、リップ変位量への影響が小
さい条件下で始めて有効であるが、樹脂圧力あるいはそ
の変動量が大きくなると、この圧力による変位誤差は無
視できない。However, actually, the molten resin flows inside the lip, and the lip opening (displacement amount) is determined only by the resin pressure generated near the lip and the gas pressure in the bellows. In other words, there is a displacement error due to the resin pressure. The bellows gas pressure control method is effective only when the resin pressure or its fluctuation is small and the influence on the lip displacement is small, but when the resin pressure or its fluctuation becomes large, the displacement error due to this pressure is increased. Cannot be ignored.
第7図はガス圧制御方式下において、樹脂圧が高い場
合でのリップ部形状を示し、図中破線がその形状であ
る。機械剛性値は弾性変形部において特に低い構造とな
っている。この様なリップ変形は、樹脂流量制御上の障
害となることから、本発明では本体構造体1と駆動部構
造体3の間での変位量を変位センサー15によって計測
し、それをフィードバックする駆動方式を採用してい
る。FIG. 7 shows the shape of the lip when the resin pressure is high under the gas pressure control method, and the broken line in the figure is the shape. The mechanical rigidity value is particularly low in the elastically deformed portion. Since such a lip deformation becomes an obstacle in controlling the resin flow rate, in the present invention, a displacement amount between the main body structure 1 and the driving portion structure 3 is measured by the displacement sensor 15 and the driving is performed by feeding back the measured amount. The method is adopted.
第8図はこの制御系ブロック図を示し、変位センサー
15による検出値と変位量目標値とを比較し、制御回路で
その比較された正負値を電空変換器にてガス圧Paに変換
する。このガス圧Paをベローズに供給して、樹脂圧によ
るリップ部構造体12の変位量を補正する。FIG. 8 shows a block diagram of this control system, and includes a displacement sensor.
The detected value obtained by step 15 is compared with the target displacement amount, and the compared positive / negative value is converted into a gas pressure Pa by the electropneumatic converter in the control circuit. This gas pressure Pa is supplied to the bellows to correct the displacement of the lip portion structure 12 due to the resin pressure.
この場合基本的には、ノズル部のギャップ量が大きい
と流量は大、ギャップ量が小さいと流量は小の関係があ
り、この関係は単調増加関数となる。この関係はあらか
じめ測定することで把握することができる。また、ノズ
ルのギャップ量は、駆動部構造体3の変位センサー15に
よってある比例した値として検出されるので、その関係
をあらかじめ計測しておくことで、ギャップ量の変化と
して検出できる。従って、変位センサー15により本体構
造体1と駆動部構造体3との間の変位量を制御すること
で膜圧を制御することができる。In this case, basically, the flow rate is large when the gap amount of the nozzle portion is large, and the flow rate is small when the gap amount is small, and this relationship is a monotonically increasing function. This relationship can be grasped by measuring in advance. Further, since the gap amount of the nozzle is detected as a certain proportional value by the displacement sensor 15 of the drive unit structure 3, it is possible to detect a change in the gap amount by measuring the relationship in advance. Therefore, the film pressure can be controlled by controlling the amount of displacement between the main body structure 1 and the drive unit structure 3 by the displacement sensor 15.
本発明方式により、樹脂圧力によるリップ部の変形誤
差を補正し、リップ開度の高精度の制御が可能となる。According to the present invention, the deformation error of the lip portion due to the resin pressure is corrected, and the lip opening can be controlled with high accuracy.
なおこの変位センサー15としては、渦電流方式、静電
容量方式、光ファイバー方式、あるいは接触式等々、特
にその方式を問わない。The displacement sensor 15 is not particularly limited to an eddy current method, a capacitance method, an optical fiber method, a contact method, or the like.
本発明はTダイリップ部の駆動について発明したもの
であるが、この他加工機械、3次元測定機、半導体製造
装置等の各種精密機械用の精密駆動機として利用するこ
とも可能である。Although the present invention invents the driving of the T-die lip, it can also be used as a precision driving machine for various precision machines such as a processing machine, a three-dimensional measuring machine, and a semiconductor manufacturing apparatus.
(効果) べローズの伸縮作用による駆動部としたので、非常に
応答性に優れている。因みに熱膨張方式では時定数10〜
20分であるのに対し、本発明では1秒以下である。(Effect) Since the driving part is formed by the expansion and contraction action of the bellows, the response is extremely excellent. By the way, the time constant is 10 ~
In contrast to 20 minutes, this is less than 1 second in the present invention.
ベローズの伸縮を駆動部構造体からノズル部構造体を
介し伝へ、ノズル部の弾性変形で制御するようにしたの
で、ヒステリシスがほとんどなく、高い駆動分解能を有
している。Since the expansion and contraction of the bellows is controlled by the elastic deformation of the nozzle portion from the drive portion structure through the nozzle portion structure, there is almost no hysteresis and a high drive resolution.
駆動部を分割したので、隣接する他の駆動部への干渉
度の小さい駆動部の構造を提供できる。Since the driving unit is divided, it is possible to provide a structure of the driving unit having a small degree of interference with another adjacent driving unit.
ベローズの伸縮によって駆動部構造体を駆動する制御
方式に加え、リップ部の樹脂圧力による変位を変位セン
サーによって検出し、これをフィードバックしてリップ
開度を制御するようにしたので、さらに精度の高い制御
が可能となった。In addition to the control method that drives the drive unit structure by the expansion and contraction of the bellows, the displacement of the lip due to resin pressure is detected by a displacement sensor, and this is fed back to control the lip opening, so higher accuracy is achieved. Control became possible.
第1図はTダイリップ部の斜視図。 第2図は第1図のII矢視図。 第3図は第2図の下面図。 第4図は第2図のIV−IV断面図。 第5図は第4図のV矢視図。 第6図は同じくVI矢視図。 第7図は樹脂圧力によるリップ部の変位の状態を説明す
る図。 第8図はリップ部開度制御系ブロック図。 図において; 1……本体構造体、2(2a,2b)……ベローズ 3……駆動部構造体、4……シール 5……シール、6……ボルト 7……ボルト、8…ボルト 9a,9b,9c……空気通路、10……給気口 11……弾性変形部、12……リップ部構造体 13……リップ部、14……分割溝 15……変位センサー、16……配線FIG. 1 is a perspective view of a T-die lip. FIG. 2 is a view on arrow II of FIG. FIG. 3 is a bottom view of FIG. FIG. 4 is a sectional view taken along line IV-IV of FIG. FIG. 5 is a view on arrow V in FIG. FIG. 6 is a view taken in the direction of the arrow VI. FIG. 7 is a view for explaining a state of displacement of a lip portion due to a resin pressure. FIG. 8 is a block diagram of a lip opening control system. In the figure: 1... Body structure 2 (2a, 2b)... Bellows 3... Drive unit structure 4... Seal 5... Seal 6... Bolt 7. 9b, 9c ... air passage, 10 ... air supply port 11 ... elastic deformation part, 12 ... lip part structure 13 ... lip part, 14 ... division groove 15 ... displacement sensor, 16 ... wiring
Claims (1)
部に配設した複数個のベロー(2)と、上部で各ベロー
ズ(2)に締着され、下部でリップ部構造体(12)に締
着されたベローズ(2)とリップ部(13)を連結する駆
動部構造体(3)とからなり、駆動部構造体(3)はリ
ップ部(13)の巾方向に複数のベローズ(2)に対応し
て複数に分割され、かつ各分割された駆動部構造体
(3)の上部にその樹脂流圧力によるリップ部(13)の
変位を検出する変位センサー(15)を設け、該変位セン
サー(15)による検出値をフィードバックして該変位セ
ンサー(15)による検出値と変位量目標値とを比較し、
比較された正負値を電圧変換器にてガス圧Paに変換し、
該ガス圧Paをベローズ(2)に供給して、リップ部開度
を制御するようにしたことを特徴とするTダイリップ駆
動部の変形誤差補正構造。1. A body structure (1), a plurality of bellows (2) disposed on the side of the body structure (1), and an upper portion fastened to each bellows (2), and a lower portion having a lip portion. It comprises a bellows (2) fastened to the structure (12) and a drive structure (3) connecting the lip (13), and the drive structure (3) is in the width direction of the lip (13). And a displacement sensor (15) for detecting the displacement of the lip (13) due to the resin flow pressure above the divided drive unit structure (3) corresponding to the plurality of bellows (2). ) Is provided, and the detected value of the displacement sensor (15) is fed back to compare the detected value of the displacement sensor (15) with the target displacement amount,
Convert the compared positive / negative value to gas pressure Pa with a voltage converter,
A structure for correcting a deformation error of a T-die lip drive unit, wherein the gas pressure Pa is supplied to the bellows (2) to control the lip opening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63197061A JP2637492B2 (en) | 1988-08-09 | 1988-08-09 | Deformation error correction structure for T-die lip driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63197061A JP2637492B2 (en) | 1988-08-09 | 1988-08-09 | Deformation error correction structure for T-die lip driver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0247030A JPH0247030A (en) | 1990-02-16 |
JP2637492B2 true JP2637492B2 (en) | 1997-08-06 |
Family
ID=16368065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63197061A Expired - Fee Related JP2637492B2 (en) | 1988-08-09 | 1988-08-09 | Deformation error correction structure for T-die lip driver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2637492B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3826585B2 (en) * | 1998-10-05 | 2006-09-27 | コニカミノルタホールディングス株式会社 | Coating apparatus and coating method |
DE10328104B4 (en) * | 2003-06-20 | 2006-08-17 | Breyer Gmbh Maschinenfabrik | Extrusion nozzle with at least one flexible lip element |
CN111458088B (en) * | 2020-03-18 | 2021-11-16 | 福建建利达工程技术有限公司 | Municipal works detect with bellows radial stiffness test equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5295768A (en) * | 1976-02-09 | 1977-08-11 | Mitsubishi Plastics Ind | Method of extrusion molding thermoplastic synthetic resin film |
JPS63194713U (en) * | 1987-06-01 | 1988-12-15 |
-
1988
- 1988-08-09 JP JP63197061A patent/JP2637492B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0247030A (en) | 1990-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1684139B1 (en) | Controller | |
KR900007107B1 (en) | Speed control system | |
US20120249041A1 (en) | Servo control apparatus | |
JP2609540B2 (en) | Non-interference control type T die gap controller | |
US4602540A (en) | Precision machine system | |
JP2637492B2 (en) | Deformation error correction structure for T-die lip driver | |
CN109687771A (en) | Control device | |
US4990078A (en) | Structure of lip drive portion of T-die | |
EP1875982B1 (en) | Spot welding method and spot welding system | |
JP3969850B2 (en) | Control method and control device for electric vendor | |
JP2778159B2 (en) | Servo motor feed compensation method | |
US5274564A (en) | Method and apparatus for machining a non-circular workpiece | |
JPH03100411A (en) | Abnormality deciding device of position detector | |
US20020084762A1 (en) | Positioning-controlling apparatus and positioning-controlling method, and part-mounting equipment and part-mounting method | |
JP2000069781A (en) | Controller for linear-direction driving mechanism | |
JPH0547627Y2 (en) | ||
JPH052497B2 (en) | ||
JPS6020839A (en) | Thermal deformation correcting apparatus for machine tool and the like, etc. | |
JPH01215530A (en) | Structure of driving part of t-die lip | |
JP4591136B2 (en) | Two-dimensional positioning device | |
JP2008059016A (en) | Positioning controller and positioning control method | |
JPH0547626Y2 (en) | ||
JPH01152030A (en) | Driving method for t die lip | |
JP3608096B2 (en) | Position control backlash suppression control method | |
Sanchez et al. | A mechatronic approach to full sheet control using steer-able nips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |