JP2637199B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2637199B2
JP2637199B2 JP63301114A JP30111488A JP2637199B2 JP 2637199 B2 JP2637199 B2 JP 2637199B2 JP 63301114 A JP63301114 A JP 63301114A JP 30111488 A JP30111488 A JP 30111488A JP 2637199 B2 JP2637199 B2 JP 2637199B2
Authority
JP
Japan
Prior art keywords
layer
solid electrolytic
electrolytic capacitor
pbo
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63301114A
Other languages
Japanese (ja)
Other versions
JPH02191313A (en
Inventor
一美 内藤
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Nichikon KK
Original Assignee
Showa Denko KK
Nichikon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nichikon KK filed Critical Showa Denko KK
Priority to JP63301114A priority Critical patent/JP2637199B2/en
Publication of JPH02191313A publication Critical patent/JPH02191313A/en
Application granted granted Critical
Publication of JP2637199B2 publication Critical patent/JP2637199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温寿命性能が良好な固体電解コンデンサ
の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor having good high-temperature life performance.

〔従来の技術〕[Conventional technology]

固体電解コンデンサは、誘電体酸化皮膜層を有するア
ルミニウム、タンタル、ニオブ等の弁作用金属からなる
陽極基体に、半導体層、導電体層を順に積層した構造を
有している。従来、この種の固体電解コンデンサの半導
体層には、主に硝酸マンガンの熱分解により形成される
二酸化マンガンが用いられている。しかし、この熱分解
の際に必要な高熱と発生するNO2ガスの酸化作用等によ
って誘電体であるアルミニウム、タンタル等の金属酸化
皮膜の損傷があり、そのため耐電圧は低下し、もれ電流
が大きくなり、誘電特性を劣化させる等、大きな欠点が
ある。また再化成という工程も数回必要になる。
The solid electrolytic capacitor has a structure in which a semiconductor layer and a conductor layer are sequentially laminated on an anode substrate having a dielectric oxide film layer made of a valve metal such as aluminum, tantalum, and niobium. Conventionally, manganese dioxide formed mainly by thermal decomposition of manganese nitrate has been used for the semiconductor layer of this type of solid electrolytic capacitor. However, due to the high heat required during this thermal decomposition and the oxidizing action of the generated NO 2 gas, the metal oxide film such as aluminum and tantalum, which is a dielectric, is damaged, so the withstand voltage is reduced and the leakage current is reduced. There is a major drawback such as an increase in size and deterioration of dielectric properties. Also, several steps of re-chemical formation are required.

これらの欠点を解消するために高熱を付加せずに半導
体層を形成する方法、つまり高導電性の無機半導体層を
形成する方法が試みられている。その例としては、特開
昭62−189713号公報にα型PbO2を半導体層とする固体電
解コンデンサ、特開昭62−185307号公報にβ型PbO2を電
気化学的に半導体層として形成する固体電解コンデンサ
が知られている。
To solve these drawbacks, a method of forming a semiconductor layer without applying high heat, that is, a method of forming a highly conductive inorganic semiconductor layer has been attempted. Examples thereof include a solid electrolytic capacitor using α-type PbO 2 as a semiconductor layer in JP-A-62-189713, and a β-type PbO 2 electrochemically forming a semiconductor layer in JP-A-62-185307. Solid electrolytic capacitors are known.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

α型PbO2は、誘電体酸化皮膜層との接着性は良好であ
るが、導電性に劣るという欠点を有し、またβ型PbO2
導電性は優れているが、誘電体酸化皮膜層との接着性に
劣るという欠点がある。このため、前者を半導体層に用
いた固体電解コンデンサは高周波性能が悪く、後者を半
導体層に用いた固体電解コンデンサでは高温寿命性能の
良好なものが得られない。
α-type PbO 2 has good adhesion to the dielectric oxide film layer, but has the disadvantage of poor electrical conductivity, and β-type PbO 2 has excellent electrical conductivity, but the dielectric oxide film layer Has a disadvantage that the adhesiveness to the adhesive is poor. For this reason, the solid electrolytic capacitor using the former for the semiconductor layer has poor high-frequency performance, and the solid electrolytic capacitor using the latter for the semiconductor layer cannot obtain a good high-temperature life performance.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の目的は前述したようなα型PbO2とβ型PbO2
が有する欠点がなく、各々の長所のみを有する固体電解
コンデンサの製造方法を提供するものである。
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor which does not have the disadvantages of α-type PbO 2 and β-type PbO 2 as described above and has only the advantages of each.

即ち、本発明は弁作用を有する金属からなる陽極基体
の表面に、まずα型PbO2層を電気化学的に形成し、次い
でβ型PbO2層を電気化学的に形成して半導体層とする固
体電解コンデンサの製造方法にある。
That is, the present invention firstly forms an α-type PbO 2 layer electrochemically on the surface of an anode substrate made of a metal having a valve action, and then electrochemically forms a β-type PbO 2 layer to form a semiconductor layer. A method for manufacturing a solid electrolytic capacitor.

以下、本発明について詳細に説明する。本発明による
固体電解コンデンサの陽極基体として用いられる弁作用
金属としては、例えばアルミニウム、タンタル、ニオ
ブ、チタンおよびこれらを基質とする合金等、弁作用を
有する金属がいずれも使用できる。
Hereinafter, the present invention will be described in detail. As the valve action metal used as the anode substrate of the solid electrolytic capacitor according to the present invention, any metal having a valve action such as, for example, aluminum, tantalum, niobium, titanium and alloys using these as a substrate can be used.

弁作用金属の表面に設ける誘電体酸化皮膜層は、弁作
用金属表面部分に設けられた弁作用金属自体の酸化物層
であってもよく、あるいは弁作用金属の表面上に設けら
れた他の誘電体酸化物の層であってもよいが、特に弁作
用金属自体の酸化物からなる層であることが好ましい。
いずれの場合にも酸化物層を設ける方法としては、電解
液を用いた陽極化成法など従来公知の方法を用いること
ができる。
The dielectric oxide film layer provided on the surface of the valve metal may be an oxide layer of the valve metal itself provided on the surface of the valve metal, or may be another oxide layer provided on the surface of the valve metal. It may be a layer of a dielectric oxide, but is particularly preferably a layer made of an oxide of the valve metal itself.
In any case, as a method of providing the oxide layer, a conventionally known method such as an anodizing method using an electrolytic solution can be used.

誘電体酸化皮膜層上に形成される半導体層は、まずα
型PbO2層を形成し、次いでβ型PbO2層を積層することに
よって得られる。これらのα型PbO2層およびβ型PbO2
の形成方法は、各々、電気化学的に形成する方法が有効
である。化学反応的に形成した場合、各々のPbO2層の厚
みが不均一であるため、半導体層の伝導度が不安定であ
るという欠点がある。
The semiconductor layer formed on the dielectric oxide film layer first has an α
It is obtained by forming a type PbO 2 layer and then laminating a β type PbO 2 layer. As a method for forming the α-type PbO 2 layer and the β-type PbO 2 layer, a method of electrochemically forming each is effective. When formed by a chemical reaction, there is a disadvantage that the conductivity of the semiconductor layer is unstable because the thickness of each PbO 2 layer is not uniform.

α型PbO2層を形成する方法は、pH7.5以上の銅イオン
を含有した溶液中で電気分解を行うことによって形成す
る方法があげられる。
As a method for forming the α-type PbO 2 layer, a method for forming the layer by performing electrolysis in a solution containing copper ions having a pH of 7.5 or more can be mentioned.

一方、β型PbO2層を形成する方法は、pH7.5未満の、
銅イオンを含有した溶液中で電気分解を行うことによっ
て形成する方法があげられる。そして銅イオンを含有し
た溶液としては、例えば酢酸鉛水溶液、硝酸鉛水溶液、
クエン酸鉛水溶液、プロピオン酸鉛水溶液等をあげるこ
とができる。
On the other hand, the method of forming the β-type PbO 2
There is a method of forming by performing electrolysis in a solution containing copper ions. As the solution containing copper ions, for example, an aqueous solution of lead acetate, an aqueous solution of lead nitrate,
An aqueous lead citrate solution, an aqueous lead propionate solution and the like can be mentioned.

上述した各PbO2層を形成するための電気分解の方法
は、陽極基体側を陽極とし、別に用意したステンレス、
アルミ等の金属を陰極として電気回路を作成し、定電圧
法、定電流法、これらの組合せ等、公知の方法でもって
電気分解を行う方法があげられる。この中でも、とりわ
け、定電流法で各PbO2層を形成する方法が、層の厚みを
一定にすることができるため望ましい。
The above-described electrolysis method for forming each PbO 2 layer is performed by using a separately prepared stainless steel with the anode substrate side as an anode.
There is a method in which an electric circuit is formed by using a metal such as aluminum as a cathode and electrolysis is performed by a known method such as a constant voltage method, a constant current method, or a combination thereof. Among them, a method of forming each PbO 2 layer by a constant current method is particularly preferable because the thickness of the layer can be made constant.

本発明において、上述した半導体層の上にカーボンペ
ースト層または/および銀ペースト等、従来公知の方法
で導電体層を取り出し、さらに樹脂ケース等、従来公知
の方法で封口して製品とされる。
In the present invention, a conductive layer such as a carbon paste layer and / or a silver paste is taken out of the above-described semiconductor layer by a conventionally known method, and further sealed by a conventionally known method such as a resin case to obtain a product.

〔作用〕[Action]

弁作用金属の陽極基体の表面に形成された誘電体酸化
皮膜層上に積層するα型PbO2層は酸化皮膜層と密に接着
している。そしてこのα型PbO2層の上に積層するβ型Pb
O2層は、良好な導電性を有する。従ってこのような各層
の構成によってのみ高温寿命性能に優れ、かつ高周波性
能の良好な固体電解コンデンサが得られるのである。
The α-type PbO 2 layer laminated on the dielectric oxide film layer formed on the surface of the valve metal anode substrate is closely adhered to the oxide film layer. And β-type Pb laminated on this α-type PbO 2 layer
O 2 layer has a good electrical conductivity. Accordingly, a solid electrolytic capacitor having excellent high-temperature life performance and good high-frequency performance can be obtained only by such a configuration of each layer.

〔実施例〕〔Example〕

以下、実施例および比較例を示して説明する。 Hereinafter, examples and comparative examples will be described.

実施例 1〜3 アジピン酸アンモニウム水溶液中で化成処理して、表
面に誘電体皮膜層を形成した10μF/cm2のアルミニウム
エッチング箔(以下化成箔と呼ぶ)の小片1cm×1cmを60
枚用意し、各実施例にそれぞれ20枚ずつ使用した。第1
表に記載したそれぞれの溶液中で、第1段目は0.5mA/cm
2の定電流で20分間電気分解し、次に2段目で1.0mA/cm2
の定電流で80分間電気分解し、各々α型PbO2層およびβ
型PbO2層を形成した。尚、PbO2層の構造は別に用意した
試料で同じ操作を行ったものをX線分析して確認した。
次いで半導体層上に市販の銀ペーストを塗布し乾燥後、
エポキシ樹脂で封止を行い固体電解コンデンサを作製し
た。尚、実施例の半導体層の厚みは、α型PbO2層が5〜
8μm、β型PbO2層が8〜15μmであった。
Examples 1 to 3 A small 1 cm × 1 cm piece of a 10 μF / cm 2 aluminum etching foil (hereinafter referred to as a chemical conversion foil) having a dielectric coating layer formed on the surface by chemical conversion treatment in an aqueous solution of ammonium adipate was used for 60 times.
A total of 20 sheets were prepared and used in each example. First
In each solution described in the table, the first stage was 0.5 mA / cm
Electrolysis at constant current of 2 for 20 minutes, then 1.0 mA / cm 2 in the second stage
And 80 minutes electrolysis at a constant current of each α-type PbO 2 layer and β
A type PbO 2 layer was formed. The structure of the PbO 2 layer was confirmed by X-ray analysis of a sample prepared separately and subjected to the same operation.
Next, after applying and drying a commercially available silver paste on the semiconductor layer,
It was sealed with epoxy resin to produce a solid electrolytic capacitor. The thickness of the semiconductor layer of the embodiment, alpha-type PbO 2 layers 5
The thickness of the β-type PbO 2 layer was 8 to 15 μm.

比較例1〜3 実施例1と同様な化成箔の小片を60枚用意し、各比較
例にそれぞれ20枚ずつ使用した。比較例1では、実施例
2の第1段目の溶液組成で0.5mA/cm2の定電流で1時間
電気分解してα型PbO2層を形成した。比較例2では実施
例2の第2段目の溶液組成で1.0mA/cm2の定電流で1.2時
間電気分解してβ型PbO2層を形成した。比較例3では、
実施例1の第1段目の溶液に過硫酸アンモニウム2.8mol
と28%アンモニア水を加えてpH9.2に維持してから、1
時間反応してα型PbO2層を形成した上に、さらに実施例
1の第2段の溶液に過硫酸アンモニウム2.8molを加えて
pH6.0にし、1時間反応してβ型PbO2層を積層した。
Comparative Examples 1-3 Sixty pieces of the same chemical conversion foil as in Example 1 were prepared, and twenty pieces were used for each of the comparative examples. In Comparative Example 1, the α-type PbO 2 layer was formed by electrolysis at a constant current of 0.5 mA / cm 2 for 1 hour with the first stage solution composition of Example 2. In Comparative Example 2, the β-type PbO 2 layer was formed by electrolysis at a constant current of 1.0 mA / cm 2 for 1.2 hours using the solution composition in the second stage of Example 2. In Comparative Example 3,
2.8 mol of ammonium persulfate was added to the first stage solution of Example 1.
And 28% aqueous ammonia to maintain pH 9.2.
After reacting for an hour to form an α-type PbO 2 layer, 2.8 mol of ammonium persulfate was further added to the second stage solution of Example 1.
The pH was adjusted to 6.0, and the mixture was reacted for 1 hour to form a β-type PbO 2 layer.

以上半導体層まで形成した素子に実施例と同様にして
導電体層を形成し、次いで封止を行って固体電解コンデ
ンサを作製した。尚、半導体層の厚みは比較例1で、15
〜25μm、比較例2で20〜50μm、比較例3で15〜120
μmであった。
A conductor layer was formed on the element formed up to the semiconductor layer in the same manner as in the example, and sealing was performed to produce a solid electrolytic capacitor. The thickness of the semiconductor layer was 15 in Comparative Example 1.
-25 μm, 20-50 μm in Comparative Example 2, 15-120 μm in Comparative Example 3.
μm.

以上作製した固体電解コンデンサの性能を第2表に示
した。n=20点の平均値である。
Table 2 shows the performance of the solid electrolytic capacitor manufactured as described above. The average value of n = 20 points.

第2表で明らかなように、α型PbO2層を半導体層とす
る固体電解コンデンサ(比較例1)は高周波性能が悪
く、一方β型PbO2層を半導体層とする固体電解コンデン
サ(比較例2)は高温寿命性能が劣っている。また半導
体層を化学反応で得た固体電解コンデンサ(比較例3)
は、半導体層の厚みが不均一であるため、安定性に欠
け、その結果、高周波性能や高温寿命性能に劣るものが
あるため、平均値として、性能が実施例より悪化する。
これら比較例に対して、実施例では高周波性能と高温寿
命性能ともに満足いくことがわかる。
As is clear from Table 2, the solid electrolytic capacitor using the α-type PbO 2 layer as the semiconductor layer (Comparative Example 1) has poor high-frequency performance, while the solid electrolytic capacitor using the β-type PbO 2 layer as the semiconductor layer (Comparative Example 1) 2) is inferior in high-temperature life performance. In addition, a solid electrolytic capacitor in which a semiconductor layer is obtained by a chemical reaction (Comparative Example 3)
Since the thickness of the semiconductor layer is uneven, the semiconductor layer lacks stability. As a result, the high-frequency performance and the high-temperature life performance are inferior.
In contrast to these comparative examples, it can be seen that the examples satisfy both high-frequency performance and high-temperature life performance.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の固体電解コンデンサの
製造方法によれば、誘電体酸化皮膜層との接着性に優れ
るα型PbO2層を第1段層とし、さらに導電性の優れるβ
型PbO2層を第2段層として積層し、しかもこれらのPbO2
層の厚みが均一であるため、高周波性能が良好で高温寿
命性能に優れた固体電解コンデンサを製造することがで
きる。
As described above, according to the method for manufacturing a solid electrolytic capacitor of the present invention, the α-type PbO 2 layer having excellent adhesion to the dielectric oxide film layer is used as the first layer, and the β
The PbO 2 layer is laminated as a second layer, and the PbO 2
Since the thickness of the layer is uniform, a solid electrolytic capacitor having good high-frequency performance and excellent high-temperature life performance can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−305509(JP,A) 特開 昭62−185307(JP,A) 特開 昭62−189713(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-305509 (JP, A) JP-A-62-185307 (JP, A) JP-A-62-189713 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁作用を有する金属からなる陽極基体の表
面に、誘電体酸化皮膜層、半導体層および導電体層を順
次形成してなる固体電解コンデンサの製造方法におい
て、前記誘電体酸化皮膜層上にα型PbO2層、次いでβ型
PbO2層をそれぞれ電気化学的に形成して前記半導体層と
することを特徴とする固体電解コンデンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor comprising a dielectric oxide film layer, a semiconductor layer, and a conductor layer sequentially formed on a surface of an anode substrate made of a metal having a valve action. Α-type PbO 2 layer on top, then β-type
A method for manufacturing a solid electrolytic capacitor, wherein each of PbO 2 layers is electrochemically formed to be the semiconductor layer.
JP63301114A 1988-11-30 1988-11-30 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP2637199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63301114A JP2637199B2 (en) 1988-11-30 1988-11-30 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301114A JP2637199B2 (en) 1988-11-30 1988-11-30 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02191313A JPH02191313A (en) 1990-07-27
JP2637199B2 true JP2637199B2 (en) 1997-08-06

Family

ID=17893006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301114A Expired - Lifetime JP2637199B2 (en) 1988-11-30 1988-11-30 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2637199B2 (en)

Also Published As

Publication number Publication date
JPH02191313A (en) 1990-07-27

Similar Documents

Publication Publication Date Title
JPH0766901B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2637199B2 (en) Method for manufacturing solid electrolytic capacitor
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11135377A (en) Solid electrolytic capacitor and its manufacture
JP2637207B2 (en) Solid electrolytic capacitors
JP3433490B2 (en) Chip-shaped solid electrolytic capacitors
JP2596996B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP2003264128A (en) Solid-state electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JPS62268122A (en) Solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPH0590097A (en) Lead frame for capacitor and solid electrolytic capacitor using it
JPH07183167A (en) Manufacture of solid electrolytic capacitor
JPH0766902B2 (en) Solid electrolytic capacitor
JPH02187008A (en) Manufacture of solid electrolytic capacitor
JPH0727846B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPH02166714A (en) Manufacture of solid electrolytic capacitor
JPS62102511A (en) Solid electrolytic capacitor
JPS62216211A (en) Solid electrolytic capacitor
JPH07226338A (en) Manufacture of solid-state electrolytic capacitor
JPH04354318A (en) Production of chip-shaped solid-state electrolytic capacitor
JPH0719727B2 (en) Method for manufacturing solid electrolytic capacitor