JP2635891B2 - Method and apparatus for detecting welding groove shape - Google Patents

Method and apparatus for detecting welding groove shape

Info

Publication number
JP2635891B2
JP2635891B2 JP4205698A JP20569892A JP2635891B2 JP 2635891 B2 JP2635891 B2 JP 2635891B2 JP 4205698 A JP4205698 A JP 4205698A JP 20569892 A JP20569892 A JP 20569892A JP 2635891 B2 JP2635891 B2 JP 2635891B2
Authority
JP
Japan
Prior art keywords
groove
welding
distance meter
wall
vertical distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4205698A
Other languages
Japanese (ja)
Other versions
JPH0647539A (en
Inventor
田 典 明 伊
井 田 俊 郎 岩
良 吉 晃 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4205698A priority Critical patent/JP2635891B2/en
Publication of JPH0647539A publication Critical patent/JPH0647539A/en
Application granted granted Critical
Publication of JP2635891B2 publication Critical patent/JP2635891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、開先溶接での溶接開先
形状の検知方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting a shape of a welding groove in groove welding.

【0002】[0002]

【従来の技術】溶接作業の自動化による省力化及び品質
向上の要請が高まるに従い、溶接開先形状に不整があっ
ても、溶接装置の側でその不整に応じて溶接条件及び溶
接トーチ位置等を調整し、良好な溶接を自動施工するこ
とが必要となってきており、その実現の上で、溶接開先
形状の検知技術が重要な技術的ポイントとなっている。
開先形状検知に関する技術を特開昭59−61574号
公報が開示している。これにおいては、第10図に示す
ように、溶接開先上方に突合せ溶接部材31の表面まで
の距離を検知する縦距離計1を配置し、パルスモータ8
及びボールねじ10等により縦距離計1を溶接線に対
し、直角方向に横行駆動して、開先部に直接に距離計か
ら発するレーザー等のビームを照射し、横行各位置での
突合せ溶接部材31の距離(高さ)を測定する。横向方
向の検出距離(高さ)分布が開先の断面形状を現わす。
すなわち、このように縦距離計1を溶接線(開先の長手
方向)に対し直角方向に移動させて開先形状を検知する
方法は、図10に示すように、V,X開先などの突合せ
溶接部材31の開先形状を検知する際には、溶接線方向
に直角な断面32と溶接開先面および溶接部材上面の交
わる直線33にたいして、溶接開先の距離(高さ)情報
がほぼ全線(33)で得られる為、前記断面32での開
先形状すなわち開先の横断面形状を精度よく測定するこ
とができる。
2. Description of the Related Art As demands for labor saving and quality improvement by automating welding work increase, even if the shape of a welding groove is irregular, the welding equipment side determines welding conditions and welding torch position according to the irregularity. It is becoming necessary to adjust and perform good welding automatically, and in order to achieve this, the technology for detecting the welding groove shape is an important technical point.
Japanese Patent Application Laid-Open No. 59-61574 discloses a technique relating to groove shape detection. In this case, as shown in FIG. 10, a vertical distance meter 1 for detecting a distance to a surface of a butt welding member 31 is arranged above a welding groove, and a pulse motor 8 is provided.
The longitudinal distance meter 1 is driven transversely to the welding line by a ball screw 10 or the like, and a beam such as a laser or the like emitted from the distance meter is directly radiated to the groove, and the butt welding member at each position in the transverse direction The distance (height) of 31 is measured. The distribution of the detection distance (height) in the horizontal direction indicates the cross-sectional shape of the groove.
That is, the method of detecting the groove shape by moving the vertical distance meter 1 in a direction perpendicular to the welding line (longitudinal direction of the groove) as shown in FIG. When the groove shape of the butt welding member 31 is detected, the distance (height) information of the welding groove is substantially equal to the cross section 32 perpendicular to the welding line direction and the straight line 33 intersecting the welding groove surface and the upper surface of the welding member. Since it is obtained by the entire line (33), the groove shape at the cross section 32, that is, the cross-sectional shape of the groove can be accurately measured.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
開先形状検知の技術を、図11に示すような、開先の片
側部材が壁状の溶接部材Mvであるときの溶接開先、あ
るいは、図12に示すような段差を有する溶接開先、に
適用した場合、以下のような問題がある。
However, such a groove shape detection technique is applied to a welding groove when one side member of the groove is a wall-shaped welding member Mv, as shown in FIG. When applied to a welding groove having a step as shown in FIG. 12, there are the following problems.

【0004】すなわち、壁状の溶接部材Mvと突合せ溶
接部材Mhで形成される溶接開先に適用した場合には、
図11に示すように縦距離計1の移動の際に、縦距離計
1と壁状の溶接部材Mvの壁面4とが干渉し、そのた
め、図中a部での溶接開先の位置・形状(深さと幅)を
測定することができない。また、壁面4と縦距離計1の
衝突についても、初めに縦距離計1と壁面4が衝突しな
い範囲で移動範囲を設定しておいても、溶接進行にとも
ない溶接部材の曲りなどにより壁面位置(横方向)がず
れる場合が多く、縦距離計1が壁面4に衝突し損傷する
ことに繋がる。
That is, when applied to a welding groove formed by a wall-shaped welding member Mv and a butt welding member Mh,
As shown in FIG. 11, when the vertical distance meter 1 moves, the vertical distance meter 1 and the wall surface 4 of the wall-shaped welding member Mv interfere with each other. (Depth and width) cannot be measured. Regarding the collision between the wall 4 and the vertical distance meter 1, even if the moving range is set within a range where the vertical distance meter 1 does not collide with the wall 4 first, the wall position may be changed due to the bending of the welding member as the welding progresses. In many cases, the (horizontal direction) shifts, and the vertical distance meter 1 collides with the wall surface 4 and is damaged.

【0005】また、大きな段差を有する溶接開先でも、
縦距離計1の計測可能範囲にたいし壁の高さが低い場合
には、図12に示すように、開先の両側を跨ぐ範囲で縦
距離計1を移動させることが可能であるが、測長レンジ
の大きい距離計は高価である上に、サイズ,重量が大き
くなる為、開先検知装置がサイズ増,重量増となり、溶
接作業時の距離計のセッテング性(正確な位置決め)を
不良にする。また、測定精度においても、とくに壁面4
が傾斜していた場合には、壁面4側は壁状の溶接部材M
vの上端面34の位置(高さ)しか精度良く検出できな
いため、縦距離計1の情報から推定される開先幅は誤差
が大きくなり、開先形状を正しくかつ精度良く測定する
ことができない。
[0005] Further, even in a welding groove having a large step,
When the height of the wall is lower than the measurable range of the vertical distance meter 1, as shown in FIG. 12, the vertical distance meter 1 can be moved in a range straddling both sides of the groove, A distance meter with a large measuring range is expensive, and its size and weight increase, so the groove detection device increases in size and weight, and the setting properties (accurate positioning) of the distance meter during welding work are poor. To In terms of measurement accuracy, in particular,
Is inclined, the wall surface 4 side is a wall-shaped welding member M
Since only the position (height) of the upper end face 34 of v can be detected with high accuracy, the groove width estimated from the information of the vertical distance meter 1 has a large error, and the groove shape cannot be measured accurately and accurately. .

【0006】かかる問題により、開先の片側部材が壁
状,大きな段差,傾斜している等の溶接部材Mvの溶接
施工において、開先形状にバラツキがある(開先長手方
向で開先断面形状が不均一)場合に、前記特開昭59−
61574号公報に開示された従来の開先センサーで開
先形状(とくに開先幅寸法)を検知し、それをもとに溶
接条件および溶接トーチ位置を適正値にコントロールし
て溶接施工することができなくなり、溶接品質・効率の
確保に大きな支障をきたす。
Due to such a problem, there is a variation in the groove shape in welding work of the welding member Mv such that the one side member of the groove is wall-shaped, large step, inclined, etc. (the groove cross-sectional shape in the groove longitudinal direction). There if uneven), the JP 59-
A conventional groove sensor disclosed in Japanese Patent No. 61574 detects a groove shape (particularly a groove width dimension) and controls welding conditions and a welding torch position to appropriate values based on the detected groove shape to perform welding. Can no longer be performed, and this greatly impedes securing welding quality and efficiency.

【0007】本発明は、横断幅方向の全長に渡って上述
の如き開先形状検出が困難な、一方が壁状の溶接部材で
形成される開先の形状を、正しく計測することを目的と
する
SUMMARY OF THE INVENTION An object of the present invention is to accurately measure the shape of a groove formed by a wall-shaped welded member, which is difficult to detect the groove shape as described above over the entire length in the transverse width direction. Do

【0008】。[0008]

【課題を解決する為の手段】本願発明では、一方が壁状
の溶接部材(Mv)で形成される溶接開先の側方に配設した
横距離計(2,3)により、前記壁状の溶接部材(Mv)の傾き
情報と、横距離計(2,3)から該壁状の溶接部材(Mv)まで
の位置情報を得、該壁状の溶接部材(Mv)までの位置情報
に基づいて、開先の上方に配設した縦距離計(1)を、該
壁状の溶接部材(4Mvに干渉することなく横行させて開先
断面の位置情報を得て、前記壁状の溶接部材(Mv)の傾き
情報と、前記開先断面の位置情報により、開先面の幅及
び深さを得る。なお、カッコ内の記号は、図面に示す本
発明を実施する装置の対応要素を示す。
According to the invention of the present application, a lateral distance meter (2, 3) disposed on a side of a welding groove formed on one side by a wall-shaped welding member (Mv) is used to form the wall-shaped portion. The inclination information of the welding member (Mv) and the positional information from the lateral distance meter (2, 3) to the wall-shaped welding member (Mv) are obtained, and the positional information to the wall-shaped welding member (Mv) is obtained. On the basis of this, the vertical distance meter (1) disposed above the groove is traversed without interfering with the wall-shaped welding member (4 Mv to obtain the position information of the groove cross section, and the wall-shaped welding is performed. The width and depth of the groove surface are obtained from the inclination information of the member (Mv) and the position information of the groove cross section.The symbols in parentheses indicate the corresponding elements of the apparatus for implementing the present invention shown in the drawings. Show.

【0009】[0009]

【作用】横距離計(2,3)で壁状の溶接部材(Mv)の縦方向
複数箇所の横方向距離を検知することにより、壁面(4)
の位置および傾きが分かる。特に、溶接部材(Mv)の壁面
(4)は鋼板の圧延面である場合がおおく、非常に良好な
信号が得られ、高い精度と信頼性での推定が可能であ
る。
[Action] The horizontal distance meter (2, 3) detects the horizontal distance at a plurality of locations in the vertical direction of the wall-shaped welding member (Mv), and the wall surface (4)
The position and the inclination of are known. In particular, the wall surface of the welded member (Mv)
(4) In most cases, a rolled surface of a steel sheet is obtained, and a very good signal is obtained, and estimation with high accuracy and reliability is possible.

【0010】上記での壁面(4)の位置および傾き情報よ
り、縦距離計(1)の横行移動面での最新の開先壁面位置
を推定できるので、縦距離計(1)を横行移動させる際に
適正な横行移動位置あるいは範囲を逐次設定して、縦距
離計(1)と開先壁面(4)の干渉衝突を回避しつつ縦距離計
(1)で開先内空間を規定する面(4〜7)の位置すなわち開
先横断面形状を測定することができる。しかして、縦距
離計(1)の該干渉衝突回避のため縦距離計(1)で位置情報
を得ることができない開先底(7)のある範囲は、縦距離
計(1)で得られた位置情報と横距離計(2,3)で得た壁面位
置情報を用いて、推定(外挿)演算により得ることができ
るので、開先内空間を規定する全面(4〜7)の位置すなわ
ち開先横断面全形状を容易に得ることができる。
Since the latest groove wall position on the traversing surface of the vertical distance meter (1) can be estimated from the position and inclination information of the wall surface (4), the vertical distance meter (1) is traversed. In order to avoid collision between the vertical distance meter (1) and the groove wall (4), set the appropriate horizontal movement position or range
In (1), the position of the surface (4 to 7) that defines the internal space of the groove, that is, the cross-sectional shape of the groove can be measured. Thus, a certain range of the groove bottom (7) for which position information cannot be obtained by the vertical distance meter (1) to avoid the interference collision of the vertical distance meter (1) is obtained by the vertical distance meter (1). Using the position information obtained and the wall position information obtained by the lateral distance meter (2, 3), it can be obtained by estimation (extrapolation) calculation, so the position of the entire surface (4 to 7) that defines the internal space of the groove That is, the entire shape of the groove cross section can be easily obtained.

【0011】[0011]

【実施例】図1から図3に、本発明を実施する装置の一
実施例を示す。図1において、突合せ溶接部材Mhの上
面6と実質上平行に、紙面と垂直な方向に移動しうる図
示しない溶接移動機構本体(溶接移動台)に、姿勢調整
機構を介して支持された支持枠13に、ボ−ルねじ10
が回転自在に支持されている。このボ−ルねじ10はパ
ルスモ−タ8で正,逆転駆動される。ボ−ルねじ10に
は距離計支持部材11がねじ結合しており、パルスモ−
タ8の正転によりボ−ルねじ10が正転すると支持部材
11は、壁状の溶接部材Mvの壁面4に近づく方向(左
方)に移動し、パルスモ−タ8の逆転によりボ−ルねじ
10が逆転すると支持部材11は、壁状の溶接部材Mv
の壁面4より離れる方向(右方)に移動する。この支持
部材11に縦距離計1が装着されており、縦距離計1
が、それからその下方の物体(突合せ溶接部材Mh又は
裏当部材Mr)までの距離すなわち物体の高さを検出す
る。横距離計2および3は距離計支持部材12に装着さ
れており、この支持部材12は支持枠13に固着されて
いる。横距離計2および3は、それからその左方の物体
(壁状の溶接部材Mvの壁面4)までの距離すなわち物
体の水平方向位置を検出する。これらの距離計1〜3
は、例えば半導体レーザー方式の光変位計を用いる。
1 to 3 show one embodiment of an apparatus for carrying out the present invention. In FIG. 1, a support frame supported via a posture adjustment mechanism is supported by a not-shown welding moving mechanism main body (welding moving table) that can move in a direction substantially perpendicular to the paper surface in a direction substantially parallel to the upper surface 6 of the butt welding member Mh. 13, the ball screw 10
Are rotatably supported. The ball screw 10 is driven forward and backward by a pulse motor 8. A distance meter support member 11 is screw-connected to the ball screw 10, and a pulse motor
When the ball screw 10 rotates forward by the forward rotation of the motor 8, the support member 11 moves in the direction approaching the left side wall 4 of the wall-shaped welding member Mv (leftward), and the ball is rotated by the reverse rotation of the pulse motor 8. When the screw 10 is reversed, the support member 11 becomes a wall-shaped welding member Mv.
In the direction away from the wall surface 4 (rightward). The vertical distance meter 1 is mounted on the support member 11, and the vertical distance meter 1
Detects the distance from it to the object below it (the butt welding member Mh or the backing member Mr), that is, the height of the object. The horizontal distance meters 2 and 3 are mounted on a distance meter support member 12, which is fixed to a support frame 13. The lateral distance meters 2 and 3 detect the distance from the object to the left (the wall surface 4 of the wall-shaped welding member Mv), that is, the horizontal position of the object. These rangefinders 1-3
For example, a semiconductor laser optical displacement meter is used.

【0012】ボールねじ10には、回転方向検知回路を
備えるロ−タリエンコーダ9が連結されており、このエ
ンコ−ダ9が、回転方向を示す信号と、ねじ10の所定
小角度の回転につき1パルスの回転同期パルスをカウン
タPC1に与える。図示しないホ−ムポジションセンサ
が支持部材11の移動経路上の待避位置(移動範囲の右
端)にあり、支持部材11が該待避位置に到達するとホ
−ムポシジョンセンサがカウンタPC1にクリア指示信
号を与える。カウンタPC1は、ロ−タリエンコ−ダ9
が正転を示す信号を与えているときには回転同期パルス
をカウントアップし、逆転を示す信号を与えているとき
にはカウントアップする。支持部材11が待避位置にあ
るときとホ−ムポシジョンセンサのクリア指示信号でカ
ウント値がクリア(カウント値=0)されるので、カウ
ンタPC1のカウント値は、支持部材11が待避位置か
ら左方にどれだけ進んだ位置にあるかを示す。すなわ
ち、カウンタPC1のカウントデ−タが、縦距離計1
の、開先を横切る方向の位置を表わす。
A rotary encoder 9 having a rotation direction detecting circuit is connected to the ball screw 10. The encoder 9 outputs a signal indicating the rotation direction and one signal per rotation of the screw 10 at a predetermined small angle. A pulse rotation synchronization pulse is given to the counter PC1. A home position sensor (not shown) is located at a retreat position (the right end of the moving range) on the movement path of the support member 11, and when the support member 11 reaches the retreat position, the home position sensor instructs the counter PC1 to clear. Give a signal. The counter PC1 has a rotary encoder 9
When a signal indicating forward rotation is given, the rotation synchronizing pulse is counted up, and when a signal indicating reverse rotation is given, counting up is performed. When the support member 11 is at the retracted position and the count value is cleared (count value = 0) by the clear instruction signal of the home position sensor, the count value of the counter PC1 is determined by the following. Shows how far to the left you are. That is, the count data of the counter PC1 is
Represents the position in the direction crossing the groove.

【0013】なお、図10に示すV開先などにも適用し
うるように、縦距離計1は支持部材11よりも左方に突
出されており、縦距離計1は、ボ−ルねじ10の左端よ
りも更に左方に移動しうる。また、縦距離計1は、図示
しない2組の角度調節機構を介して支持部材11に支持
され、紙面に平行で壁面4に垂直な軸を中心とする回転
角、また紙面に垂直な軸を中心とする回転角を調整しう
る。これらの調整により、縦距離計1の検出方向を、突
合せ溶接部材Mhの上面6に垂直に、あるいは壁面4に
平行に設定しうる。
The vertical distance meter 1 is projected to the left from the support member 11 so that the vertical distance meter 1 can be applied to the V groove shown in FIG. May move further to the left than the left edge of the. The vertical distance meter 1 is supported by a support member 11 through two sets of angle adjustment mechanisms (not shown), and has a rotation angle about an axis parallel to the paper plane and perpendicular to the wall surface 4 and an axis perpendicular to the paper plane. The rotation angle about the center can be adjusted. With these adjustments, the detection direction of the vertical distance meter 1 can be set perpendicular to the upper surface 6 of the butt welding member Mh or parallel to the wall surface 4.

【0014】同様に、横距離計2,3も、図示しない2
組の角度調節機構を介して支持部材12で支持され、紙
面に平行で上面6に垂直な軸を中心とする回転角、また
紙面に垂直な軸を中心とする回転角を調整しうる。これ
らの調整により、横距離計2,3の検出方向を、突合せ
溶接部材Mhの上面6に平行に、あるいは壁面4に垂直
に設定しうる。
Similarly, the horizontal distance meters 2 and 3 are also not shown in FIG.
The rotation angle about an axis parallel to the paper plane and perpendicular to the upper surface 6 and the rotation angle about the axis perpendicular to the paper plane can be adjusted by being supported by the support member 12 via a set of angle adjustment mechanisms. With these adjustments, the detection directions of the lateral distance meters 2 and 3 can be set parallel to the upper surface 6 of the butt welding member Mh or perpendicular to the wall surface 4.

【0015】横距離計2,3は、図2に示すように、縦
距離計1の、待避位置から左方限界位置までの移動を妨
げない位置にあり、しかも、少くとも、ボ−ルねじ10
の左端から縦距離計1の左方限界位置の間の距離を正確
に測定する設定となっている。
As shown in FIG. 2, the horizontal distance meters 2 and 3 are located at positions where the movement of the vertical distance meter 1 from the retracted position to the left limit position is not hindered. 10
Is set to accurately measure the distance from the left end of the vertical distance meter 1 to the left limit position.

【0016】以上示した構成のもと、マイクロプロセッ
サ(CPU)を主体とするデ−タ処理装置(コンピュ−
タ)DPDが、横距離計2,3で測定した開先壁面4の
横方向距離(位置)情報および、縦距離計1をこの横方
向距離情報に従って待避位置(支持部材11の待避位置
対応)から壁面4に当る直前まで横行移動させた際の縦
距離計1の距離(高さ;溶接開先深さ)情報を収集す
る。すなわち、距離計1〜3の信号を、A/D変換器A
D1〜AD3やカウンタPC1等インターフェーイスを
介して、CPUに取り込む。縦距離計1の横行駆動は、
CPUよりモータドライバMD1にパルス駆動信号を送
ることにより行なう。
Based on the configuration described above, a data processing device (computer) mainly including a microprocessor (CPU) is used.
D) The DPD sets the horizontal distance (position) information of the groove wall 4 measured by the horizontal distance meters 2 and 3 and the vertical distance meter 1 to the retracted position according to the horizontal distance information (corresponding to the retracted position of the support member 11). Information on the distance (height; welding groove depth) of the vertical distance meter 1 when the traverse movement is performed from right to just before hitting the wall surface 4 is collected. That is, the signals of the rangefinders 1 to 3 are converted into A / D converters A
The data is input to the CPU via an interface such as D1 to AD3 and the counter PC1. The horizontal drive of the vertical distance meter 1
This is performed by sending a pulse drive signal from the CPU to the motor driver MD1.

【0017】以上示した装置を用いた溶接開先の位置・
形状の測定を、次に説明する。まず、片壁を有する溶接
開先14に対し、ボールねじ10および縦距離計1が壁
面4から余裕のある横方向位置にセットし、次にボ−ル
ねじ10が開先壁面4とほぼ垂直(突合わせ溶接部材M
hの上面6とほぼ平行)になる方向に傾き、そして縦距
離計1の計測可能範囲(高さ方向)が突き合わせ部材上
面6と開先底7を十分におおう高さとなるように、図示
しない溶接移動台に支持された支持枠13の姿勢を調整
する(図1に示す、突合せ溶接部材Mhの上面6が実質
上水平の場合には、調整レンジの中心位置(0目盛)
で、ボ−ルねじ10が水平、支持部材11,12が垂直
となる)。そして上述の距離計の角度調節機構により、
横距離計2,3の検出方向を上面6に平行に、縦距離計
1の検出方向を上面6に垂直に、微調整する(図1に示
す、突合せ溶接部材Mhの上面6が実質上水平の場合に
は、調整レンジの中心位置(0目盛)で、縦距離計1の
検出方向が垂直、横距離計2,3の検出方向が水平にな
る)。
The position of the welding groove using the apparatus described above
The measurement of the shape will now be described. First, the ball screw 10 and the vertical distance meter 1 are set at a lateral position where there is a margin from the wall surface 4 with respect to the welding groove 14 having one side, and then the ball screw 10 is substantially perpendicular to the groove wall surface 4. (But welding member M
h is substantially parallel to the upper surface 6), and is not shown so that the measurable range (height direction) of the longitudinal distance meter 1 is sufficiently high to cover the butting member upper surface 6 and the groove bottom 7. Adjust the posture of the support frame 13 supported by the welding carriage (when the upper surface 6 of the butt welding member Mh is substantially horizontal as shown in FIG. 1, the center position of the adjustment range (zero scale)
Thus, the ball screw 10 is horizontal and the support members 11 and 12 are vertical). And by the angle adjustment mechanism of the above rangefinder,
Fine adjustment is made so that the detection directions of the horizontal distance meters 2 and 3 are parallel to the upper surface 6 and the detection direction of the vertical distance meter 1 is perpendicular to the upper surface 6 (the upper surface 6 of the butt welding member Mh shown in FIG. 1 is substantially horizontal). In the case of (1), the detection direction of the vertical distance meter 1 is vertical and the detection directions of the horizontal distance meters 2 and 3 are horizontal at the center position (0 scale) of the adjustment range.

【0018】突合せ溶接部材Mhの上面6が実質上水平
の場合の、支持枠姿勢がその調整レンジの中心位置(0
目盛)であって、距離計1〜3の角度調節がその調節レ
ンジの中心位置(0目盛)であることが基準であり、オ
ペレ−タは、これらの値を0とは異なる値に調整した場
合には、操作ボ−ドよりデ−タ処理装置DPDに調整値
を入力する。
When the upper surface 6 of the butt welding member Mh is substantially horizontal, the posture of the support frame is adjusted to the center position (0
Scale), and the standard is that the angle adjustment of the distance meters 1 to 3 is at the center position (0 scale) of the adjustment range, and the operator has adjusted these values to values different from 0. In this case, an adjustment value is input to the data processing device DPD from the operation board.

【0019】デ−タ処理装置DPDは、次の通り開先形
状の計測および算出を行う。まず、開先壁面4に対向す
る横距離計2,3の信号をA/D変換器AD2,AD3
をかいしCPUに取り込み、図3に示すように、2個の
横距離計2,3の位置と検知距離信号から全体座標系の
なかでの検知点a,bを推定し、計測断面でこれらa,
bを通る開先壁面の直線式を求める。次に、該直線式を
もとに縦距離計1の高さでの開先壁面4の横位置を算出
し、壁面4と縦距離計1が干渉しない条件のもとで想定
される開先上面幅寸法を考慮し、縦距離計1の適正な横
行移動範囲(左行限界位置)を設定し、そこまで縦距離
計1を左行駆動する。
The data processing device DPD measures and calculates the groove shape as follows. First, the signals of the horizontal distance meters 2 and 3 facing the groove wall surface 4 are converted into A / D converters AD2 and AD3.
The detection points a and b in the overall coordinate system are estimated from the positions of the two lateral distance meters 2 and 3 and the detection distance signal as shown in FIG. a,
The straight line formula of the groove wall surface passing through b is obtained. Next, the horizontal position of the groove wall 4 at the height of the vertical distance meter 1 is calculated based on the straight line formula, and the groove assumed under the condition that the wall 4 does not interfere with the vertical distance meter 1 is calculated. In consideration of the width of the upper surface, an appropriate horizontal movement range (leftward limit position) of the vertical distance meter 1 is set, and the vertical distance meter 1 is driven leftward to that extent.

【0020】縦距離計1が所定短距離左行する毎に、縦
距離計1の、開先深さ方向の距離信号をA/D変換器A
D1を介して、また縦距離計1の横方向の位置信号すな
わちカウンタPC1のカウントデ−タを、逐次CPUに
取り込む。
Each time the vertical distance meter 1 moves leftward by a predetermined short distance, the distance signal of the vertical distance meter 1 in the groove depth direction is converted into an A / D converter A
Via D1, and the position signal in the horizontal direction of the vertical distance meter 1, that is, count data of the counter PC1, is sequentially taken into the CPU.

【0021】これらの信号群に対しCPUで、最小2乗
法の手法を用い、全体座標系のなかでの、突合せ溶接部
材Mhの上面6の直線近似式,突合せ溶接部材Mhの開
先面5の直線近似式、および、開先底7すなわち裏当て
部材Mrの上面の直線近似式を求める。
The CPU uses the least-squares method for these signal groups to calculate the linear approximation of the upper surface 6 of the butt welding member Mh and the groove surface 5 of the butt welding member Mh in the overall coordinate system. A straight-line approximation formula and a straight-line approximation formula for the groove bottom 7, that is, the upper surface of the backing member Mr are obtained.

【0022】以上算出した、壁状の溶接部材Mvの開先
壁面4,突合せ溶接部材Mhの上面6,突合せ溶接部材
Mhの開先面5、および開先底7の、全体座標系のなか
での直線式をもとに、図3に示すように、開先の形状特
徴をしめす4点A,B,C,Dの座標を算出して、溶接
開先14の位置と形状(幅・深さ)を算出する。以上
が、距離計1〜3を、溶接開先14の長手方向(図1紙
面に垂直な方向)のある位置においた開先形状の測定で
ある。
In the overall coordinate system, the groove wall surface 4, the upper surface 6 of the butt welding member Mh, the groove surface 5 of the butt welding member Mh, and the groove bottom 7 calculated above are calculated. As shown in FIG. 3, the coordinates of four points A, B, C, and D representing the shape characteristics of the groove are calculated based on the straight line formula, and the position and shape (width / depth) of the welding groove 14 are calculated. Is calculated. The above is the measurement of the groove shape when the distance meters 1 to 3 are located at a position in the longitudinal direction of the welding groove 14 (the direction perpendicular to the plane of FIG. 1).

【0023】溶接移動台に支持された支持枠13および
それに装備された上述の距離測定機器24を、該溶接移
動台を溶接開先14の長手方向(図1紙面に垂直な方
向)に低速で連続移動させつつ、あるいは所定距離の移
動と停止を繰返しつつ、溶接開先14の長手方向ほぼ全
長に渡って行なう。
The support frame 13 supported by the welding carriage and the above-described distance measuring device 24 mounted thereon are moved at low speed in the longitudinal direction of the welding groove 14 (perpendicular to the plane of FIG. 1). The welding is performed over the entire length in the longitudinal direction of the welding groove 14 while continuously moving or repeatedly moving and stopping a predetermined distance.

【0024】尚、上述の実施例において、縦距離計1の
下方に配置した横距離計2,3は、垂直方向に2段配設
したが、別の方法として1段配設し、該1段の横距離計
を縦方向に移動させて、縦方向各位置で横距離を測定し
てもよい。
In the above-described embodiment, the horizontal distance meters 2 and 3 disposed below the vertical distance meter 1 are vertically arranged in two stages. However, as another method, the horizontal distance meters 2 and 3 are arranged in one stage. The horizontal distance meter may be moved in the vertical direction to measure the horizontal distance at each position in the vertical direction.

【0025】図4から図8に、本発明を実施する装置の
もう1つの実施例を示す。図4において、縦距離計1は
図1に示す態様と同様に、支持部材11に装備されてい
る。図1に示す態様とは異って横距離計2,3は、縦距
離計1と同じく、角度調節機構を介して支持部材11に
装備され、しかも縦方向で縦距離計1の上側と下側に配
置されている。図5にこの位置関係を示す。したがっ
て、横距離計2,3は縦距離計1と一体で横行移動す
る。ここで、縦距離計1には、例えば計測レンジの大き
い(±40mm〜±10mm)半導体レーザー方式の光
変位計を用い、横距離計2,3には、計測レンジは短い
が(20mm以下)小型で、かつ面の検知には最適の磁
気センサーを用いる。測定機構のその他の構成は、図1
に示す上述のものと同様である。
FIGS. 4 to 8 show another embodiment of an apparatus for practicing the present invention. In FIG. 4, the vertical distance meter 1 is mounted on the support member 11, similarly to the embodiment shown in FIG. Unlike the embodiment shown in FIG. 1, the horizontal distance meters 2 and 3 are mounted on the support member 11 via an angle adjusting mechanism, similarly to the vertical distance meter 1, and are above and below the vertical distance meter 1 in the vertical direction. Located on the side. FIG. 5 shows this positional relationship. Therefore, the horizontal distance meters 2 and 3 move in a horizontal direction integrally with the vertical distance meter 1. Here, as the vertical distance meter 1, for example, a semiconductor laser type optical displacement meter having a large measurement range (± 40 mm to ± 10 mm) is used, and the horizontal distance meters 2 and 3 have a short measurement range (20 mm or less). A small and optimal magnetic sensor is used for surface detection. Other configurations of the measurement mechanism are shown in FIG.
Are the same as those described above.

【0026】以上示した構成のもと、横距離計2,3の
開先壁面4までの距離情報および、縦距離計1を開先情
報で横行移動させた際の縦距離計からの溶接開先深さ方
向の距離情報と縦距離計の位置情報を収集する。これら
の信号は、A/D変換器やパルスカウンター等のインタ
ーフェイスを介して、CPUに取り込む。また、縦距離
計の移動はCPUよりモーターコントロール装置に信号
を送り、移動量をコントロールする。
Based on the configuration described above, the distance information to the groove wall 4 of the horizontal distance meters 2 and 3 and the welding distance from the vertical distance meter when the vertical distance meter 1 is traversed by the groove information. Gather distance information in the depth direction and position information of the vertical distance meter. These signals are taken into the CPU via an interface such as an A / D converter and a pulse counter. When the vertical distance meter is moved, a signal is sent from the CPU to the motor control device to control the amount of movement.

【0027】この実施例では、デ−タ処理装置DPD
は、CPUよりモータドライバに指令を出し、待避位置
(右限界位置)から開先壁面4方向に向って、縦・横距
離計1,2,3を移動させる。縦距離計1を横行させる
際に得られる開先深さ方向の距離信号をA/D変換器A
D1を介し、そして縦距離計1の横方向位置を表わすカ
ウンタPC1のカウント値を、逐次CPUに取り込む。
図7に、その情報のプロット図を示す。
In this embodiment, the data processing device DPD
Sends a command to the motor driver from the CPU and moves the vertical and horizontal distance meters 1, 2, and 3 from the retreat position (right limit position) toward the groove wall surface 4. An A / D converter A converts a distance signal in the groove depth direction obtained when the vertical distance meter 1 is traversed.
The count value of the counter PC1 representing the horizontal position of the vertical distance meter 1 via D1 is sequentially taken into the CPU.
FIG. 7 shows a plot of the information.

【0028】デ−タ処理装置DPDには、縦・横距離計
1〜3の開先壁面4への接近限界、つまり、横距離計
2,3の検知する距離信号のリミット値が設定されてお
り、上記動作の中で、同時に横距離計2,3の距離信号
をA/D変換器AD2,AD3を介してモニターし、検
知距離がリミット値に達っした際にCPUに割り込み信
号を与える。CPUは、この信号(距離計2,3が壁面
接近限界に到達した)に応答して、モータドライバMD
1に停止指令を送りモータを停止させる。次に、図6に
示すように、カウンタPC1のカウント値(横位置:横
軸)と、横距離計2,3の信号(各検知距離a,b)を
CPUに取り込んでラッチ(メモリに保持)しモータド
ライバMD1に戻り駆動指令を送り、距離計1〜3を退
避位置に戻す。
In the data processing device DPD, the limit of approach of the vertical and horizontal distance meters 1 to 3 to the groove wall 4, that is, the limit value of the distance signal detected by the horizontal distance meters 2 and 3 is set. During the above operation, the distance signals of the horizontal distance meters 2 and 3 are simultaneously monitored via the A / D converters AD2 and AD3, and an interrupt signal is given to the CPU when the detected distance reaches the limit value. . The CPU responds to this signal (the rangefinders 2 and 3 reach the wall approach limit), and the motor driver MD
A stop command is sent to 1 to stop the motor. Next, as shown in FIG. 6, the count value of the counter PC1 (horizontal position: horizontal axis) and the signals of the horizontal distance meters 2 and 3 (each detection distance a and b) are taken into the CPU and latched (held in the memory). Then, a return drive command is sent to the motor driver MD1 to return the distance meters 1 to 3 to the retracted position.

【0029】開先形状の算出では、図8に示すように、
2個の横距離計2,3の位置と検知距離信号からの全体
座標系のなかでの検知点a,bを推定し、計測断面でこ
れらa,bを通る開先壁面の直線式を求める。次に、横
行移動時に縦距離計1が検知した信号群(図7)に対し
CPUで、最小2乗法の手法を用い、図8に示すよう
に、全体座標系のなかでの、突合せ溶接部材Mhの上面
6の直線近似式,突合せ溶接部材Mhの開先面5の直線
近似式、および開先底7の直線近似式を求める。以上算
出した、壁状の溶接部材Mvの開先壁面4,突合せ溶接
部材Mhの上面6,突合せ溶接部材Mhの開先面5およ
び開先底7の全体座標系のなかでの直線式をもとに、開
先の形状特徴をしめす4点A,B,C,Dの座標を算出
して、溶接開先の位置と形状(幅・深さ)を算出する。
In calculating the groove shape, as shown in FIG.
The detection points a and b in the overall coordinate system are estimated from the positions of the two lateral distance meters 2 and 3 and the detection distance signals, and the straight line formula of the groove wall surface passing through these a and b is determined on the measurement cross section. . Next, the CPU uses a least-squares method with respect to the signal group (FIG. 7) detected by the vertical distance meter 1 during the horizontal movement, and as shown in FIG. 8, the butt welding member in the overall coordinate system. A linear approximation formula for the upper surface 6 of Mh, a linear approximation formula for the groove surface 5 of the butt welding member Mh, and a linear approximation formula for the groove bottom 7 are obtained. The linear equation in the overall coordinate system of the groove wall surface 4 of the wall-shaped welding member Mv, the upper surface 6 of the butt welding member Mh 6, the groove surface 5 of the butt welding member Mh, and the groove bottom 7 calculated above is also obtained. Then, the coordinates of four points A, B, C, and D representing the shape characteristics of the groove are calculated, and the position and shape (width / depth) of the welding groove are calculated.

【0030】以上が、距離計1〜3を、溶接開先14の
長手方向(図1紙面に垂直な方向)のある位置においた
開先形状の測定である。
The above is the measurement of the groove shape when the distance meters 1 to 3 are located at a position in the longitudinal direction of the welding groove 14 (the direction perpendicular to the plane of FIG. 1).

【0031】溶接移動台に支持された支持枠13および
それに装備された上述の距離測定機器24を、該溶接移
動台を溶接開先14の長手方向(図1紙面に垂直な方
向)に低速で連続移動させつつ、あるいは所定距離の移
動と停止を繰返しつつ、溶接開先14の長手方向ほぼ全
長に渡って行なう。
The support frame 13 supported by the welding carriage and the above-described distance measuring device 24 mounted thereon are moved at low speed in the longitudinal direction of the welding groove 14 (the direction perpendicular to the plane of FIG. 1). The welding is performed over the entire length in the longitudinal direction of the welding groove 14 while continuously moving or repeatedly moving and stopping a predetermined distance.

【0032】[0032]

【発明の効果】本発明は、以下に記載するような効果を
奏する。
The present invention has the following effects.

【0033】(1) 片壁形状あるいは大きな段差、特に壁
面が逆傾斜を有する溶接開先に対し、溶接開先位置・形
状(幅・深さ寸法)を効率的に正確に測定できる。
(1) The position and shape (width / depth dimension) of a welding groove can be efficiently and accurately measured for a single wall shape or a large step, particularly for a welding groove having a wall surface having a reverse slope.

【0034】(2) 本発明の開先形状測定装置の実現によ
り、溶接進行中に溶接条件および溶接トーチ位置を制御
して施工する自動溶接システムに正確な開先位置・形状
情報をインプットすることが可能になり、特に開先形状
にバラツキを有するワークに対して溶接作業を効率的に
高品質にすることが可能となる。
(2) By realizing the groove shape measuring apparatus of the present invention, accurate groove position / shape information is input to an automatic welding system for controlling and performing welding conditions and a welding torch position during welding. , And the quality of the welding operation can be efficiently improved particularly for a work having a variation in the groove shape.

【0035】このように実用的効果は、非常に大きい。As described above, the practical effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を実施する装置の一実施例を示すブロ
ック図である。
FIG. 1 is a block diagram showing an embodiment of an apparatus for implementing the present invention.

【図2】 図1に示す距離測定機構24の側面図であ
る。
FIG. 2 is a side view of the distance measuring mechanism 24 shown in FIG.

【図3】 図1に示す縦距離計1と横距離計2,3で得
た距離デ−タで表わされる開先形状を示すグラフであ
る。
3 is a graph showing a groove shape represented by distance data obtained by a vertical distance meter 1 and horizontal distance meters 2 and 3 shown in FIG.

【図4】 本発明を実施する装置のもう1つの実施例を
示すブロック図である。
FIG. 4 is a block diagram showing another embodiment of an apparatus for implementing the present invention.

【図5】 図4に示す距離測定機構24の側面図であ
る。
5 is a side view of the distance measuring mechanism 24 shown in FIG.

【図6】 図4に示す横距離計2,3で得た距離情報を
示すグラフである。
6 is a graph showing distance information obtained by the horizontal distance meters 2 and 3 shown in FIG.

【図7】 図4に示す縦距離計1で得た距離情報を示す
グラフである。
7 is a graph showing distance information obtained by the vertical distance meter 1 shown in FIG.

【図8】 図6および図7に示す距離情報から得られる
開先形状を示すグラフである。
8 is a graph showing a groove shape obtained from the distance information shown in FIGS. 6 and 7. FIG.

【図9】 片側壁面の開先形状を有する溶接部材の斜視
図であり、(a)は壁状の溶接部材が円筒材で突合せ溶
接部材がフランジ材である場合を、(b)は壁状の溶接
部材および突合せ溶接部材が共に鋼板である場合を示
す。
9A and 9B are perspective views of a welding member having a groove on one side wall, wherein FIG. 9A shows a case where a wall-shaped welding member is a cylindrical material and a butt welding member is a flange material, and FIG. Shows a case where both the welding member and the butt welding member are steel plates.

【図10】 従来の、V開先形状検出態様を示す斜視図
である。
FIG. 10 is a perspective view showing a conventional V groove shape detection mode.

【図11】 従来の開先形状測定を片壁開先に適用した
場合の横断面図である。
FIG. 11 is a cross-sectional view of a conventional groove shape measurement applied to a single-wall groove.

【図12】 従来の開先形状測定を段差の大きい開先に
適用した場合の横断面図である。
FIG. 12 is a cross-sectional view of a conventional groove shape measurement applied to a groove having a large step.

【符号の説明】[Explanation of symbols]

Mh:突合せ溶接部材 Mv:壁状の溶接
部材 Mr:裏当て部材 1:縦距離計 2:横距離計(上
側) 3:横距離計(下側) 4:壁面 5:突合せ溶接部材の開先面 6:突合せ溶接部
材の上面 7:開先底面 8:パルスモータ 9:ロ−タリエンコーダ 10:ボールねじ 11:距離計支持部材 12:距離計支持
部材 13:支持枠 14:溶接開先 21:横距離計2,3の検知情報 22:縦距離計1
の検知情報 23:壁面4への接近限界位置 24:距離測定機
構 31:溶接部材 32:溶接方向に
直角な断面 33:断面32と溶接開先の交わる直線 34:壁状の溶接部材の上面
Mh: Butt welding member Mv: Wall-shaped welding member Mr: Backing member 1: Vertical distance meter 2: Horizontal distance meter (upper) 3: Horizontal distance meter (lower) 4: Wall surface 5: Groove of butt welding member Surface 6: Upper surface of butt weld member 7: Bottom of groove 8: Pulse motor 9: Rotary encoder 10: Ball screw 11: Distance meter support member 12: Distance meter support member 13: Support frame 14: Weld groove 21: Detection information of horizontal distance meters 2 and 3 22: Vertical distance meter 1
Detection information 23: limit position of approach to the wall surface 4 24: distance measuring mechanism 31: welding member 32: cross section perpendicular to the welding direction 33: straight line where the cross section 32 intersects with the welding groove 34: upper surface of the wall-shaped welding member

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方が壁状の溶接部材で形成される溶接開
先の側方に配設した横距離計により、前記壁状の溶接部
材の傾き情報と、横距離計から該壁状の溶接部材までの
位置情報を得、 該壁状の溶接部材までの位置情報に基づいて、開先の上
方に配設した縦距離計を、該壁状の溶接部材に干渉する
ことなく横行させて開先断面の位置情報を得て、 前記
壁状の溶接部材の傾き情報と、前記開先断面の位置情報
により、開先面の幅及び深さを得る、溶接開先形状の検
知方法。
1. A lateral distance meter disposed on a side of a welding groove formed on one side by a wall-shaped welding member. Obtaining positional information up to the welding member, based on the positional information up to the wall-shaped welding member, traverses a vertical distance meter disposed above the groove without interfering with the wall-shaped welding member. A method for detecting the shape of a welding groove, comprising obtaining position information of a groove cross section, and obtaining a width and a depth of a groove surface from the inclination information of the wall-shaped welding member and the position information of the groove cross section.
【請求項2】壁状の溶接部材で形成される溶接開先の長
手方向に移動しうる移動機構本体で支持され溶接開先を
横切る方向に移動しうる縦距離計,前記移動機構本体で
支持され前記壁状の溶接部材の距離を検出する横距離
計、および、前記縦距離計および横距離計の検出値に基
づき溶接開先の横断面情報を生成するデ−タ処理装置、
を備える溶接開先形状の検知装置。
2. A vertical distance meter which is supported by a moving mechanism body which can move in a longitudinal direction of a welding groove formed by a wall-shaped welding member and which can move in a direction crossing the welding groove, and which is supported by the moving mechanism body. A horizontal distance meter for detecting the distance of the wall-shaped welding member, and a data processing device for generating cross-sectional information of the welding groove based on the detected values of the vertical distance meter and the horizontal distance meter.
A welding groove shape detection device comprising:
【請求項3】壁状の溶接部材で形成される溶接開先の長
手方向に移動しうる移動機構本体で支持され溶接開先を
横切る方向に移動しうる支持部材,該支持部材で支持さ
れた縦距離計,前記支持部材で支持され前記壁状の溶接
部材の距離を検出する横距離計、および、前記縦距離計
および横距離計の検出値に基づき溶接開先の横断面情報
を生成するデ−タ処理装置、を備える溶接開先形状の検
知装置。
3. A support member which is supported by a moving mechanism body which can move in a longitudinal direction of a welding groove formed by a wall-shaped welding member and which can move in a direction crossing the welding groove, and which is supported by the supporting member. A vertical distance meter, a horizontal distance meter supported by the support member and detecting the distance of the wall-shaped welding member, and cross-sectional information of the welding groove is generated based on detection values of the vertical distance meter and the horizontal distance meter. A welding groove shape detecting device comprising a data processing device.
JP4205698A 1992-07-31 1992-07-31 Method and apparatus for detecting welding groove shape Expired - Fee Related JP2635891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205698A JP2635891B2 (en) 1992-07-31 1992-07-31 Method and apparatus for detecting welding groove shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205698A JP2635891B2 (en) 1992-07-31 1992-07-31 Method and apparatus for detecting welding groove shape

Publications (2)

Publication Number Publication Date
JPH0647539A JPH0647539A (en) 1994-02-22
JP2635891B2 true JP2635891B2 (en) 1997-07-30

Family

ID=16511229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205698A Expired - Fee Related JP2635891B2 (en) 1992-07-31 1992-07-31 Method and apparatus for detecting welding groove shape

Country Status (1)

Country Link
JP (1) JP2635891B2 (en)

Also Published As

Publication number Publication date
JPH0647539A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
US6256560B1 (en) Method for correcting position of automated-guided vehicle and apparatus therefor
JP3079485B2 (en) Automatic welding equipment for square steel pipes
JP3880909B2 (en) Thickness measuring device
JP2635891B2 (en) Method and apparatus for detecting welding groove shape
JP2904247B2 (en) Welding robot for corrugated lap joints
CN113052896B (en) Visual positioning method and device
JP2564738B2 (en) Method and apparatus for detecting welding groove shape
JP3876758B2 (en) Equipment for measuring hot dimensions and shapes of H-section steel
JPH0123041B2 (en)
JP2635892B2 (en) Method and apparatus for detecting welding groove shape
JPH08310787A (en) Crane positioning device
JP4341172B2 (en) Control method of torch position in multi-layer welding
JP2843899B2 (en) Reinforcing material welding apparatus and control method thereof
JP3331341B2 (en) Dimension measuring device for section of steel section
KR100326000B1 (en) Position inspecting apparatus for agv(automated guided vehicle) and method thereof
JP2604625B2 (en) Method and apparatus for detecting groove shape in narrow groove welding
JPH0687075A (en) Inclination control welding method
JPS6396551A (en) Ultrasonic flaw detector
JPS6049407A (en) Unmanned truck
JPH048144B2 (en)
JP2513380B2 (en) Method and apparatus for measuring web deviation of H-section steel
JPH05337669A (en) Laser beam machine
JPH0321826Y2 (en)
JPH07290892A (en) Stage driving apparatus for graphics-drawing apparatus
JPH10193118A (en) Position correcting method for displacement sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees