JP2635931B2 - Mold temperature control method for glass forming machine - Google Patents

Mold temperature control method for glass forming machine

Info

Publication number
JP2635931B2
JP2635931B2 JP13986894A JP13986894A JP2635931B2 JP 2635931 B2 JP2635931 B2 JP 2635931B2 JP 13986894 A JP13986894 A JP 13986894A JP 13986894 A JP13986894 A JP 13986894A JP 2635931 B2 JP2635931 B2 JP 2635931B2
Authority
JP
Japan
Prior art keywords
temperature
mold
fuzzy
forming machine
fuzzy inference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13986894A
Other languages
Japanese (ja)
Other versions
JPH0812349A (en
Inventor
英治 祝原
孝幸 笠松
雄一郎 杉本
正浩 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Garasu KK
Original Assignee
Ishizuka Garasu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Garasu KK filed Critical Ishizuka Garasu KK
Priority to JP13986894A priority Critical patent/JP2635931B2/en
Publication of JPH0812349A publication Critical patent/JPH0812349A/en
Application granted granted Critical
Publication of JP2635931B2 publication Critical patent/JP2635931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/38Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
    • C03B9/3816Means for general supply, distribution or control of the medium to the mould, e.g. sensors, circuits, distribution networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】ガラス製造工程の金型温度制御に
おいて、現在生産中の生産品種から、金型温度の異なる
生産品種への変更を短時間で行うとともに、生産中の金
型温度の安定化を行うための、金型温度のファジィ制御
方法に関するものである。
[Industrial application] In mold temperature control in the glass manufacturing process, a change from a currently produced product type to a product type having a different mold temperature is performed in a short time, and the mold temperature during production is stabilized. The present invention relates to a method for fuzzy control of a mold temperature for carrying out the conversion.

【0002】[0002]

【従来の技術】ガラス製造工程の一般的な金型温度制御
方法は、送風ダクトに圧力計を設置してダクト内の圧力
を計測し、サクションダンパあるいは送風機のモータの
回転数を制御して冷却風の風量を一定に制御する方法が
とられていた(以下「従来技術1」という。)。
2. Description of the Related Art A general method of controlling the temperature of a mold in a glass manufacturing process is to install a pressure gauge in an air duct to measure the pressure in the duct and control the rotation speed of a suction damper or a motor of a fan to cool the mold. A method of controlling the amount of wind to be constant has been adopted (hereinafter, referred to as “prior art 1”).

【0003】また特公平2−1776号公報(以下「従
来技術2」という。)に示されているように冷却風の風
量を検知し、次式(1)によって算出した風量設定値と
比較して、その偏差量に基づいた出力により冷却風量を
制御することが試みられている。
Further, as disclosed in Japanese Patent Publication No. 2-1776 (hereinafter referred to as "Prior Art 2"), the flow rate of the cooling air is detected and compared with the set flow rate calculated by the following equation (1). Attempts have been made to control the amount of cooling air with an output based on the deviation.

【0004】 VSV=N(VO +KT A ) (1) ここに、 VSV:風量設定値 VO :ガラス製品の種類により定まる基準風量 KT :ガラス製品の種類により定まる風量/温度係数 TA :冷却風温度 N :モールドの稼働数V SV = N (V O + K T T A ) (1) where, V SV : air flow set value V O : reference air flow determined by the type of glass product K T : air flow / temperature determined by the type of glass product factor T a: cooling air temperature N: number of operating mold

【0005】さらに、特開昭62−119127号公報
(以下「従来技術3」という。)には、ダクト内よりサ
ンプリングした空気に対して金型を代表する試験体を一
定温度に保つ金型温度冷却用感知器が記載されている。
Further, Japanese Patent Application Laid-Open No. Sho 62-119127 (hereinafter referred to as "prior art 3") discloses a mold temperature at which a specimen representing a mold is kept at a constant temperature with respect to air sampled from a duct. A cooling sensor is described.

【0006】金型温度のプロセス特性は、外乱要因(冷
却風量、冷却風温、気温、湿度、ゴブ温、金型の稼働台
数)や製品要因(同一ラインにて異なった製品を生産す
る場合の影響)や設備要因(異なったラインで生産する
場合の影響)によって大きく変化する点で理想的な温度
制御手法が確立されていない。
The process characteristics of the mold temperature include disturbance factors (cooling air volume, cooling air temperature, air temperature, humidity, gob temperature, number of operating molds) and product factors (in the case where different products are produced on the same line). An ideal temperature control method has not been established in that it greatly changes depending on the influence of the above-mentioned factors) and equipment factors (the effects of production on different lines).

【0007】また、金型温度の異なる生産品種への変更
を短時間で行う制御手法がなく、最適金型温度にするた
めの冷却風量は熟練運転員の経験による判断、操作に頼
らざるを得ず、経験量の差によって冷却風量設定後、冷
却不足により製品にしわ状態が発生したり、過冷却によ
り製品表面にビリを生じたりするケースがあり、最適の
冷却風量を見い出すまでにかなりの時間を要する。
[0007] Further, there is no control method for changing to a production type having a different mold temperature in a short time, and the cooling air flow for obtaining the optimum mold temperature must rely on the judgment and operation based on the experience of a skilled operator. After setting the cooling air flow rate due to the difference in experience, there are cases where the product may wrinkle due to insufficient cooling, or the product surface may be warped due to overcooling, and it takes a considerable amount of time to find the optimal cooling air flow. Cost.

【0008】従来技術1のように生産中における金型温
度管理を、風量を一定にする制御によるワンループPI
D(PI)制御による自動制御の場合、外乱要因による
影響を完全に吸収することが出来ず、金型温度が一日の
うちに±9℃程度変化する。この金型温度の変動は、前
に述べたような、しわ、ビリ等の製品不良を発生させ
る。そのため運転員は、風量をそれに合わせ調整する必
要がある。
As in the prior art 1, the temperature of the mold during the production is controlled by a one-loop PI by controlling the air volume to be constant.
In the case of automatic control by D (PI) control, the influence of disturbance factors cannot be completely absorbed, and the mold temperature changes by about ± 9 ° C. in one day. This variation in mold temperature causes product defects such as wrinkles and undulations as described above. Therefore, the operator needs to adjust the air volume accordingly.

【0009】仮に、従来技術2のように冷却風の温度、
湿度、金型の稼働台数により風量をプログラム制御した
としても、他の外乱要因(ゴブ温、気温)や製品要因に
より金型温度は変動し再現性の乏しいものとなる。ま
た、制御手法の改善を図ろうとすると始めから再構築す
る必要があり、完成までにかなりの工数を必要とする。
更に設備が異なる場合にも、始めからチューニングを行
う必要があり、現実性に乏しい。従来技術3のように金
型温度冷却用感知センサーを利用したとしても上記のよ
うな不具合は避けられない。
[0009] Suppose that the cooling air temperature,
Even if the air volume is program-controlled by the humidity and the number of operating molds, the mold temperature fluctuates due to other disturbance factors (gob temperature, air temperature) and product factors, resulting in poor reproducibility. In addition, in order to improve the control method, it is necessary to reconstruct from the beginning, and a considerable number of steps are required until completion.
Further, even when the equipment is different, it is necessary to perform tuning from the beginning, and the reality is poor. Even if a mold temperature cooling sensor is used as in the prior art 3, the above-mentioned problems cannot be avoided.

【0010】[0010]

【発明が解決しようとする課題】従来の金型温度制御方
法は、上記のように行われており、この発明は上記のよ
うな問題点を解決するためになされたもので、図5のシ
ステム構成に示す装置を用い、熟練運転員の経験的な判
断と運転操作過程を制御則とするファジィ制御系によっ
て、金型温度の的確かつ容易な制御を可能とした金型温
度制御方法の提供を目的とする。
The conventional mold temperature control method is performed as described above, and the present invention has been made to solve the above-mentioned problems. Using the equipment shown in the configuration, a mold temperature control method that enables accurate and easy control of the mold temperature is provided by a fuzzy control system that uses the experienced operator's empirical judgment and the driving operation process as a control law. Aim.

【0011】金型温度調整に関する制約条件を制御則に
加えた多変数型ファジィ制御系によって金型温度の的確
かつ容易な制御を可能とした金型温度のファジィ制御方
法の提供を目的とする。
An object of the present invention is to provide a fuzzy control method of a mold temperature which enables accurate and easy control of a mold temperature by a multivariable fuzzy control system in which a constraint condition relating to mold temperature adjustment is added to a control law.

【0012】[0012]

【課題を解決するための手段】この目的を達成するた
め、本発明によれば、ガラス溶解炉で溶解されたガラス
をフォーハースからフィーダーを経てゴブ形成部に送給
し、ゴブを形成するとともに、これをガラス成形機の金
型に送給するようにし、金型の冷却風量を制御して、金
型温度を制御するようにしたガラス成形機の金型温度制
御方法において、(a)送風ダクトにサクションダンパ
と送風機を設置して、冷却風を供給し、(b)送風機と
ガラス成形機間の送風ダクトに温度計を設置して、温度
(以下、『風温』という)を計測し、(c)上記風温の
計測値の今回計測値と前回計測値との差の時間的変化量
をファジィ推論規則の前件部とし、予め設定されたファ
ジィ集合のメンバーシップ関数と推論規則に基いて、フ
ァジィ推論を行い、金型温度を推定して、金型冷却風量
の制御を行うことを特徴とする。
According to the present invention, in order to achieve this object, glass melted in a glass melting furnace is fed from a forge to a gob forming section through a feeder to form a gob. In the method of controlling the temperature of a mold of a glass forming machine, the temperature of the mold is controlled by controlling the amount of cooling air of the mold by feeding this to a mold of the glass forming machine. A suction damper and a blower are installed in the duct to supply cooling air, and (b) a thermometer is installed in the air duct between the blower and the glass forming machine to measure the temperature (hereinafter referred to as "wind temperature"). (C) The temporal change of the difference between the current measured value and the previous measured value of the wind temperature is defined as the antecedent of the fuzzy inference rule, and the membership function and the inference rule of the fuzzy set are set in advance. Based on fuzzy inference, To estimate the mold temperature, and performs control of the mold cooling air flow.

【0013】本発明方法は、上記に加えて、送風機とガ
ラス成形機間の送風ダクトに圧力計を設置して、圧力
(以下、『元圧』という)を計測するとともに、送風機
とガラス成形機間の送風ダクトに湿度計を設置して、湿
度(以下、『湿度』という)を計測し、上記元圧及び湿
度の計測値の今回計測値と前回計測値との差の時間的変
化量をファジィ推論規則の前件部とし、予め設定された
ファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型温度を推定して、金型冷
却風量の制御を行うことを特徴とする。
According to the method of the present invention, in addition to the above, a pressure gauge is installed in a blower duct between a blower and a glass forming machine to measure a pressure (hereinafter, referred to as "source pressure"), and the blower and the glass forming machine are measured. Install a hygrometer in the ventilation duct between the two to measure the humidity (hereinafter referred to as "humidity") and measure the temporal change in the difference between the current and previous measured values of the original pressure and humidity. Fuzzy inference is performed as a prerequisite to the fuzzy inference rules, and fuzzy inference is performed based on the membership function of the fuzzy set and inference rules set in advance, the mold temperature is estimated, and the mold cooling air volume is controlled. And

【0014】本発明方法は、上記に加えて、ゴブ形成部
に温度計を設置して、金型に供給されるガラス温度(以
下、『ゴブ温』という)を計測するとともに、ガラス成
形機の近傍に温度計を設置して,気温(以下、『気温』
という)を計測し、上記ゴブ温及び気温のそれぞれの計
測値の今回計測値と前回計測値との差の時間的変化量を
ファジィ推論規則の前件部とし、予め設定されたファジ
ィ集合のメンバーシップ関数と推論規則に基いて、ファ
ジィ推論を行い、金型温度を推定して、金型冷却風量の
制御を行うことを特徴とする。
According to the method of the present invention, in addition to the above, a thermometer is installed in the gob forming section to measure the temperature of the glass supplied to the mold (hereinafter, referred to as "gob temperature") and to measure the temperature of the glass forming machine. Install a thermometer in the vicinity and check the temperature (hereinafter, “temperature”
), And the temporal change in the difference between the current measurement value and the previous measurement value of the above gob temperature and temperature is regarded as the antecedent of the fuzzy inference rule, and a member of a fuzzy set that is set in advance. The fuzzy inference is performed based on the ship function and the inference rule, the mold temperature is estimated, and the mold cooling air volume is controlled.

【0015】本発明方法は、上記に加えて、ガラス成形
機に供給される単位時間当たりのガラス流量を検出する
とともに、ガラス成形機にセクション稼働台数検知器を
設置して、セクション稼働台数を検知し、上記ガラス流
量およびセクション稼働台数のそれぞれの計測値の今回
計測値と前回計測値との差の時間的変化量をファジィ推
論規則の前件部とし、予め設定されたファジィ集合のメ
ンバーシップ関数と推論規則に基いて、ファジィ推論を
行い、金型温度を推定して、金型冷却風量の制御を行う
ことを特徴とする。
In addition to the above, the method of the present invention detects the flow rate of glass supplied to the glass forming machine per unit time, and installs a section working number detector in the glass forming machine to detect the section working number. Then, the time variation of the difference between the current measurement value and the previous measurement value of each of the glass flow rate and the section operation number is set as the antecedent of the fuzzy inference rule, and the membership function of the fuzzy set is set in advance. And fuzzy inference based on the inference rule to estimate the mold temperature and control the mold cooling air flow.

【0016】また、本発明方法は、ガラス溶解炉で溶解
されたガラスをフォーハースからフィーダーを経てゴブ
形成部に送給し、ゴブを形成するとともに、これをガラ
ス成形機の金型に送給するようにし、金型の冷却風量を
制御して、金型温度を制御するようにしたガラス成形機
の金型温度制御方法において、(a)送風ダクトにサク
ションダンパと送風機を設置して、冷却風を供給し、
(b)送風機とガラス成形機間の送風ダクトに温度計を
設置して、温度(以下、『風温』という)を計測し、
(c)上記風温の計測値の今回計測値と前回計測値との
差の時間的変化量をファジィ推論規則の前件部とし、予
め設定されたファジィ集合のメンバーシップ関数と推論
規則に基いて、ファジィ推論を行い、金型温度を推定し
て、(d)推定された金型温度の今回推定値と前回推定
値との差の時間的変化量をファジィ推論規則の前件部と
し、予め設定されたファジィ集合のメンバーシップ関数
と推論規則に基いて、ファジィ推論を行い、(e)推定
された金型温度と設定温度との偏差量を、ファジィ推論
規則の前件部とし、予め設定されたファジィ集合のメン
バーシップ関数と推論規則に基いて、ファジィ推論を行
い、(f)変更設定温度と設定温度との偏差値を、ファ
ジィ推論規則の前件部とし、予め設定されたファジィ集
合のメンバーシップ関数と推論規則に基いて、ファジィ
推論を行い、金型冷却風量の制御を行うことを特徴とす
る。
In the method of the present invention, the glass melted in a glass melting furnace is fed from a fore hearth to a gob forming section via a feeder to form a gob, which is fed to a mold of a glass forming machine. In the mold temperature control method for a glass forming machine in which the amount of cooling air of the mold is controlled to control the temperature of the mold, (a) a suction damper and a blower are installed in a ventilation duct, and cooling is performed. Supply the wind,
(B) A thermometer is installed in the air duct between the blower and the glass forming machine to measure the temperature (hereinafter referred to as “wind temperature”),
(C) The temporal change in the difference between the current measured value and the previous measured value of the wind temperature is defined as the antecedent of the fuzzy inference rule, and is based on the membership function of the fuzzy set and the inference rule set in advance. Then, fuzzy inference is performed to estimate the mold temperature, and (d) the temporal change amount of the difference between the current estimated value and the previous estimated value of the estimated mold temperature is defined as the antecedent of the fuzzy inference rule. A fuzzy inference is performed based on a membership function of a fuzzy set and an inference rule set in advance, and (e) a deviation amount between the estimated mold temperature and the set temperature is set as a precondition of the fuzzy inference rule. Fuzzy inference is performed based on the set membership function of the fuzzy set and the inference rule, and (f) a deviation value between the changed set temperature and the set temperature is set as an antecedent of the fuzzy inference rule, and a preset fuzzy inference rule is set. Membership of the set Based on the functions and inference rules, performs a fuzzy inference, and performs control of the mold cooling air flow.

【0017】本発明方法は、上記に加えて、送風機とガ
ラス成形機間の送風ダクトに圧力計を設置して、圧力
(以下、『元圧』という)を計測するとともに、送風機
とガラス成形機間の送風ダクトに湿度計を設置して、湿
度(以下、『湿度』という)を計測し、上記元圧及び湿
度の計測値の今回計測値と前回計測値との差の時間的変
化量をファジィ推論規則の前件部とし、予め設定された
ファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型温度を推定して、金型冷
却風量の制御を行うことを特徴とする。
According to the method of the present invention, in addition to the above, a pressure gauge is installed in a blower duct between a blower and a glass forming machine to measure a pressure (hereinafter, referred to as "source pressure"). Install a hygrometer in the ventilation duct between the two to measure the humidity (hereinafter referred to as "humidity") and measure the temporal change in the difference between the current and previous measured values of the original pressure and humidity. Fuzzy inference is performed as a prerequisite to the fuzzy inference rules, and fuzzy inference is performed based on the membership function of the fuzzy set and inference rules set in advance, the mold temperature is estimated, and the mold cooling air volume is controlled. And

【0018】本発明方法は、上記に加えて、ゴブ形成部
に温度計を設置して、金型に供給されるガラス温度(以
下、『ゴブ温』という)を計測するとともに、ガラス成
形機の近傍に温度計を設置して、気温(以下、『気温』
という)を計測し、上記ゴブ温及び気温のそれぞれの計
測値の今回計測値と前回計測値との差の時間的変化量を
ファジィ推論規則の前件部とし、予め設定されたファジ
ィ集合のメンバーシップ関数と推論規則に基いて、ファ
ジィ推論を行い、金型温度を推定して、金型冷却風量の
制御を行うことを特徴とする。
According to the method of the present invention, in addition to the above, a thermometer is installed in a gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as "gob temperature") and to measure the temperature of the glass forming machine. Install a thermometer in the vicinity to determine the temperature (hereinafter, “temperature”
), And the temporal change in the difference between the current measurement value and the previous measurement value of the above gob temperature and temperature is regarded as the antecedent of the fuzzy inference rule, and a member of a fuzzy set that is set in advance. The fuzzy inference is performed based on the ship function and the inference rule, the mold temperature is estimated, and the mold cooling air volume is controlled.

【0019】本発明方法は、上記に加えて、ガラス成形
機に供給される単位時間当たりのガラス流量を検出する
とともに、ガラス成形機にセクション稼働台数検知器を
設置して、セクション稼働台数を検知し、上記ガラス流
量、セクション稼働台数のそれぞれの計測値の今回計測
値と前回計測値との差の時間的変化量を、ファジィ推論
規則の前件部とし、予め設定されたファジィ集合のメン
バーシップ関数と推論規則に基いて、ファジィ推論を行
い、金型温度を推定して、金型冷却風量の制御を行うこ
とを特徴とする。
In addition to the above, the method of the present invention detects the flow rate of glass supplied to the glass forming machine per unit time and installs a section operating number detector in the glass forming machine to detect the operating number of sections. Then, the time variation of the difference between the current measurement value and the previous measurement value of each of the glass flow rate and the number of operating sections is set as an antecedent of the fuzzy inference rule, and the membership of the fuzzy set is set in advance. It is characterized by performing fuzzy inference based on a function and an inference rule, estimating a mold temperature, and controlling a mold cooling air volume.

【0020】更に、本発明方法は、ガラス溶解炉で溶解
されたガラスをフォーハースからフィーダーを経てゴブ
形成部に送給し、ゴブを形成するとともに、これをガラ
ス成形機の金型に送給するようにし、金型の冷却風量を
制御して、金型温度を制御するようにしたガラス成形機
の金型温度制御方法において、(a)送風ダクトにサク
ションダンパと送風機を設置して、冷却風を供給し,
(b)送風機とガラス成形機間のダクトに圧力計を設置
して、圧力(以下、『元圧』という)を計測し、(c)
送風機とガラス成形機間のダクトに湿度計を設置して、
湿度(以下、『湿度』という)を計測し、(d)ガラス
成形機の近傍に温度計を設置して、気温(以下、『気
温』という)を計測し、(e)同一製品の前回生産時の
上記元圧、湿度、気温と現在の元圧、湿度、気温との偏
差量を、ファジィ推論規則の前件部とし、予め設定され
たファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型温度を推定して、推定さ
れた金型温度の今回推定値と前回推定値との差の時間的
変化量をファジィ推論規則の前件部とし、予め設定され
たファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型冷却風量の制御を行うこ
とを特徴とする。
Further, according to the method of the present invention, the glass melted in the glass melting furnace is fed from a fore hearth to a gob forming section via a feeder to form a gob, which is fed to a mold of a glass forming machine. In the mold temperature control method for a glass forming machine in which the amount of cooling air of the mold is controlled to control the temperature of the mold, (a) a suction damper and a blower are installed in a ventilation duct, and cooling is performed. Supply the wind,
(B) A pressure gauge is installed in a duct between the blower and the glass forming machine to measure a pressure (hereinafter, referred to as “source pressure”), and (c)
Install a hygrometer in the duct between the blower and the glass forming machine,
Measure humidity (hereinafter referred to as "humidity"), (d) Install a thermometer near the glass forming machine, measure the temperature (hereinafter referred to as "temperature"), and (e) Last production of the same product The above-mentioned source pressure, humidity, the deviation amount between the current source pressure, humidity, and temperature and the current source pressure, humidity, and temperature are defined as the antecedent of the fuzzy inference rule, and based on a membership function and an inference rule of a fuzzy set that is set in advance. A fuzzy inference is performed to estimate a mold temperature, and a temporal change amount of a difference between the current estimated value and the previous estimated value of the estimated mold temperature is set as a precondition of the fuzzy inference rule, and a preset fuzzy inference rule is set. It is characterized by performing fuzzy inference based on the membership function of the set and inference rules, and controlling the die cooling air volume.

【0021】本発明方法は、上記に加えて、送風機とガ
ラス成形機間のダクトに温度計を設置して、温度(以
下、『風温』という)を計測し、同一製品の前回生産時
の上記風温と現在の風温との偏差量を、ファジィ推論規
則の前件部とし、予め設定されたファジィ集合のメンバ
ーシップ関数と推論規則に基いて、ファジィ推論を行
い、金型温度を推定して、推定された金型温度の今回推
定値と前回推定値との差の時間的変化量をファジィ推論
規則の前件部とし、予め設定されたファジィ集合のメン
バーシップ関数と推論規則に基いて、ファジィ推論を行
い、金型冷却風量の制御を行うことを特徴とする。
In the method of the present invention, in addition to the above, a thermometer is installed in a duct between a blower and a glass forming machine to measure a temperature (hereinafter referred to as "wind temperature"), and to measure the temperature of the same product during the previous production. The deviation between the above wind temperature and the current wind temperature is used as the antecedent of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance to estimate the mold temperature. Then, the temporal change in the difference between the current estimated value and the previous estimated value of the estimated mold temperature is used as the antecedent of the fuzzy inference rule, and based on the membership function of the fuzzy set and the inference rule set in advance. And it is characterized by performing fuzzy inference and controlling the die cooling air volume.

【0022】本発明方法は、上記に加えて、ゴブ形成部
に温度計を設置して、金型に供給されるガラス温度(以
下、『ゴブ温』という)を計測し,同一製品の前回生産
時の上記ゴブ温と現在のゴブ温との偏差量を、ファジィ
推論規則の前件部とし、予め設定されたファジィ集合の
メンバーシップ関数と推論規則に基いて、ファジィ推論
を行い、金型温度を推定して、推定された金型温度の今
回推定値と前回推定値との差の時間的変化量をファジィ
推論規則の前件部とし、予め設定されたファジィ集合の
メンバーシップ関数と推論規則に基いて、ファジィ推論
を行い、金型冷却風量の制御を行うことを特徴とする。
In the method of the present invention, in addition to the above, a thermometer is installed in a gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as "gob temperature"), and to produce the same product in the previous production. The amount of deviation between the above-mentioned gob temperature and the current gob temperature is taken as the antecedent part of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance, and the mold temperature is calculated. And the temporal change of the difference between the current estimated value and the previous estimated value of the estimated mold temperature as the antecedent part of the fuzzy inference rule, and the membership function and the inference rule of the fuzzy set set in advance. Based on the above, a fuzzy inference is performed to control a mold cooling air volume.

【0023】本発明方法は、上記に加えて、ガラス成形
機に供給される単位時間当たりのガラス流量を検出する
とともに、ガラス成形機にセクション稼働台数検知器を
設置して、セクション稼働台数を検知し、上記ガラス流
量、セクション稼働台数のそれぞれの計測値の今回計測
値と前回計測値との差の時間的変化量を、ファジィ推論
規則の前件部とし、予め設定されたファジィ集合のメン
バーシップ関数と推論規則に基いて、ファジィ推論を行
い、同一製品の前回生産時の上記ガラス流量およびセク
ション稼働台数と現在のガラス流量および、セクション
稼働台との偏差量を、ファジィ推論規則の前件部とし、
予め設定されたファジィ集合のメンバーシップ関数と推
論規則に基いて、ファジィ推論を行い、金型温度を推定
して、推定された金型温度の今回推定値と前回推定値と
の差の時間的変化量をファジィ推論規則の前件部とし、
予め設定されたファジィ集合のメンバーシップ関数と推
論規則に基いて、ファジィ推論を行い、金型冷却風量の
制御を行うことを特徴とする。
In addition to the above, the method of the present invention detects the flow rate of glass supplied to the glass forming machine per unit time and installs a section operating number detector in the glass forming machine to detect the operating number of sections. Then, the time variation of the difference between the current measurement value and the previous measurement value of each of the glass flow rate and the number of operating sections is set as an antecedent of the fuzzy inference rule, and the membership of the fuzzy set is set in advance. Fuzzy inference is performed based on the function and the inference rule, and the above glass flow rate and the number of sections operated at the previous production of the same product, the current glass flow rate, and the deviation from the section operation table are calculated using the antecedent part of the fuzzy inference rule. age,
Fuzzy inference is performed based on a preset fuzzy set membership function and inference rules, mold temperature is estimated, and the time difference between the current estimated value and the previous estimated value of the estimated mold temperature is estimated. The change is the antecedent of the fuzzy inference rule,
It is characterized in that fuzzy inference is performed based on a preset fuzzy set membership function and inference rules to control the amount of mold cooling air.

【0024】[0024]

【実施例】本発明方法を実施する金型冷却設備の全体構
成を説明する。図1,図2,図3に基づいて説明する
と、ガラス溶解炉で溶解されたガラスはフォーハース1
を経て、フィーダー2に送給され、ゴブ3が形成され
る。形成されたゴブ3は、デリバリーにより、成形機4
の各セクション5に備えられた金型に供給され、ガラス
製品が形成される。このプロセスの過程で、約1100
℃〜1200℃のゴブは、送風機からの風(約20℃〜
30℃)によつて冷却される金型(約450℃〜600
℃)を通して熱を奪われ、約550℃〜650℃のガラ
ス製品となり成形機より取出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An overall configuration of a mold cooling facility for carrying out the method of the present invention will be described. Referring to FIG. 1, FIG. 2 and FIG. 3, the glass melted in the glass melting furnace
Is fed to the feeder 2 to form a gob 3. The formed gob 3 is delivered to a molding machine 4.
Is supplied to the mold provided in each section 5 of the above to form a glass product. During this process, about 1100
The gob at a temperature between 1200 ° C and 1200 ° C is
30 ° C.) (about 450 ° C. to 600 ° C.)
° C), the heat is removed, and the glass product becomes about 550 ° C to 650 ° C and is taken out of the molding machine.

【0025】成形機は、一般的には、1〜12個のセク
ションより構成され、各セクションには、金型冷却の為
のダクト8が設置されている。冷却風は、送風機によ
り、外気を取り込み、高圧(約5000〜12000P
a)の風を送る。送風機の外気取り込み口には、ダンパ
9が設けられており、その開度を調整することにより金
型冷却風量を変える。
The molding machine is generally composed of 1 to 12 sections, and each section is provided with a duct 8 for cooling a mold. Cooling air is taken in by outside air by a blower and has a high pressure (about 5000 to 12000P).
Send the wind of a). A damper 9 is provided in the outside air intake of the blower, and the opening degree of the damper 9 is adjusted to change the mold cooling air flow.

【0026】本発明方法の基本的構成について説明す
る。金型温度の安定が目標の一つであることから、図1
に示すように、ダクト8に、温度計11を設置し、風温
を計測し、金型温度の変動要因である信号として計測
し、本制御方法への入力としている。計測したデータの
前回計測値と今回計測値の差の時間的変化量または今回
測定値とその設定値との偏差量からファジィ推論規則の
前件部としてあらかじめ設定されたファジィ集合のメン
バーシップ関数と推論規則に基づいてファジィ推論を行
ない金型温度が今後どのように変動するのかを推定す
る。(以後、この金型温度の推定値を金型推定温度とい
う。)
The basic structure of the method of the present invention will be described. As one of the goals is to stabilize the mold temperature,
As shown in (1), a thermometer 11 is installed in the duct 8, the wind temperature is measured, the signal is measured as a signal which is a fluctuation factor of the mold temperature, and the measured signal is input to the control method. The membership function of the fuzzy set, which is set in advance as the antecedent of the fuzzy inference rule, is calculated from the temporal change amount of the difference between the previous measurement value and the current measurement value of the measured data or the deviation amount between the current measurement value and the set value. Fuzzy inference is performed based on the inference rules to estimate how the mold temperature will change in the future. (Hereafter, the estimated value of the mold temperature is referred to as the estimated mold temperature.)

【0027】本発明方法においては、さらに、よりきめ
細かい制御を行う場合には、図2,図3に示すように、
ダクトに、上記温度計11に加えて、圧力計10、湿度
計12を設置し、風温に加えて、圧力、湿度等を計測
し、フィーダー部2には温度計13、成形機近くには気
温計14を設置し、さらに、成形機タイミング装置15
からのセクション稼働台数を検知し、これらの計測器か
ら金型温度の変動要因である信号を計測し、本制御方法
への入力とする。成形機タイミング装置15は、センサ
ーにより、金型にゴブが供給される状況をキャッチし、
セクション稼働台数を検知している。また、成形機タイ
ミングの冷却時間調節弁をウインドノズルの冷却風入口
に設けて冷却風量を調節している。
In the method of the present invention, when more detailed control is performed, as shown in FIGS.
In the duct, in addition to the thermometer 11, a pressure gauge 10 and a hygrometer 12 are installed, and in addition to the wind temperature, pressure, humidity, and the like are measured. A thermometer 14 is installed, and a molding machine timing device 15
, The number of operating sections is detected, and a signal that is a cause of mold temperature fluctuation is measured from these measuring instruments and used as an input to the control method. The molding machine timing device 15 catches the situation where the gob is supplied to the mold by the sensor,
The number of operating sections is detected. Further, a cooling time adjusting valve at the timing of the molding machine is provided at the cooling air inlet of the window nozzle to adjust the amount of cooling air.

【0028】本願の発明では、金型温度を直接測定しな
くても、精度の良い結果が得られる。一般に、金型温度
を測定するには、金型に直接、熱電対、センサーなどの
温度計を取り付ける方法や被接触で金型が開いている時
点で、金型内表面の温度を測定する方法がある。直接測
定する方法では、金型を交換する毎に、熱電対或いはセ
ンサーを取り替える必要がある。また、被接触で測定す
る方法では、金型の開くタイミングを変更した際に測定
の設定値を変更する必要がある。したがつて、金型温度
の測定に当たって、測定器の設置はもとより、運転員の
作業も多くなる。
According to the present invention, accurate results can be obtained without directly measuring the mold temperature. Generally, to measure the mold temperature, a method of directly attaching a thermometer such as a thermocouple or a sensor to the mold or a method of measuring the temperature of the inner surface of the mold when the mold is opened by contact. There is. In the direct measurement method, it is necessary to replace the thermocouple or the sensor each time the mold is replaced. Further, in the method of measuring by contact, it is necessary to change the set value of the measurement when the opening timing of the mold is changed. Therefore, in measuring the mold temperature, not only the installation of the measuring instrument but also the operation of the operator is increased.

【0029】金型推定温度とその設定温度との偏差量ま
たは金型推定温度の時間的変化量からファジィ推論し、
送風機の外気取り込み口に設けてあるダンパの開度(以
後『ダンパ開度』という。)を決定し、金型温度が安定
するように制御を行う。
Fuzzy inference is performed from the deviation between the estimated mold temperature and the set temperature or the temporal change in the estimated mold temperature.
The opening degree of a damper provided in the outside air intake port of the blower (hereinafter referred to as “damper opening degree”) is determined, and control is performed so that the mold temperature is stabilized.

【0030】次に、ファジィ制御の制御ブロックについ
て説明する。図4は、ファジィ制御を構成する各制御ブ
ロックを示す。プロセスデータ演算部、ファジィ推論部
等によって構成されている。プロセスデータ演算部は、
プロセスより気温、元圧、湿度、風温、ガラス流量、ゴ
ブ温度、送風機のダンパ開度を入力し、データベース部
にあるそれぞれの設定温度との偏差量の算出や、今回計
測値と前回計測値との時間的変化量の算出等を行う。フ
ァジィ推論部では、プロセスデータ演算部より入力した
データとそのデータに対応するメンバーシップ関数およ
び推論規則からファジィ推論を行う。操作量算出部はフ
ァジィ推論により求められた定性的な操作量を定量的な
値へと算出する。複数の推論規則がある場合には、メン
バーシップの値で加重平均値をとり操作量の変更量(Δ
U)を求める。操作量評価部では、求められた操作量の
変更量(ΔU)と現在の操作量を加算し、その値が予め
決められた範囲内かどうかの評価が行われる。その値が
適正な場合には、制御部へ送られプロセスへの出力とな
る。
Next, a control block of the fuzzy control will be described. FIG. 4 shows each control block constituting the fuzzy control. It is composed of a process data calculation unit, a fuzzy inference unit, and the like. The process data calculation unit
Input the temperature, source pressure, humidity, wind temperature, glass flow rate, gob temperature, blower damper opening from the process, calculate the deviation from each set temperature in the database section, and the current and previous measured values Calculate the amount of temporal change from the above. The fuzzy inference unit performs fuzzy inference from data input from the process data operation unit, a membership function corresponding to the data, and an inference rule. The operation amount calculation unit calculates a qualitative operation amount obtained by fuzzy inference into a quantitative value. If there are multiple inference rules, the weighted average value is calculated using the membership value, and the
U). The operation amount evaluation unit adds the obtained operation amount change amount (ΔU) and the current operation amount, and evaluates whether or not the value is within a predetermined range. If the value is correct, it is sent to the control unit and output to the process.

【0031】本制御方法の実施にあたっては、図5に示
す機器構成にて、システムを構成し、プロセスよりの入
出力信号は、プログラミングロジックコントローラ(以
下『PLC』という。)を介して、パーソナルコンピュ
ータ(PC)へと取り込まれている。
In carrying out the present control method, a system is configured with the equipment configuration shown in FIG. 5, and input / output signals from the process are transmitted to a personal computer via a programming logic controller (hereinafter referred to as "PLC"). (PC).

【0032】PCの主な機能は、 1.入出力データの管理及びフィルタリング機能 2.ファジィ推論機能 3.型替え設定機能及び型替え処理機能 4.マンマシンインターフェイス機能 に大別される。The main functions of the PC are: 1. Input / output data management and filtering function 2. Fuzzy inference function 3. Type change setting function and type change processing function It is roughly divided into man-machine interface functions.

【0033】図6に示されるようにファジィ推論部にお
いては、データをもとにした通常生産時における安定化
制御モードでのファジィ推論、型替えにおける立ち上げ
整定制御部モードでのファジィ推論が行われる。この2
つのモードの切替えは、プロセスの操業状況によって自
動的に行われる。
As shown in FIG. 6, the fuzzy inference unit performs fuzzy inference in the stabilization control mode during normal production based on data and fuzzy inference in the start-up settling control mode in type change. Will be This 2
Switching between the two modes is performed automatically according to the operation status of the process.

【0034】ファジィ制御に用いられる制御目標値、パ
ラメータ、計測値(ゴブ温度、気温、湿度、元圧設定
値、ガラス流量、セクション稼働台数等)や警報設定値
(上限値、下限値)等のデータは、生産品種毎に異なる
ため、それらのデータは、良好な生産時に自動的にデー
タベースとして保存する(以下、データベースに保存さ
れているデータを生産品種データという)。型替え設定
においては、次に生産する品種の型替え時刻の設定、生
産品種データの呼出しを可能とし、型替え時に型替え処
理(プログラム)により生産品種データの金型推定温
度、金型温度の設定値、元圧設定値および各制御目標値
が型替え後の生産品種の制御に用いられる初期値として
設定される。
Control target values, parameters, measured values (gob temperature, temperature, humidity, source pressure set value, glass flow rate, number of sections operated, etc.) used for fuzzy control, alarm set values (upper limit value, lower limit value), etc. Since data differs for each product type, the data is automatically stored as a database during good production (hereinafter, data stored in the database is referred to as product type data). In the type change setting, it is possible to set the type change time of the type to be produced next, and to call out the type data of the type. The set value, the original pressure set value, and each control target value are set as initial values used for controlling the product type after the type change.

【0035】PCは、上記の他に下記の機能をも具備し
ている。 1.グラフィック画面、オーバービュー画面による運転
監視操作 2.アラーミング機能 3.DDC(ダイレクトディジタルコントロール)機能 4.トレンド画面表示 5.データロギング機能
The PC has the following functions in addition to the above functions. 1. Operation monitoring operation using graphic screen and overview screen 2. Alarming function 3. 3. DDC (Direct Digital Control) function Trend screen display 5. Data logging function

【0036】以下、通常生産時における定常制御および
型替えにおける立ち上げ整定制御について項を分けて詳
細に説明する。 (1)通常生産時における定常制御 通常生産時における定常制御には、次の制御ループがあ
る。 (A)金型温度の推定 (B)金型温度の安定化制御 (C)制御目標値の設定変更対応制御 (D)セクション稼働台数の変動対応制御
Hereinafter, the steady control during normal production and the start-up settling control during type change will be described in detail in separate sections. (1) Steady-state control during normal production The steady-state control during normal production includes the following control loop. (A) Estimation of mold temperature (B) Stabilization control of mold temperature (C) Control corresponding to change in setting of control target value (D) Control corresponding to fluctuation of the number of operating sections

【0037】(A)金型温度の推定 金型温度の安定化のために金型温度が過去の制御操作お
よび生産環境の変化から金型温度の変動を推定する制御
ループである。
(A) Estimation of mold temperature This is a control loop for estimating mold temperature fluctuations based on past control operations and changes in the production environment in order to stabilize mold temperatures.

【0038】本制御の基本制御ループでは、今回計測さ
れた風温と前回計測された風温の差を算出し、時間的変
化量を求める。そして風温の時間的変化量の変数をファ
ジィ推論規則の前件部として、あらかじめ設定されたフ
ァジィ推論を行ない金型温度を推定する。
In the basic control loop of the present control, the difference between the presently measured wind temperature and the previously measured wind temperature is calculated, and the temporal change is obtained. Then, using the variable of the temporal change of the wind temperature as a precondition of the fuzzy inference rule, a preset fuzzy inference is performed to estimate the mold temperature.

【0039】本制御ループでは、更に、きめ細かい制御
を行う場合には、上記風温に加えて、今回計測された湿
度と前回計測された湿度の差、今回計測されたセクショ
ン稼働台数と前回計測されたセクション稼働台数の差、
今回計測された元圧と前回計測された元圧の差を算出し
時間的変化量を求める。そして風温と湿度とセクション
稼働台数の時間的変化量の3変数と元圧とセクション稼
働台数の時間的変化量の2変数をファジィ推論規則の前
件部として、あらかじめ設定されたファジィ推論を行な
い金型温度を推定する。
In the present control loop, when finer control is to be performed, in addition to the above-mentioned air temperature, the difference between the humidity measured this time and the humidity measured last time, the number of operating sections measured this time and the number measured last time are used. Section operating number difference,
The difference between the original pressure measured this time and the previously measured original pressure is calculated, and the temporal change amount is obtained. The fuzzy inference is performed by using the three variables of the time change of the wind temperature, the humidity, and the number of operating sections as well as the two variables of the temporal change of the source pressure and the number of operating sections as preconditions of the fuzzy inference rule. Estimate mold temperature.

【0040】推定された金型温度(以下『金型推定温
度』という。)は、以後(B)金型の安定制御を示す金
型温度の指標となる。
The estimated mold temperature (hereinafter referred to as "mold estimated temperature") is used as an index of mold temperature indicating (B) mold stability control.

【0041】(1)入力データとメンバーシップ関数 ファジィ推論のために用いられる入力データとそのメン
バーシップ関数を下記へ示す。
(1) Input Data and Membership Function Input data used for fuzzy inference and its membership function are shown below.

【0042】 a)風温の時間的変化量 (ΔE) (今回計測風温)−(前回計測風温) (図7参照)A) Temporal change in wind temperature (ΔE) (current measured wind temperature) − (previous measured wind temperature) (see FIG. 7)

【0043】 b)湿度の時間的変化量 (ΔE) (今回計測湿度)−(前回計測湿度) (図8参照)B) Temporal change in humidity (ΔE) (current measured humidity) − (previous measured humidity) (see FIG. 8)

【0044】 c)元圧の時間的変化量 (ΔE) (今回元圧)−(前回元圧) (図9参照)C) Time-dependent change of the source pressure (ΔE) (current source pressure) − (previous source pressure) (see FIG. 9)

【0045】d)セクション稼動台数 (図10参照) 図中のPB,Z,NBはメンバーシップ関数に与えられ
た名称である。 PB:正に大きい Z:不変 NB:負に大きい
D) Number of operating sections (see FIG. 10) PB, Z and NB in the figure are names given to the membership functions. PB: positively large Z: unchanged NB: negatively large

【0046】(2) 推論規則(制御ルール) 風温の時間的変化量、温度の時間的変化量及びセクショ
ン稼動台数の3変数と、元圧設定値の時間的変化量及び
セクション稼動台数の2変数より金型推定温度を決定す
るための推論規則を示す。(図11参照)
(2) Inference Rule (Control Rule) The three variables of the temporal change of the wind temperature, the temporal change of the temperature and the number of operating sections, and the two variables of the temporal change of the set source pressure value and the operating number of sections. The inference rules for determining the estimated mold temperature from variables are shown. (See Fig. 11)

【0047】 a)セクション稼動台数がPBの時 (表1)A) When the number of operating sections is PB (Table 1)

【表1】 [Table 1]

【0048】上記表の推論規則中、左上の場合は、セク
ション稼動台数が多く、風温の時間的変化量が負に大き
くかつ湿度の時間的変化量が正に大きいならば金型推定
温度は、正に普通となることを示す。
In the inference rule in the above table, in the upper left case, if the number of operating sections is large, the temporal change in the wind temperature is negative and the temporal change in the humidity is positive, then the mold estimated temperature is , Indicating that it is just normal.

【0049】 b)セクション稼働台数がNBの時 (表2)B) When the number of operating sections is NB (Table 2)

【表2】 [Table 2]

【0050】 c)元圧の時間的変化量(ΔE) (表3)C) Time-dependent change in source pressure (ΔE) (Table 3)

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】複数の推論規則により金型推定温度が規定
されている場合は、各メンバーシップの値に応じた加重
平均値でもって金型推定温度の変更量(ΔU)が求めら
れる。求められた金型推定温度の変更量(ΔU)と現在
の金型推定温度が加算され新しい金型推定温度となる。
When the estimated mold temperature is defined by a plurality of inference rules, the change amount (ΔU) of the estimated mold temperature is obtained by a weighted average value corresponding to each membership value. The obtained change amount (ΔU) of the estimated mold temperature and the current estimated mold temperature are added to obtain a new estimated mold temperature.

【0053】(B)金型温度の安定化制御 (A)金型温度の推定の制御で決定した金型推定温度を
その設定温度に安定させるための制御ループである。金
型推定温度の今回値、前回値との差の時間的変化量また
は金型推定温度とその設定温度の偏差量よりファジィ推
論を行ないダンパ開度を決定する。決定されたダンパ開
度は送風機の外気取り込み口のダンパのモータに送られ
る。
(B) Stabilization control of mold temperature (A) This is a control loop for stabilizing the mold estimated temperature determined in the control of mold temperature estimation to the set temperature. The damper opening is determined by performing fuzzy inference from the temporal change amount of the difference between the current value and the previous value of the mold estimated temperature or the difference between the mold estimated temperature and the set temperature. The determined damper opening is sent to the motor of the damper at the outside air intake of the blower.

【0054】すなわち図12に示されるように、各計測
器からの測定値、元圧設定値等のデータを(A)金型温
度の推定のファジィ推論部への入力データとして、その
ファジィ推論結果を本ファジィ推論部に入力データとし
てファジィ推論結果を送風機の外気取り込み口のダンパ
のモータに送り金型温度冷却風量を制御する。
That is, as shown in FIG. 12, the data such as the measured value and the original pressure set value from each measuring instrument are used as input data to the fuzzy inference section for estimating the mold temperature (A), and the fuzzy inference result is obtained. The fuzzy inference result is input to the fuzzy inference unit, and the fuzzy inference result is sent to a motor of a damper at an outside air intake port of the blower to control a mold temperature cooling air flow.

【0055】(1)入力データとメンバーシップ関数 ファジィ推論のために用いられる入力データとそのメン
バーシップ関数を下記へ示す。
(1) Input Data and Membership Function Input data used for fuzzy inference and its membership function are shown below.

【0056】a)金型推定温度の時間的変化量(ΔE) (図13参照)A) Temporal change amount (ΔE) of estimated mold temperature (see FIG. 13)

【0057】 b)金型推定温度とその設定温度の偏差量(E) (図14参照)B) Deviation (E) between the estimated mold temperature and the set temperature (see FIG. 14)

【0058】 (2)推論規則(制御ルール) (表5)(表6) 金型推定温度の時間的変化量または金型推定温度とその
設定値との偏差量よりダンパー開度の変更量(ΔU)を
推論する。
(2) Inference Rule (Control Rule) (Table 5) (Table 6) The amount of change in the damper opening degree based on the temporal change amount of the estimated mold temperature or the deviation amount between the estimated mold temperature and its set value ( ΔU).

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】(C)制御目標値の設定変更対応制御 オペレータ等により金型温度の設定値(目標)の変更が
なされた場合、その設定温度の変更量とセクション稼動
台数の2変数により、ファジィ推論を行いダンパ開度の
変更量(ΔU)を決定する。
(C) Control for setting change of control target value When a set value (target) of a mold temperature is changed by an operator or the like, fuzzy inference is performed based on two variables of the change amount of the set temperature and the number of sections operated. To determine the change amount (ΔU) of the damper opening.

【0062】(1)入力データとメンバーシップ関数 ファジィ推論のために用いられる入力データとそのメン
バーシップ関数を下記へ示す。
(1) Input Data and Membership Function Input data and its membership function used for fuzzy inference are shown below.

【0063】a)金型温度の設定値の変更量 (変更後の金型温度の設定値)−(変更前の金型温度の
設定値) (図15参照)
A) Amount of change in set value of mold temperature (set value of mold temperature after change) − (set value of mold temperature before change) (see FIG. 15)

【0064】b)セクション稼動台数 セクション稼動台数 (図16参照)B) Number of operating sections The number of operating sections (see FIG. 16)

【0065】(2)推論規則(制御ルール)(表7) 金型温度の設定値の変更量とセクション台数の2変数に
より、ファジィ推論を行いダンパ開度の変更量(ΔU)
を決定する。
(2) Inference Rules (Control Rules) (Table 7) Fuzzy inference is performed by using two variables of the set value of the mold temperature and the number of sections to change the damper opening (ΔU).
To determine.

【0066】[0066]

【表7】 [Table 7]

【0067】(D)セクション稼動台数の変動対応制御 セクション稼動台数に変動がある場合にセクション稼動
台数の変化量よりファジィ推論を行い、ダンパ開度の変
更量(ΔU)を決定する。 (1)入力データとメンバーシップ関数 ファジィ推論のために用いられる入力データとそのメン
バーシップ関数を下記へ示す。
(D) Variation control of the number of operating sections If there is a variation in the number of operating sections, fuzzy inference is performed from the variation in the number of operating sections to determine the amount of change (ΔU) in the damper opening. (1) Input data and membership functions Input data and its membership functions used for fuzzy inference are shown below.

【0068】(a)セクション稼動台数の変化量 (変動前のセクション稼動台数)−(変動後のセクショ
ン稼動台数) (図15参照)
(A) Amount of change in the number of operating sections (number of operating sections before change)-(number of operating sections after change) (see FIG. 15)

【0069】(2)推論規則(制御ルール) (表8) セクション稼動台数の変化量によりファジィ推論を行
い、ダンパ開度の変更量(ΔU)を決定する。
(2) Inference Rules (Control Rules) (Table 8) Fuzzy inference is performed based on the change amount of the number of operating sections to determine the change amount (ΔU) of the damper opening.

【表8】 [Table 8]

【0070】本発明に於いては、ガラス溶解炉で溶解さ
れたガラスをフォーハースからフィーダーを経てゴブ形
成部に送給し、ゴブを形成するとともに、これをガラス
成形機の金型に送給するようにし、金型の冷却風量を制
御して、金型温度を制御するようにしたガラス成形機の
金型温度制御方法において、(a)送風ダクトにサクシ
ョンダンパと送風機を設置して、冷却風を供給し、
(b)送風機とガラス成形機間の送風ダクトに温度計を
設置して、温度(以下、『風温』という)を計測し、
(c)上記風温の計測値の今回計測値と前回計測値との
差の時間的変化量をファジィ推論規則の前件部とし、予
め設定されたファジィ集合のメンバーシップ関数と推論
規則に基いて、ファジィ推論を行い、金型温度を推定し
て、金型冷却風量の制御を行う。
In the present invention, the glass melted in the glass melting furnace is fed from a fore hearth to a gob forming section via a feeder to form a gob, which is then fed to a mold of a glass forming machine. In the mold temperature control method for a glass forming machine in which the amount of cooling air of the mold is controlled to control the temperature of the mold, (a) a suction damper and a blower are installed in a ventilation duct, and cooling is performed. Supply the wind,
(B) A thermometer is installed in the air duct between the blower and the glass forming machine to measure the temperature (hereinafter referred to as “wind temperature”),
(C) The temporal change in the difference between the current measured value and the previous measured value of the wind temperature is defined as the antecedent of the fuzzy inference rule, and is based on the membership function of the fuzzy set and the inference rule set in advance. Then, fuzzy inference is performed, the mold temperature is estimated, and the mold cooling air volume is controlled.

【0071】また、上記に加えて、送風機とガラス成形
機間の送風ダクトに圧力計を設置して、圧力(以下、
『元圧』という)を計測するとともに、送風機とガラス
成形機間の送風ダクトに湿度計を設置して、湿度(以
下、『湿度』という)を計測し、上記元圧及び湿度の計
測値の今回計測値と前回計測値との差の時間的変化量を
ファジィ推論規則の前件部とし、予め設定されたファジ
ィ集合のメンバーシップ関数と推論規則に基いて、ファ
ジィ推論を行い、金型温度を推定して、金型冷却風量の
制御を行う。
Further, in addition to the above, a pressure gauge is installed in a blow duct between the blower and the glass forming machine, and a pressure (hereinafter, referred to as a pressure gauge) is set.
In addition to measuring the “source pressure”, a hygrometer was installed in the air duct between the blower and the glass forming machine to measure the humidity (hereinafter referred to as “humidity”), and the measured values of the source pressure and humidity were measured. The amount of temporal change in the difference between the current measurement value and the previous measurement value is used as the antecedent of the fuzzy inference rule. Is estimated, and the mold cooling air volume is controlled.

【0072】また、上記に加えて、ゴブ形成部に温度計
を設置して、金型に供給されるガラス温度(以下、『ゴ
ブ温』という)を計測するとともに、ガラス成形機の近
傍に温度計を設置して,気温(以下、『気温』という)
を計測し、上記ゴブ温及び気温のそれぞれの計測値の今
回計測値と前回計測値との差の時間的変化量をファジィ
推論規則の前件部とし、予め設定されたファジィ集合の
メンバーシップ関数と推論規則に基いて、ファジィ推論
を行い、金型温度を推定して、金型冷却風量の制御を行
う。
In addition to the above, a thermometer is installed in the gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as “gob temperature”) and to measure the temperature near the glass forming machine. Install a meter and measure the temperature (hereinafter referred to as “temperature”)
Is measured, and the temporal change amount of the difference between the current measurement value and the previous measurement value of each of the gob temperature and the temperature is set as a prerequisite part of the fuzzy inference rule, and a membership function of a preset fuzzy set is used. Fuzzy inference is performed based on the inference rules to estimate the mold temperature and control the mold cooling air flow.

【0073】また、上記に加えて、ガラス成形機に供給
される単位時間当たりのガラス流量を検出するととも
に、ガラス成形機にセクション稼働台数検知器を設置し
て、セクション稼働台数を検知し、上記ガラス流量およ
びセクション稼働台数のそれぞれの計測値の今回計測値
と前回計測値との差の時間的変化量をファジィ推論規則
の前件部とし、予め設定されたファジィ集合のメンバー
シップ関数と推論規則に基いて、ファジィ推論を行い、
金型温度を推定して、金型冷却風量の制御を行う。
In addition to the above, in addition to detecting the flow rate of glass per unit time supplied to the glass forming machine, a section operating number detector is installed in the glass forming machine to detect the number of operating sections. The time variation of the difference between the current measurement value and the previous measurement value of each of the glass flow rate and the number of operating sections is assumed to be the antecedent part of the fuzzy inference rule, and the membership function and the inference rule of the fuzzy set are set in advance. Fuzzy inference based on
The mold temperature is estimated, and the amount of mold cooling air is controlled.

【0074】また、本発明方法に於いては、ガラス溶解
炉で溶解されたガラスをフォーハースからフィーダーを
経てゴブ形成部に送給し、ゴブを形成するとともに、こ
れをガラス成形機の金型に送給するようにし、金型の冷
却風量を制御して、金型温度を制御するようにしたガラ
ス成形機の金型温度制御方法において、(a)送風ダク
トにサクションダンパと送風機を設置して、冷却風を供
給し、(b)送風機とガラス成形機間の送風ダクトに温
度計を設置して、温度(以下、『風温』という)を計測
し、(c)上記風温の計測値の今回計測値と前回計測値
との差の時間的変化量をファジィ推論規則の前件部と
し、予め設定されたファジィ集合のメンバーシップ関数
と推論規則に基いて、ファジィ推論を行い、金型温度を
推定して、(d)推定された金型温度の今回推定値と前
回推定値との差の時間的変化量をファジィ推論規則の前
件部とし、予め設定されたファジィ集合のメンバーシッ
プ関数と推論規則に基いて、ファジィ推論を行い、
(e)推定された金型温度と設定温度との偏差量を、フ
ァジィ推論規則の前件部とし、予め設定されたファジィ
集合のメンバーシップ関数と推論規則に基いて、ファジ
ィ推論を行い、(f)変更設定温度と設定温度との偏差
値を、ファジィ推論規則の前件部とし、予め設定された
ファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型冷却風量の制御を行う。
Further, in the method of the present invention, the glass melted in the glass melting furnace is fed to the gob forming section from the forehath via the feeder to form the gob, and the gob is formed in the mold of the glass forming machine. In a mold temperature control method for a glass forming machine, wherein a cooling air flow rate of a mold is controlled to control a mold temperature, (a) a suction damper and a blower are installed in a blow duct. (B) installing a thermometer in a ventilation duct between the blower and the glass forming machine to measure a temperature (hereinafter referred to as "wind temperature"); and (c) measuring the above-mentioned wind temperature. The amount of temporal change in the difference between the current measured value and the previous measured value is the antecedent of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance. Estimate the mold temperature and (d) The time variation of the difference between the current estimated value and the previous estimated value of the mold temperature is used as the antecedent of the fuzzy inference rule, and the fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance. Do
(E) The amount of deviation between the estimated mold temperature and the set temperature is used as the antecedent of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance. f) The deviation between the changed set temperature and the set temperature is used as the antecedent of the fuzzy inference rule, fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance, and the mold cooling air volume is calculated. Perform control.

【0075】また、上記に加えて、送風機とガラス成形
機間の送風ダクトに圧力計を設置して、圧力(以下、
『元圧』という)を計測するとともに、送風機とガラス
成形機間の送風ダクトに湿度計を設置して、湿度(以
下、『湿度』という)を計測し、上記元圧及び湿度の計
測値の今回計測値と前回計測値との差の時間的変化量を
ファジィ推論規則の前件部とし、予め設定されたファジ
ィ集合のメンバーシップ関数と推論規則に基いて、ファ
ジィ推論を行い、金型温度を推定して、金型冷却風量の
制御を行う。
In addition, in addition to the above, a pressure gauge is installed in a blower duct between the blower and the glass forming machine, and a pressure (hereinafter, referred to as a pressure gauge) is set.
In addition to measuring the “source pressure”, a hygrometer was installed in the air duct between the blower and the glass forming machine to measure the humidity (hereinafter referred to as “humidity”), and the measured values of the source pressure and humidity were measured. The amount of temporal change in the difference between the current measurement value and the previous measurement value is used as the antecedent of the fuzzy inference rule. Is estimated, and the mold cooling air volume is controlled.

【0076】また、上記に加えて、ゴブ形成部に温度計
を設置して、金型に供給されるガラス温度(以下、『ゴ
ブ温』という)を計測するとともに、ガラス成形機の近
傍に温度計を設置して、気温(以下、『気温』という)
を計測し、上記ゴブ温及び気温のそれぞれの計測値の今
回計測値と前回計測値との差の時間的変化量をファジィ
推論規則の前件部とし、予め設定されたファジィ集合の
メンバーシップ関数と推論規則に基いて、ファジィ推論
を行い、金型温度を推定して、金型冷却風量の制御を行
うことを特徴とする。
In addition to the above, a thermometer is installed at the gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as “gob temperature”) and to measure the temperature near the glass forming machine. Install a meter and measure the temperature (hereinafter referred to as “temperature”)
Is measured, and the temporal change amount of the difference between the current measurement value and the previous measurement value of each of the gob temperature and the temperature is set as a prerequisite part of the fuzzy inference rule, and a membership function of a preset fuzzy set is used. And fuzzy inference based on the inference rule to estimate the mold temperature and control the mold cooling air flow.

【0077】また、上記に加えて、ガラス成形機に供給
される単位時間当たりのガラス流量を検出するととも
に、ガラス成形機にセクション稼働台数検知器を設置し
て、セクション稼働台数を検知し、上記ガラス流量、セ
クション稼働台数のそれぞれの計測値の今回計測値と前
回計測値との差の時間的変化量を、ファジィ推論規則の
前件部とし、予め設定されたファジィ集合のメンバーシ
ップ関数と推論規則に基いて、ファジィ推論を行い、金
型温度を推定して、金型冷却風量の制御を行う。
In addition to the above, in addition to detecting the flow rate of glass per unit time supplied to the glass forming machine, a section operating number detector is installed in the glass forming machine to detect the number of operating sections. The amount of temporal change in the difference between the current measurement value and the previous measurement value of each of the glass flow rate and section operation number is used as the antecedent of the fuzzy inference rule, and the membership function and inference of the fuzzy set are set in advance. Based on the rules, fuzzy inference is performed, the mold temperature is estimated, and the mold cooling air volume is controlled.

【0078】(2)型替えにおける立ち上げ整定制御 型替えにおける立ち上げ整定制御は、次の制御ループに
より構成される。 (A)型替えに伴なう金型温度の推定 (B)型替えに伴なう最適金型温度調節風の量の設定
(2) Start-up setting control in type change The start-up setting control in type change is constituted by the following control loop. (A) Estimation of mold temperature due to mold change (B) Setting of optimal mold temperature control air volume due to mold change

【0079】(A)型替えに伴う金型温度の推定 型替え時に、型替え後の生産品種の生産品種データのゴ
ブ温度、ガラス流量、セクション稼動台数、気温、湿度
と型替え時のゴブ温度、ガラス流量、セクション稼動台
数、気温、湿度の計測データからファジィ推論を行い生
産品種データのダンパー開度で型替え後の生産品種の生
産を行った場合に生産品種データとの生産環境の違いか
ら金型温度の変化量を推定する。
(A) Estimation of mold temperature due to mold change At the time of mold change, gob temperature, glass flow rate, number of operating sections, temperature, humidity and gob temperature at the time of mold change Fuzzy inference from the measured data of the flow rate of the glass, the number of operating sections, the temperature and the humidity, and the production environment of the production type after the mold change is performed with the damper opening of the production type data. Estimate the change in mold temperature.

【0080】(1)入力データとメンバーシップ ファジィ推論のために用いられる入力データとそのメン
バーシップ関数を下記へ示す。
(1) Input Data and Membership Input data and its membership function used for fuzzy inference are shown below.

【0081】a)生産品種データの気温と型替え時の気
温の差 (型替え時の気温)−(生産品種データの気温) (図18参照)
A) Difference between the temperature of production type data and the temperature at the time of type change (temperature at the time of type change)-(temperature of production type data) (see FIG. 18)

【0082】b)生産品種データの湿度と型替え時の湿
度の差 (型替え時の湿度)−(生産品種データの湿度) (図19参照)
B) Difference between humidity of production type data and humidity at the time of type change (humidity at the time of type change)-(humidity of production type data) (see FIG. 19)

【0083】c)生産品種データのゴブ温度と型替え時
のゴブ温度の差 (型替え時のゴブ温度)−(生産品種データのゴブ温
度) (図20参照) d)生産品種データのガラス流量と型替え時のガラス流
量との差 (型替え時のガラス流量)−(生産品種データのガラス
流量) (図21参照)
C) Difference between gob temperature of production type data and gob temperature at the time of type change (gob temperature at type change) − (gob temperature of production type data) (see FIG. 20) d) Glass flow rate of production type data And the difference between the glass flow rate at the time of mold change (glass flow rate at the time of mold change)-(glass flow rate of production type data) (see Fig. 21)

【0084】e)生産品種データのセクション稼動台数
と型替え時のセクション稼動台数との差 (型替え時のセクション稼動台数)−(生産品種データ
のセクション稼台数) (図22参照)
E) Difference between the number of operating sections in the product type data and the number of operating sections during model change (number of operating sections during type change)-(number of operating sections in product type data) (see FIG. 22)

【0085】(2)推論規則(制御ルール)(表9)
(表10)(表11)(表12) 型替え時に型替え後の生産品種の生産品種データの気
温、湿度、ゴブ温度、ガラス流量、セクション稼動台数
と型替え時の気温、湿度、ゴブ温度、セクション稼動台
数との差からファジィ推論を行い、生産品種データのダ
ンパ開度で型替え後の生産品種の生産を行った場合に生
産環境の違いから金型温度の変化を推定する。
(2) Inference rules (control rules) (Table 9)
(Table 10) (Table 11) (Table 12) Temperature, humidity, gob temperature, glass flow rate, number of sections operated and temperature, humidity, gob temperature at the time of model change Then, fuzzy inference is performed from the difference with the number of operating sections, and when the production type after the mold change is produced by the damper opening of the production type data, the change in the mold temperature is estimated from the difference in the production environment.

【0086】[0086]

【表9】 [Table 9]

【0087】[0087]

【表10】 [Table 10]

【0088】[0088]

【表11】 [Table 11]

【0089】[0089]

【表12】 [Table 12]

【0090】(B)型替えに伴う最適な金型温度調節風
の量の設定 (A)型替えに伴う金型温度の推定により求められた金
型推定温度とその設定温度との偏差量からファジィ推論
を行い型替え時に金型温度がその設定温度に早期安定す
るように最適な金型温度調節風の量にするためのダンパ
開度を決定する。
(B) Setting of the optimal amount of mold temperature control air accompanying mold change (A) From the deviation between the mold estimated temperature obtained by estimating mold temperature accompanying mold change and the set temperature Fuzzy inference is performed to determine a damper opening for obtaining an optimal amount of mold temperature control air so that the mold temperature can be quickly stabilized at the set temperature at the time of mold change.

【0091】(1)入力データとメンバーシップ関数 ファジィ推論のために用いられる入力データとそのメン
バーシップ関数を下記へ示す。
(1) Input Data and Membership Function Input data and its membership function used for fuzzy inference are shown below.

【0092】a)金型温度の偏差量(E) (金型推定温度)−(金型温度の設定温度) (図23参照)A) Deviation of mold temperature (E) (Estimated mold temperature)-(Set temperature of mold temperature) (see FIG. 23)

【0093】(2)推論規則(制御ルール)(表13) (A)型替えに伴う金型温度の推定により求められた金
型推定温度とその設定温度の偏差量からファジィ推論を
行いダンパ開度の変更量(ΔU)を決定する。
(2) Inference Rule (Control Rule) (Table 13) (A) Fuzzy inference is performed from the difference between the estimated mold temperature obtained by estimating the mold temperature due to the mold change and the set temperature, and the damper is opened. The change amount (ΔU) of the degree is determined.

【0094】[0094]

【表13】 [Table 13]

【0095】本発明方法に於いては、ガラス溶解炉で溶
解されたガラスをフォーハースからフィーダーを経てゴ
ブ形成部に送給し、ゴブを形成するとともに、これをガ
ラス成形機の金型に送給するようにし、金型の冷却風量
を制御して、金型温度を制御するようにしたガラス成形
機の金型温度制御方法において、(a)送風ダクトにサ
クションダンパと送風機を設置して、冷却風を供給し、
(b)送風機とガラス成形機間のダクトに圧力計を設置
して、圧力(以下、『元圧』という)を計測し、(c)
送風機とガラス成形機間のダクトに湿度計を設置して、
湿度(以下、『湿度』という)を計測し、(d)ガラス
成形機の近傍に温度計を設置して、気温(以下、『気
温』という)を計測し、(e)同一製品の前回生産時の
上記元圧、湿度、気温と現在の元圧、湿度、気温との偏
差量を、ファジィ推論規則の前件部とし、予め設定され
たファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型温度を推定して、推定さ
れた金型温度の今回推定値と前回推定値との差の時間的
変化量をファジィ推論規則の前件部とし、予め設定され
たファジィ集合のメンバーシップ関数と推論規則に基い
て、ファジィ推論を行い、金型冷却風量の制御を行う。
In the method of the present invention, the glass melted in the glass melting furnace is fed from a forge through a feeder to a gob forming section, where a gob is formed and the gob is sent to a mold of a glass forming machine. In a mold temperature control method for a glass forming machine, wherein a cooling air flow rate of a mold is controlled so as to control a mold temperature, (a) a suction damper and a blower are installed in a blower duct; Supply cooling air,
(B) A pressure gauge is installed in a duct between the blower and the glass forming machine to measure a pressure (hereinafter, referred to as “source pressure”), and (c)
Install a hygrometer in the duct between the blower and the glass forming machine,
Measure humidity (hereinafter referred to as "humidity"), (d) Install a thermometer near the glass forming machine, measure the temperature (hereinafter referred to as "temperature"), and (e) Last production of the same product The above-mentioned source pressure, humidity, the deviation amount between the current source pressure, humidity, and temperature and the current source pressure, humidity, and temperature are defined as the antecedent of the fuzzy inference rule, and based on a membership function and an inference rule of a fuzzy set that is set in advance. A fuzzy inference is performed to estimate a mold temperature, and a temporal change amount of a difference between the current estimated value and the previous estimated value of the estimated mold temperature is set as a precondition of the fuzzy inference rule, and a preset fuzzy inference rule is set. Fuzzy inference is performed based on the membership function of the set and the inference rules to control the die cooling air volume.

【0096】また、上記に加えて、送風機とガラス成形
機間のダクトに温度計を設置して、温度(以下、『風
温』という)を計測し、同一製品の前回生産時の上記風
温と現在の風温との偏差量を、ファジィ推論規則の前件
部とし、予め設定されたファジィ集合のメンバーシップ
関数と推論規則に基いて、ファジィ推論を行い、金型温
度を推定して、推定された金型温度の今回推定値と前回
推定値との差の時間的変化量をファジィ推論規則の前件
部とし、予め設定されたファジィ集合のメンバーシップ
関数と推論規則に基いて、ファジィ推論を行い、金型冷
却風量の制御を行う。
In addition to the above, a thermometer is installed in a duct between the blower and the glass forming machine to measure a temperature (hereinafter referred to as “wind temperature”), and to measure the above-mentioned wind temperature during the previous production of the same product. And the amount of deviation from the current wind temperature as the antecedent of the fuzzy inference rule, perform fuzzy inference based on the membership function of the fuzzy set and the inference rule set in advance, estimate the mold temperature, The temporal change of the difference between the current estimated value and the previous estimated value of the estimated mold temperature is defined as the antecedent part of the fuzzy inference rule, and the fuzzy set membership function and the inference rule are used for the fuzzy inference rule. Inference is performed to control the mold cooling air volume.

【0097】また、上記に加えて、ゴブ形成部に温度計
を設置して、金型に供給されるガラス温度(以下、『ゴ
ブ温』という)を計測し,同一製品の前回生産時の上記
ゴブ温と現在のゴブ温との偏差量を、ファジィ推論規則
の前件部とし、予め設定されたファジィ集合のメンバー
シップ関数と推論規則に基いて、ファジィ推論を行い、
金型温度を推定して、推定された金型温度の今回推定値
と前回推定値との差の時間的変化量をファジィ推論規則
の前件部とし、予め設定されたファジィ集合のメンバー
シップ関数と推論規則に基いて、ファジィ推論を行い、
金型冷却風量の制御を行う。
In addition to the above, a thermometer is installed in the gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as “gob temperature”), and to measure the temperature of the same product during the previous production. The difference between the Gob temperature and the current Gob temperature is used as the antecedent of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance.
The mold temperature is estimated, and the temporal change amount of the difference between the current estimated value and the previous estimated value of the estimated mold temperature is set as the antecedent of the fuzzy inference rule, and the membership function of the fuzzy set is set in advance. Fuzzy inference based on the inference rules
Controls the mold cooling air volume.

【0098】また、上記に加えて、ガラス成形機に供給
される単位時間当たりのガラス流量を検出するととも
に、ガラス成形機にセクション稼働台数検知器を設置し
て、セクション稼働台数を検知し、上記ガラス流量、セ
クション稼働台数のそれぞれの計測値の今回計測値と前
回計測値との差の時間的変化量を、ファジィ推論規則の
前件部とし、予め設定されたファジィ集合のメンバーシ
ップ関数と推論規則に基いて、ファジィ推論を行い、同
一製品の前回生産時の上記ガラス流量およびセクション
稼働台数と現在のガラス流量および、セクション稼働台
との偏差量を、ファジィ推論規則の前件部とし、予め設
定されたファジィ集合のメンバーシップ関数と推論規則
に基いて、ファジィ推論を行い、金型温度を推定して、
推定された金型温度の今回推定値と前回推定値との差の
時間的変化量をファジィ推論規則の前件部とし、予め設
定されたファジィ集合のメンバーシップ関数と推論規則
に基いて、ファジィ推論を行い、金型冷却風量の制御を
行う。
In addition to the above, in addition to detecting the flow rate of glass supplied per unit time to the glass forming machine, a section operating number detector is installed in the glass forming machine to detect the section operating number. The amount of temporal change in the difference between the current measurement value and the previous measurement value of each of the glass flow rate and section operation number is used as the antecedent of the fuzzy inference rule, and the membership function and inference of the fuzzy set are set in advance. Based on the rules, fuzzy inference is performed, and the above glass flow rate and the number of sections operated at the previous production of the same product, the current glass flow rate, and the deviation from the section operation table are taken as the antecedent of the fuzzy inference rules. Fuzzy inference is performed based on the set fuzzy set membership function and inference rules to estimate the mold temperature,
The temporal change of the difference between the current estimated value and the previous estimated value of the estimated mold temperature is defined as the antecedent part of the fuzzy inference rule, and the fuzzy set membership function and the inference rule are used for the fuzzy inference rule. Inference is performed to control the mold cooling air volume.

【0099】上記説明では、金型温度調節風の量の制御
をダンパ開度によって行う方法について説明したが、こ
れに代えて、送風機のモータの回転数を変えたり、或い
は成形機タイミング装置の調節によっても行うことがで
きる。
In the above description, the method of controlling the amount of the mold temperature control wind by the damper opening has been described. Alternatively, the rotation speed of the blower motor may be changed, or the molding machine timing device may be controlled. Can also be done.

【0100】[0100]

【発明の効果】図24に製品A(900ml,清酒び
ん:390g)を生産中における従来制御時に本発明の
金型温度推論のみを使用した場合の金型温度、金型温度
推定結果を示す。測定結果を見れば、金型温度、金型推
定値の挙動が同じであることが解る。
FIG. 24 shows the mold temperature and the mold temperature estimation result when only the mold temperature inference of the present invention is used during the conventional control during the production of the product A (900 ml, sake bottle: 390 g). From the measurement results, it can be seen that the behaviors of the mold temperature and the mold estimated value are the same.

【0101】図25は、システム制御データのうち、圧
力と金型温度の関係を示している。
FIG. 25 shows the relationship between pressure and mold temperature in the system control data.

【0102】図26に製品A(900ml清酒びん:3
90g)を生産中における従来制御により、金型冷却風
量一定(圧力値)の制御をした場合の風温、圧力、絶対
湿度、金型温度を示す。
FIG. 26 shows product A (900 ml sake bottle: 3
90g) shows the air temperature, pressure, absolute humidity, and mold temperature when the mold cooling air volume is controlled constant (pressure value) by conventional control during production.

【0103】図27に同一製品を生産中に於ける本発明
方法(風温の時間的変化量を変数とする制御)を採用し
た場合の風温、圧力、金型温度の測定結果を示す。本発
明制御方法では、同様の外乱要因を受けても金型安定化
制御により金型温度の変動を±4.8C°制御してい
る。このように、本発明のファジィ制御による通常の生
産中における定常制御の制御性が優れていることが解
る。
FIG. 27 shows the measurement results of the wind temperature, pressure and mold temperature when the method of the present invention (control using the time-dependent change of the wind temperature as a variable) is employed during production of the same product. In the control method of the present invention, the fluctuation of the mold temperature is controlled by ± 4.8 ° C. by the mold stabilization control even when the same disturbance factor is received. Thus, it can be seen that the controllability of the steady control during normal production by the fuzzy control of the present invention is excellent.

【0104】図28に同一製品を生産中に於ける本発明
方法(きめ細かい制御の為、風温とともに他の要因を変
数とする制御)を採用した場合(金型温度安定化制御)
の同じ測定箇所の測定結果を示す。測定結果を見れば、
従来制御では外乱要因(風温や絶対湿度の外乱の変化)
を受け金型温度が±9℃もの変動が生じているが、本発
明制御方法では、同様の外乱要因を受けても金型温度安
定化制御により金型温度の変動を±2.5℃制御してい
る。
FIG. 28 shows a case where the method of the present invention (control using other factors as variables in addition to wind temperature for fine control) during production of the same product is employed (die temperature stabilization control).
2 shows the measurement results of the same measurement point. Looking at the measurement results,
Disturbance factor in conventional control (change in disturbance of wind temperature and absolute humidity)
However, in the control method of the present invention, the mold temperature fluctuation is controlled by ± 2.5 ° C. by the mold temperature stabilization control even when a similar disturbance factor is received. doing.

【0105】図29に製品B(一升瓶:950g)から
製品A(900ml清酒びん:390g)への型替えを
実施した際の、従来制御の金型温度、圧力の測定結果を
示す。
FIG. 29 shows the results of measurement of the mold temperature and pressure under the conventional control when the product B (one shovel bottle: 950 g) was changed to the product A (900 ml sake bottle: 390 g).

【0106】図30には、同様の型替えを実施した際の
本発明方法を採用した場合の金型温度、圧力の測定結果
を示す。測定結果を見ると従来制御では、金型温度が安
定するまでに55分を要しているが本発明方法を採用し
た場合、金型温度が安定までに30分を実現している。
このように、本発明のファジィ制御による型替えにおけ
る立ち上げ整定制御の制御性が優れていることが解る。
FIG. 30 shows the results of measurement of the mold temperature and pressure when the method of the present invention is employed when the same mold change is performed. Looking at the measurement results, in the conventional control, it took 55 minutes for the mold temperature to stabilize, but when the method of the present invention was adopted, 30 minutes was achieved for the mold temperature to stabilize.
Thus, it can be seen that the controllability of the start-up setting control in the type change by the fuzzy control of the present invention is excellent.

【0107】図31に製品A(900ml清酒びん:3
90g)を生産中に、本発明方法を採用した場合のセク
ションの稼動台数を検出した結果(図31下)とセクシ
ョンの稼動台数を検出しない制御結果(図31上)を示
す。測定結果を見るとセクションの稼動台数を検出しな
い制御では、セクション停止により金型温度が2.5℃
不安定になり安定するまでに10分を要しているが、セ
クションの稼動台数を検出する制御方法を採用した場
合、金型温度が安定したままである。このように、セク
ションの稼動台数を検出し制御することは制御上きわめ
て顕著な効果があることが解る。
FIG. 31 shows product A (900 ml sake bottle: 3
90g) shows the result of detecting the number of operating sections (FIG. 31) and the control result of not detecting the number of operating sections (top of FIG. 31) when the method of the present invention is employed during production. Looking at the measurement results, in the control that does not detect the number of operating sections, the temperature of the mold is 2.5 ° C due to the stop of the section.
It takes 10 minutes to become unstable and stable, but if a control method for detecting the number of operating sections is adopted, the mold temperature remains stable. As described above, it is understood that detecting and controlling the number of operating sections has a remarkable effect on control.

【0108】図32に製品A(900ml清酒びん:3
90g)において従来制御と本発明による制御性の違い
により、生産性の向上がどれだれけ生じたかを示したグ
ラフを示す。従来、金型温度の不安定に起因して生産効
率が悪い状態であったが、本発明により金型温度の安定
化が図られ生産効率が4%向上している。また金型温度
が変化し発生した不良(冷ビリ)の防止のため金型冷却
調整作業(各セクションの冷却時間変更、各セクション
の冷却風量の調整作業)についても本発明の制御により
従来に比べ0.26(回/日)減少した。
FIG. 32 shows product A (900 ml sake bottle: 3
90g) is a graph showing how much improvement in productivity has occurred due to the difference in controllability between the conventional control and the present invention. Conventionally, the production efficiency was poor due to the unstable mold temperature. However, the present invention has stabilized the mold temperature and improved the production efficiency by 4%. Also, the mold cooling adjustment work (changing the cooling time of each section, adjusting the cooling air volume of each section) in order to prevent defects (cold rolling) caused by a change in the mold temperature by the control of the present invention as compared with the conventional method. It decreased by 0.26 (times / day).

【0109】図33に示すように、期間比較について、
3ケ月に亘り従来制御と本発明による制御との制御結果
及び生産性についての調査結果も、良好な結果を得
た。。ガラス製品に対するニーズが軽量化、高品質化、
多様化する中でガラス製品生算は多品種少生産(型替回
数の増加)傾向が強くなり、コストアップ要因が多くな
っている。
As shown in FIG. 33, regarding the period comparison,
The control results of the conventional control and the control according to the present invention over three months, and the results of investigations on productivity have also obtained good results. . The needs for glass products are lighter, higher quality,
Amidst diversification, the tendency of glass product production to be high-mix low-volume production (increase in the number of mold replacements) is increasing, leading to increased costs.

【0110】上記したように本発明によれば、型替時間
は、短くなり、金型温度変動値は、減少するため生産品
種切替後に良品ロットが採取されるまでの時間を大幅に
短縮することができ、金型温度が安定化することによっ
て金型温度冷却調整作業が減少でき、更に金型温度安定
により不良品の発生が減少する等、生産工程の安定化、
歩留りの向上に寄与するところが著しく大である。
As described above, according to the present invention, the remodeling time is shortened, and the mold temperature fluctuation value is reduced. Stabilizing the mold temperature, reducing the mold temperature cooling adjustment work, and stabilizing the production process, such as reducing the occurrence of defective products due to the mold temperature stabilization.
Significantly contribute to the improvement of the yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する金型冷却装置の概略構成
説明図である。
FIG. 1 is a schematic structural explanatory view of a mold cooling device for carrying out a method of the present invention.

【図2】本発明方法を実施する他の金型冷却装置の概略
構成説明図である。
FIG. 2 is a schematic structural explanatory view of another mold cooling device for carrying out the method of the present invention.

【図3】本発明方法を実施する金型冷却装置の金型斜視
図である。
FIG. 3 is a perspective view of a mold of a mold cooling device for carrying out the method of the present invention.

【図4】本発明方法を実施するファジィ制御の制御ブロ
ック説明図である。
FIG. 4 is a control block explanatory diagram of fuzzy control for implementing the method of the present invention.

【図5】制御機器構成説明図である。FIG. 5 is an explanatory diagram of a control device configuration.

【図6】制御モード切替え方式の説明図である。FIG. 6 is an explanatory diagram of a control mode switching method.

【図7】メンバーシップ関数である。FIG. 7 is a membership function.

【図8】メンバーシップ関数である。FIG. 8 is a membership function.

【図9】メンバーシップ関数である。FIG. 9 is a membership function.

【図10】メンバーシップ関数である。FIG. 10 is a membership function.

【図11】推論規制(制御ルール)の説明図である。FIG. 11 is an explanatory diagram of inference regulation (control rule).

【図12】金型温度の安定化制御説明図である。FIG. 12 is an explanatory diagram of stabilization control of mold temperature.

【図13】メンバーシップ関数である。FIG. 13 is a membership function.

【図14】メンバーシップ関数である。FIG. 14 is a membership function.

【図15】メンバーシップ関数である。FIG. 15 is a membership function.

【図16】メンバーシップ関数である。FIG. 16 is a membership function.

【図17】メンバーシップ関数である。FIG. 17 is a membership function.

【図18】メンバーシップ関数である。FIG. 18 shows a membership function.

【図19】メンバーシップ関数である。FIG. 19 is a membership function.

【図20】メンバーシップ関数である。FIG. 20 is a membership function.

【図21】メンバーシップ関数である。FIG. 21 is a membership function.

【図22】メンバーシップ関数である。FIG. 22 is a membership function.

【図23】メンバーシップ関数である。FIG. 23 is a membership function.

【図24】金型温度推定データの説明図である。FIG. 24 is an explanatory diagram of mold temperature estimation data.

【図25】システム制御データ(金型温度)の説明図で
ある。
FIG. 25 is an explanatory diagram of system control data (mold temperature).

【図26】通常の生産中における定常制御データ(従来
制御)の説明図である
FIG. 26 is an explanatory diagram of steady control data (conventional control) during normal production.

【図27】通常の生産中における定常制御データ(シス
テム制御)(風温)の説明図である。
FIG. 27 is an explanatory diagram of steady control data (system control) (wind temperature) during normal production.

【図28】通常の生産中における定常制御データ(シス
テム制御)の説明図である。
FIG. 28 is an explanatory diagram of steady control data (system control) during normal production.

【図29】型替における立ち上げ整定制御データ(従来
制御)の説明図である。
FIG. 29 is an explanatory diagram of start-up settling control data (conventional control) in type change.

【図30】型替における立ち上げ整定制御データ(シス
テム制御)の説明図である。
FIG. 30 is an explanatory diagram of start-up settling control data (system control) in a type change.

【図31】セクションの稼動台数を検出した/しない制
御データ説明図である。
FIG. 31 is an explanatory diagram of control data in which the number of operating sections is detected / not detected.

【図32】システム稼動前/後比較制御結果(製品A)
である。
FIG. 32: Comparison control result before / after system operation (product A)
It is.

【図33】システム稼動前/後比較制御結果(期間比
較)である。
FIG. 33 is a comparison control result (period comparison) before / after system operation.

【符号の説明】[Explanation of symbols]

1 フォーハース 2 フィーダー 3 ゴブ 4 成形機 5 セクション 8 ダクト 9 ダンパ 10 圧力計 11 風温計 12 湿度計 13 フィーダー部温度計 14 気温計 15 成形機タイミング装置 DESCRIPTION OF SYMBOLS 1 For hearth 2 Feeder 3 Gob 4 Molding machine 5 Section 8 Duct 9 Damper 10 Pressure gauge 11 Wind temperature gauge 12 Hygrometer 13 Feeder thermometer 14 Thermometer 15 Molding machine timing device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠松 孝幸 大阪府大阪市大正区南恩加島7丁目1番 55号 オーシーエンジニアリング株式会 社内 (72)発明者 杉本 雄一郎 愛知県江南市木賀本郷町緑85番地 (72)発明者 小西 正浩 愛知県一宮市大赤見若年685番の1 (56)参考文献 特開 昭62−119127(JP,A) 特開 平7−17721(JP,A) 特開 平3−228833(JP,A) 特開 昭63−255703(JP,A) 特開 昭63−190727(JP,A) 特公 昭52−28808(JP,B1) 特公 平2−1776(JP,B2) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takayuki Kasamatsu 7-55 Minamienkajima, Taisho-ku, Osaka City, Osaka Prefecture In-house Engineering Co., Ltd. Address (72) Inventor Masahiro Konishi 685-1 Okami Young, Ichinomiya City, Aichi Prefecture (56) References JP-A-62-119127 (JP, A) JP-A-7-17721 (JP, A) JP-A-3 -228833 (JP, A) JP-A-63-255703 (JP, A) JP-A-63-190727 (JP, A) JP-B-52-28808 (JP, B1) JP-B-2-1776 (JP, B2) )

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス溶解炉で溶解されたガラスをフォ
ーハースからフィーダーを経てゴブ形成部に送給し、ゴ
ブを形成するとともに、これをガラス成形機の金型に送
給するようにし、金型の冷却風量を制御して、金型温度
を制御するようにしたガラス成形機の金型温度制御方法
において、(a)送風ダクトにサクションダンパと送風
機を設置して、冷却風を供給し、(b)送風機とガラス
成形機間の送風ダクトに温度計を設置して、温度(以
下、『風温』という)を計測し、(c)上記風温の計測
値の今回計測値と前回計測値との差の時間的変化量をフ
ァジィ推論規則の前件部とし、予め設定されたファジィ
集合のメンバーシップ関数と推論規則に基いて、ファジ
ィ推論を行い、金型温度を推定して、金型冷却風量の制
御を行うことを特徴とするガラス成形機の金型温度制御
方法。
1. A glass melted in a glass melting furnace is fed from a fore hearth to a gob forming section via a feeder to form a gob, and the gob is fed to a mold of a glass forming machine. In a mold temperature control method for a glass forming machine in which the amount of cooling air of a mold is controlled to control a mold temperature, (a) a suction damper and a blower are installed in an air duct to supply cooling air; (B) A thermometer is installed in a ventilation duct between the blower and the glass forming machine to measure the temperature (hereinafter referred to as “wind temperature”). Fuzzy inference is performed based on the fuzzy inference rule based on the membership function of the fuzzy set and the inference rule, and the mold temperature is estimated. It is characterized by controlling the mold cooling air volume. Temperature control method for a glass forming machine.
【請求項2】 送風機とガラス成形機間の送風ダクトに
圧力計を設置して、圧力(以下、『元圧』という)を計
測するとともに、送風機とガラス成形機間の送風ダクト
に湿度計を設置して、湿度(以下、『湿度』という)を
計測し、上記元圧及び湿度の計測値の今回計測値と前回
計測値との差の時間的変化量をファジィ推論規則の前件
部とし、予め設定されたファジィ集合のメンバーシップ
関数と推論規則に基いて、ファジィ推論を行い、金型温
度を推定して、金型冷却風量の制御を行うことを特徴と
する前記請求項1記載のガラス成形機の金型温度制御方
法。
2. A pressure gauge is installed in a blower duct between the blower and the glass forming machine to measure a pressure (hereinafter, referred to as “source pressure”), and a hygrometer is installed in a blower duct between the blower and the glass forming machine. Install and measure the humidity (hereinafter referred to as “humidity”), and use the time change of the difference between the current measured value of the original pressure and the humidity and the previous measured value as the antecedent of the fuzzy inference rule. 2. The method according to claim 1, wherein a fuzzy inference is performed based on a membership function of a fuzzy set and an inference rule set in advance, a mold temperature is estimated, and a mold cooling air volume is controlled. Mold temperature control method for glass forming machine.
【請求項3】 ゴブ形成部に温度計を設置して、金型に
供給されるガラス温度(以下、『ゴブ温』という)を計
測するとともに、ガラス成形機の近傍に温度計を設置し
て、気温(以下、『気温』という)を計測し、上記ゴブ
温及び気温のそれぞれの計測値の今回計測値と前回計測
値との差の時間的変化量をファジィ推論規則の前件部と
し、予め設定されたファジィ集合のメンバーシップ関数
と推論規則に基いて、ファジィ推論を行い、金型温度を
推定して、金型冷却風量の制御を行うことを特徴とする
前記請求項2記載のガラス成形機の金型温度制御方法。
3. A thermometer is installed in the gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as “gob temperature”), and to install a thermometer near the glass forming machine. , Temperature (hereinafter, referred to as “temperature”), and the temporal change of the difference between the current measurement value and the previous measurement value of the Gob temperature and the temperature is defined as the antecedent of the fuzzy inference rule, 3. The glass according to claim 2, wherein a fuzzy inference is performed based on a membership function of a fuzzy set and an inference rule set in advance, a mold temperature is estimated, and a mold cooling air volume is controlled. Mold temperature control method for molding machine.
【請求項4】 ガラス成形機に供給される単位時間当た
りのガラス流量を検出するとともに、ガラス成形機にセ
クション稼働台数検知器を設置して、セクション稼働台
数を検知し、上記ガラス流量およびセクション稼働台数
のそれぞれの計測値の今回計測値と前回計測値との差の
時間的変化量をファジィ推論規則の前件部とし、予め設
定されたファジィ集合のメンバーシップ関数と推論規則
に基いて、ファジィ推論を行い、金型温度を推定して、
金型冷却風量の制御を行うことを特徴とする前記請求項
2または3記載のガラス成形機の金型温度制御方法。
4. In addition to detecting the flow rate of glass supplied to the glass forming machine per unit time, installing a detector for the number of operating sections in the glass forming machine to detect the number of operating sections, and detecting the flow rate of the glass and operating the section. The temporal change of the difference between the current measurement value and the previous measurement value of each measurement value of the number is set as the antecedent of the fuzzy inference rule, and based on the membership function of the fuzzy set and the inference rule set in advance. Make inferences, estimate mold temperatures,
4. The method of controlling a temperature of a mold of a glass forming machine according to claim 2, wherein the amount of cooling air of the mold is controlled.
【請求項5】 ガラス溶解炉で溶解されたガラスをフォ
ーハースからフィーダーを経てゴブ形成部に送給し、ゴ
ブを形成するとともに、これをガラス成形機の金型に送
給するようにし、金型の冷却風量を制御して、金型温度
を制御するようにしたガラス成形機の金型温度制御方法
において、 (a)送風ダクトにサクションダンパと送風機を設置し
て、冷却風を供給し、 (b)送風機とガラス成形機間の送風ダクトに温度計を
設置して、温度(以下、『風温』という)を計測し、 (c)上記風温の計測値の今回計測値と前回計測値との
差の時間的変化量を、ファジィ推論規則の前件部とし、
予め設定されたファジィ集合のメンバーシップ関数と推
論規則に基いて、ファジィ推論を行い、金型温度を推定
して、 (d)推定された金型温度の今回推定値と前回推定値と
の差の時間的変化量を、ファジィ推論規則の前件部と
し、予め設定されたファジィ集合のメンバーシップ関数
と推論規則に基いて、ファジィ推論を行い、 (e)推定された金型温度と設定温度との偏差量を、フ
ァジィ推論規則の前件部とし、予め設定されたファジィ
集合のメンバーシップ関数と推論規則に基いて、ファジ
ィ推論を行い、 (f)変更設定温度と設定温度との偏差値を、ファジィ
推論規則の前件部とし、予め設定されたファジィ集合の
メンバーシップ関数と推論規則に基いて、ファジィ推論
を行い、金型温度を推定して、金型冷却風量の制御を行
うことを特徴とするガラス成形機の金型温度制御方法。
5. The glass melted in a glass melting furnace is fed from a foreheart via a feeder to a gob forming section to form a gob, and the gob is fed to a mold of a glass forming machine. In a mold temperature control method for a glass forming machine in which a mold cooling air volume is controlled to control a mold temperature, (a) a suction damper and a blower are installed in an air duct to supply cooling air; (B) A thermometer is installed in a ventilation duct between the blower and the glass forming machine to measure the temperature (hereinafter, referred to as “wind temperature”). (C) The measurement value of the measurement value of the above-mentioned wind temperature and the previous measurement value The amount of temporal change in the difference from the value is the antecedent of the fuzzy inference rule,
Fuzzy inference is performed based on a preset fuzzy set membership function and inference rules to estimate the mold temperature, and (d) the difference between the current estimated value and the previous estimated value of the estimated mold temperature. Is used as the antecedent of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance. (E) Estimated mold temperature and set temperature Is used as the antecedent of the fuzzy inference rule, fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance, and (f) deviation value between the changed set temperature and the set temperature Is the antecedent of the fuzzy inference rules, and based on the membership function of the fuzzy set and the inference rules set in advance, perform fuzzy inference, estimate the mold temperature, and control the mold cooling air volume. Mold temperature control method for a glass forming machine, wherein.
【請求項6】 送風機とガラス成形機間の送風ダクトに
圧力計を設置して、圧力(以下、『元圧』という)を計
測するとともに、送風機とガラス成形機間の送風ダクト
に湿度計を設置して、湿度(以下、『湿度』という)を
計測し、上記元圧及び湿度の計測値の今回計測値と前回
計測値との差の時間的変化量をファジィ推論規則の前件
部とし、予め設定されたファジィ集合のメンバーシップ
関数と推論規則に基いて、ファジィ推論を行い、金型温
度を推定して、金型冷却風量の制御を行うことを特徴と
する前記請求項5記載のガラス成形機の金型温度制御方
法。
6. A pressure gauge is installed in a blower duct between the blower and the glass forming machine to measure a pressure (hereinafter, referred to as “source pressure”), and a hygrometer is installed in the blower duct between the blower and the glass forming machine. Install and measure the humidity (hereinafter referred to as “humidity”), and use the time change of the difference between the current measured value of the original pressure and the humidity and the previous measured value as the antecedent of the fuzzy inference rule. The fuzzy inference is performed based on a membership function of a fuzzy set and an inference rule set in advance, a mold temperature is estimated, and a mold cooling air flow is controlled. Mold temperature control method for glass forming machine.
【請求項7】 ゴブ形成部に温度計を設置して、金型に
供給されるガラス温度(以下、『ゴブ温』という)を計
測するとともに、ガラス成形機の近傍に温度計を設置し
て、気温(以下、『気温』という)を計測し、上記ゴブ
温及び気温のそれぞれの計測値の今回計測値と前回計測
値との差の時間的変化量をファジィ推論規則の前件部と
し、予め設定されたファジィ集合のメンバーシップ関数
と推論規則に基いて、ファジィ推論を行い、金型温度を
推定して、金型冷却風量の制御を行うことを特徴とする
前記請求項6記載のガラス成形機の金型温度制御方法。
7. A thermometer is installed in the gob forming section to measure the temperature of the glass supplied to the mold (hereinafter referred to as “gob temperature”), and to install a thermometer near the glass forming machine. , Temperature (hereinafter, referred to as “temperature”), and the temporal change of the difference between the current measurement value and the previous measurement value of the Gob temperature and the temperature is defined as the antecedent of the fuzzy inference rule, 7. The glass according to claim 6, wherein fuzzy inference is performed based on a preset fuzzy set membership function and inference rules, a mold temperature is estimated, and a mold cooling air volume is controlled. Mold temperature control method for molding machine.
【請求項8】 ガラス成形機に供給される単位時間当た
りのガラス流量を検出するとともに、ガラス成形機にセ
クション稼働台数検知器を設置して、セクション稼働台
数を検知し、上記ガラス流量、セクション稼働台数のそ
れぞれの計測値の今回計測値と前回計測値との差の時間
的変化量を、ファジィ推論規則の前件部とし、予め設定
されたファジィ集合のメンバーシップ関数と推論規則に
基いて、ファジィ推論を行い、金型温度を推定して、金
型冷却風量の制御を行うことを特徴とする前記請求項6
または7記載のガラス成形機の金型温度制御方法。
8. In addition to detecting the flow rate of glass supplied to the glass forming machine per unit time, installing a detector for the number of operating sections in the glass forming machine to detect the number of operating sections. The temporal change of the difference between the current measurement value and the previous measurement value of each measurement value of the number is set as the antecedent part of the fuzzy inference rule, and based on the membership function of the fuzzy set and the inference rule set in advance, 7. The method according to claim 6, wherein a fuzzy inference is performed to estimate a mold temperature and control a mold cooling air volume.
Or a mold temperature control method for a glass forming machine according to 7.
【請求項9】 ガラス溶解炉で溶解されたガラスをフォ
ーハースからフィーダーを経てゴブ形成部に送給し、ゴ
ブを形成するとともに、これをガラス成形機の金型に送
給するようにし、金型の冷却風量を制御して、金型温度
を制御するようにしたガラス成形機の金型温度制御方法
において、 (a)送風ダクトにサクションダンパと送風機を設置し
て、冷却風を供給し、 (b)送風機とガラス成形機間のダクトに圧力計を設置
して、圧力(以下、『元圧』という)を計測し、 (c)送風機とガラス成形機間のダクトに湿度計を設置
して、湿度(以下、『湿度』という)を計測し、 (d)ガラス成形機の近傍に温度計を設置して、気温
(以下、『気温』という)を計測し、 (e)同一製品の前回生産時の上記元圧、湿度、気温と
現在の元圧、湿度、気温との偏差量を、ファジィ推論規
則の前件部とし、予め設定されたファジィ集合のメンバ
ーシップ関数と推論規則に基いて、ファジィ推論を行
い、金型温度を推定して、推定された金型温度の今回推
定値と前回推定値との差の時間的変化量をファジィ推論
規則の前件部とし、予め設定されたファジィ集合のメン
バーシップ関数と推論規則に基いて、ファジィ推論を行
い、金型冷却風量の制御を行うことを特徴とするガラス
成形機の金型温度制御方法。
9. The glass melted in the glass melting furnace is fed from a fore hearth to a gob forming unit via a feeder to form a gob, and the gob is fed to a mold of a glass forming machine. In a mold temperature control method for a glass forming machine in which a mold cooling air volume is controlled to control a mold temperature, (a) a suction damper and a blower are installed in an air duct to supply cooling air; (B) Install a pressure gauge in the duct between the blower and the glass forming machine to measure the pressure (hereinafter referred to as “source pressure”). (C) Install a hygrometer in the duct between the blower and the glass forming machine. To measure humidity (hereinafter referred to as “humidity”), (d) installing a thermometer near the glass forming machine to measure the temperature (hereinafter referred to as “temperature”), and (e) measuring the same product. The above original pressure, humidity and temperature at the previous production and the current original pressure and humidity , The amount of deviation from the temperature as the antecedent of the fuzzy inference rule, fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance, and the mold temperature is estimated and estimated. Fuzzy inference is performed based on the membership of the fuzzy set and the inference rules based on the membership of the fuzzy set and the fuzzy inference rule. And a method of controlling a mold cooling air flow rate.
【請求項10】 送風機とガラス成形機間のダクトに温
度計を設置して、温度(以下、『風温』という)を計測
し、同一製品の前回生産時の上記風温と現在の風温との
偏差量を、ファジィ推論規則の前件部とし、予め設定さ
れたファジィ集合のメンバーシップ関数と推論規則に基
いて、ファジィ推論を行い、金型温度を推定して、推定
された金型温度の今回推定値と前回推定値との差の時間
的変化量をファジィ推論規則の前件部とし、予め設定さ
れたファジィ集合のメンバーシップ関数と推論規則に基
いて、ファジィ推論を行い、金型冷却風量の制御を行う
ことを特徴とする前記請求項9記載ガラス成形機の金型
温度制御方法。
10. A thermometer is installed in a duct between a blower and a glass forming machine to measure a temperature (hereinafter referred to as “wind temperature”), and to measure the above-mentioned wind temperature at the time of previous production of the same product and the current wind temperature. The fuzzy inference is performed based on the fuzzy inference rule, and the fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule, and the estimated mold temperature is estimated. The temporal change in the difference between the current estimated value and the previous estimated value of the temperature is used as the antecedent of the fuzzy inference rule, and fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance. The method of controlling a temperature of a mold of a glass forming machine according to claim 9, wherein a flow rate of a mold cooling air is controlled.
【請求項11】 ゴブ形成部に温度計を設置して、金型
に供給されるガラス温度(以下、『ゴブ温』という)を
計測し、同一製品の前回生産時の上記ゴブ温と現在のゴ
ブ温との偏差量を、ファジィ推論規則の前件部とし、予
め設定されたファジィ集合のメンバーシップ関数と推論
規則に基いて、ファジィ推論を行い、金型温度を推定し
て、推定された金型温度の今回推定値と前回推定値との
差の時間的変化量をファジィ推論規則の前件部とし、予
め設定されたファジィ集合のメンバーシップ関数と推論
規則に基いて、ファジィ推論を行い、金型冷却風量の制
御を行うことを特徴とする前記請求項9または10記載
のガラス成形機の金型温度制御方法。
11. A thermometer is installed in a gob forming section to measure a temperature of a glass supplied to a mold (hereinafter, referred to as “gob temperature”), and to compare the gob temperature of the same product in the previous production with the current gob temperature. The deviation from the Gob temperature is used as the antecedent of the fuzzy inference rule, fuzzy inference is performed based on the membership function of the fuzzy set and the inference rule set in advance, and the mold temperature is estimated and estimated. Fuzzy inference is carried out based on the fuzzy inference rule based on the membership of the fuzzy set and the fuzzy inference rules. The method of controlling the temperature of a mold of a glass forming machine according to claim 9, wherein the amount of cooling air of the mold is controlled.
【請求項12】 ガラス成形機に供給される単位時間当
たりのガラス流量を検出するとともに、ガラス成形機に
セクション稼働台数検知器を設置して、セクション稼働
台数を検知し、上記ガラス流量、セクション稼働台数の
それぞれの計測値の今回計測値と前回計測値との差の時
間的変化量を、ファジィ推論規則の前件部とし、予め設
定されたファジィ集合のメンバーシップ関数と推論規則
に基いて、ファジィ推論を行い、同一製品の前回生産時
の上記ガラス流量およびセクション稼働台数と現在のガ
ラス流量および、セクション稼働台数との偏差量を、フ
ァジィ推論規則の前件部とし、予め設定されたファジィ
集合のメンバーシップ関数と推論規則に基いて、ファジ
ィ推論を行い、金型温度を推定して、推定された金型温
度の今回推定値と前回推定値との差の時間的変化量をフ
ァジィ推論規則の前件部とし、予め設定されたファジィ
集合のメンバーシップ関数と推論規則に基いて、ファジ
ィ推論を行い、金型冷却風量の制御を行うことを特徴と
する前記請求項9,10または11記載のガラス成形機
の金型温度制御方法。
12. In addition to detecting the flow rate of glass supplied to the glass forming machine per unit time, installing a detector for the number of operating sections in the glass forming machine to detect the number of operating sections. The temporal change of the difference between the current measurement value and the previous measurement value of each measurement value of the number is set as the antecedent part of the fuzzy inference rule, and based on the membership function of the fuzzy set and the inference rule set in advance, Fuzzy inference is performed, and the amount of deviation between the above-mentioned glass flow rate and section operation number at the previous production of the same product and the current glass flow rate and section operation number is used as the antecedent of the fuzzy inference rule, and a preset fuzzy set. Fuzzy inference is performed based on the membership function and the inference rule of, and the mold temperature is estimated. Fuzzy inference based on the fuzzy inference rule and the fuzzy set membership function and inference rule, and control the die cooling air volume. The method according to claim 9, 10 or 11, wherein the method is performed.
JP13986894A 1994-06-22 1994-06-22 Mold temperature control method for glass forming machine Expired - Fee Related JP2635931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13986894A JP2635931B2 (en) 1994-06-22 1994-06-22 Mold temperature control method for glass forming machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13986894A JP2635931B2 (en) 1994-06-22 1994-06-22 Mold temperature control method for glass forming machine

Publications (2)

Publication Number Publication Date
JPH0812349A JPH0812349A (en) 1996-01-16
JP2635931B2 true JP2635931B2 (en) 1997-07-30

Family

ID=15255430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13986894A Expired - Fee Related JP2635931B2 (en) 1994-06-22 1994-06-22 Mold temperature control method for glass forming machine

Country Status (1)

Country Link
JP (1) JP2635931B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261850A1 (en) * 2011-04-12 2012-10-18 Simon Jonathan S Closed Loop Blank Mold Temperature Control System And Method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414167B1 (en) * 1999-07-21 2004-01-07 한국전기초자 주식회사 A blower for forming apparatus of glass and control method thereof
WO2005028384A1 (en) * 2003-09-19 2005-03-31 Nihon Yamamura Glass Co., Ltd. Glass-forming machine
JP6621612B2 (en) * 2015-08-06 2019-12-18 Hoya株式会社 Manufacturing method of glass molded body and manufacturing apparatus of glass molded body
FR3100329B1 (en) 2019-09-04 2021-09-24 Konatic Device for wireless transmission of measurements made by a thermal probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261850A1 (en) * 2011-04-12 2012-10-18 Simon Jonathan S Closed Loop Blank Mold Temperature Control System And Method
US9580345B2 (en) * 2011-04-12 2017-02-28 Emhart Glass S.A. Closed loop blank mold temperature control system and method

Also Published As

Publication number Publication date
JPH0812349A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
US5173224A (en) Fuzzy inference thermocontrol method for an injection molding machine with a pid control
CN100371507C (en) Control system and method for crystal isodiametric growth
CN105837008A (en) Overflow process glass production line and automatic control system and method thereof
JPH04153016A (en) Non-interference temperature control method for injection molding machine
JP2635931B2 (en) Mold temperature control method for glass forming machine
CN114185266B (en) Total pressure composite control method suitable for temporary impulse type wind tunnel
JP2523259B2 (en) Glass temperature control method in the forehearth
CN112000149B (en) Method, storage medium and system for automatically controlling temperature of batch reactor
CN112172129A (en) Operation method of 3D printer nozzle temperature self-adaptive Fuzzy-PID control system
CN114018612B (en) Method and system for early warning service life of auxiliary heater of substrate glass channel
JPH0596592A (en) Controller of injection molding machine
CN111002564B (en) Blow molding process parameter online regulation and control method
CN114807590A (en) Heating furnace-based billet heating two-stage control method and system
JP2523260B2 (en) Glass temperature control method in the forehearth
JPH10206038A (en) Furnace heating control method using fuzzy logic
JP2000129319A (en) Method for controlling furnace heat in blast furnace and device therefor
CN111383723B (en) Blast furnace ironmaking component precontrolling method
JP2724365B2 (en) Blast furnace operation method
CN115111580A (en) Quantitative control method for slag cooler
Nixon How to Apply Statistical and Model-Based Control Technologies to Glass Manufacturing
JPH07138038A (en) Method for controlling dimension of glass tube
JPH0543386A (en) Method for pulling up single crystal
CN117552107A (en) Control method for silicon carbide growth process, silicon carbide and device
JP2022108041A (en) Learning model creation method, learning model creation device, blast furnace control guidance method and molten iron production method
JPH09300431A (en) Slit gap adjusting device of cap, control of thickness of resin film and manufacture of resin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090425

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees