JP2635683B2 - Radiation detection element - Google Patents

Radiation detection element

Info

Publication number
JP2635683B2
JP2635683B2 JP63131423A JP13142388A JP2635683B2 JP 2635683 B2 JP2635683 B2 JP 2635683B2 JP 63131423 A JP63131423 A JP 63131423A JP 13142388 A JP13142388 A JP 13142388A JP 2635683 B2 JP2635683 B2 JP 2635683B2
Authority
JP
Japan
Prior art keywords
film
radiation
electrode
metal
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63131423A
Other languages
Japanese (ja)
Other versions
JPH01302775A (en
Inventor
雄二郎 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63131423A priority Critical patent/JP2635683B2/en
Publication of JPH01302775A publication Critical patent/JPH01302775A/en
Application granted granted Critical
Publication of JP2635683B2 publication Critical patent/JP2635683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、α線,β線,γ線,X線などの放射線を検出
する放射線検出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a radiation detecting element that detects radiation such as α-rays, β-rays, γ-rays, and X-rays.

(従来の技術) 従来より、放射線検出装置として種々の構成のものが
知られており、第5図はその例である。図において、51
と52はそれぞれMoとTaから成る金属電極(金属膜)で、
放射線と強く相互作用して、光電子などの二次粒子をア
モルファスシリコン(a−Si)膜53へ放出すると同時
に、a−Si膜中で発生する電子−正孔対を収集する役割
がある。Moはショットキー電極、Taはオーミック性電極
となるので、図に示すように無バイアス状態で電流増幅
器54へMo電極を接続することによって検出信号を得るこ
とができる。即ちPV(Photo−voltaic)モードの動作が
行える。
(Prior Art) Conventionally, various types of radiation detecting devices have been known, and FIG. 5 shows an example thereof. In the figure, 51
And 52 are metal electrodes (metal films) composed of Mo and Ta, respectively.
It has a role of strongly interacting with radiation to emit secondary particles such as photoelectrons to the amorphous silicon (a-Si) film 53 and to collect electron-hole pairs generated in the a-Si film. Since Mo is a Schottky electrode and Ta is an ohmic electrode, a detection signal can be obtained by connecting the Mo electrode to the current amplifier 54 in a non-biased state as shown in the figure. That is, operation in the PV (Photo-voltaic) mode can be performed.

(発明が解決しようとする課題) 第2図に示した従来の放射線検出素子には次のような
問題点がある。即ち、同一の厚さを有する金属電極がa
−Si膜を隔てて、等間隔で配置されているため、入射す
る放射線粒子がそのエネルギーを失っていく状況におい
ては、必らずしも有効に電子−正孔対がa−Si膜中で発
生しない。理由は、金属電極から発生する二次粒子のエ
ネルギーが放射線の入射方向に沿って小さくなり、金属
中で失なわれるエネルギーが増加して、a−Si膜への有
効なエネルギー付加が阻害されるためである。
(Problems to be Solved by the Invention) The conventional radiation detecting element shown in FIG. 2 has the following problems. That is, a metal electrode having the same thickness is a
-Since they are arranged at equal intervals across the Si film, in a situation where the incident radiation particles lose their energy, the electron-hole pairs are necessarily effectively formed in the a-Si film. Does not occur. The reason is that the energy of the secondary particles generated from the metal electrode decreases along the incident direction of the radiation, the energy lost in the metal increases, and the effective energy addition to the a-Si film is hindered. That's why.

本発明は上記の如き問題を解決する放射線検出素子を
提供することを目的とする。
An object of the present invention is to provide a radiation detecting element that solves the above problems.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 第1の発明は、少なくとも金属電極あるいは半導体膜
の厚さを放射線の入射側を厚く、入射側に対向する側を
薄く構成し、半導体(a−Si)膜への有効なエネルギー
付加が阻害されないようにしたものである。
(Means for Solving the Problems) A first aspect of the present invention is to provide a semiconductor (a-Si) film in which at least a metal electrode or a semiconductor film is configured to be thick on a radiation incident side and thin on a side facing the incident side. In this way, effective energy addition to the steel is not hindered.

第2の発明は、半導体膜の両側に形成される一方の金
属膜を、くし形に構成し、半導体(a−Si)膜への有効
なエネルギー付加が阻害されないようにすると共に、時
間変化の速い放射線も測定可能にしたものである。
According to a second aspect of the present invention, one of the metal films formed on both sides of the semiconductor film is formed in a comb shape so that the effective energy addition to the semiconductor (a-Si) film is not hindered, and the time change Fast radiation can also be measured.

(作 用) 第1の発明の如く、金属膜の厚さを放射線の入射方向
に沿って減少させることにより、エネルギーが減弱して
いく入射放射線粒子に対して効果的な二次放射線粒子の
半導体(a−Si)膜への入射が生ずる。即ち、エネルギ
ーの小さい放射線粒子に対しては、金属膜厚を薄くした
方がより有効に二次放射粒子が半導体(a−Si)膜へ入
射して、電子−正孔対の発生が行われる。また二次放射
線粒子のエネルギーも入射方向に沿って減少するので、
a−Si膜中の飛程が短かくなり、a−Si膜厚をしだいに
薄くすることが可能となる。
(Operation) As in the first invention, by reducing the thickness of the metal film along the incident direction of the radiation, the semiconductor of the secondary radiation particles is effective against the incident radiation particles whose energy is attenuated. The incidence on the (a-Si) film occurs. That is, for radiation particles having a small energy, it is more effective to reduce the metal film thickness so that the secondary radiation particles are more effectively incident on the semiconductor (a-Si) film and the electron-hole pairs are generated. . Also, the energy of the secondary radiation particles decreases along the incident direction,
The range in the a-Si film becomes shorter, and the thickness of the a-Si film can be gradually reduced.

第2の発明の如く、半導体膜の両側に形成される一方
の金属膜を、くし形に構成することにより、電極間の容
量が小さくなり、時間変化の速い放射線も測定可能とな
る。また第1の発明と同様に半導体膜の一方の金属膜を
くし形にすれば、金属膜のない部分が存在することとな
り、エネルギーの小さい放射線も次の半導体層に到達す
ることになる。
As in the second aspect, by forming one of the metal films formed on both sides of the semiconductor film in a comb shape, the capacitance between the electrodes is reduced, and radiation with a fast time change can be measured. Further, if one of the metal films of the semiconductor film is comb-shaped in the same manner as in the first invention, there is a portion without the metal film, and radiation with low energy reaches the next semiconductor layer.

(実施例) 本発明の一実施例を第1図にて説明する。構造は、Mo
電極(Mo金属膜)11およびTa電極(Ta金属膜)12の厚さ
がしだいに放射線入射方向に沿って薄くなり、かつa−
Si膜(半導体膜)13の厚さも同様に薄くしてある。入射
放射線はMo電極11およびTa電極12と相互作用して二次放
射粒子をa−Si膜中へ放出しつつ、エネルギーが減衰し
ていく、この過程でa−Si膜13中に電子−正孔対が発生
し、Ta電極12はオーミック性、Mo電極11はショットキー
性であるので電流増幅器14によりPV(Photo−volaic)
動作で信号を検出することができる。
(Embodiment) An embodiment of the present invention will be described with reference to FIG. The structure is Mo
The thickness of the electrode (Mo metal film) 11 and the thickness of the Ta electrode (Ta metal film) 12 gradually decrease in the radiation incident direction.
The thickness of the Si film (semiconductor film) 13 is similarly reduced. The incident radiation interacts with the Mo electrode 11 and the Ta electrode 12 to emit secondary radiation particles into the a-Si film, and the energy is attenuated. In this process, the electron-positive electrons are stored in the a-Si film 13. A hole pair is generated, and the Ta electrode 12 has an ohmic property and the Mo electrode 11 has a Schottky property.
A signal can be detected by operation.

次に上記実施例における金属電極11,12およびa−Si
膜13の厚さをどのような値でしだいに薄くしていくか
を、以下に示す設計例で説明する。まず、Mo電極11及び
Ta電極12およびa−Si膜13の厚さをそれぞれ、(d1,d3,
…dn-1),(d2,d4,…dn)および(a1,a2,a3…an)と
し、さらに二次放射線粒子を含めた放射線の総エネルギ
ー減衰定数をα(Mo),α(Ta)およびα(a−
si)とする。次に放射線の初期エネルギーをEoとして、
各層(d1,a1,d2,a2…dn,an)で吸収されるエネルギーE
(d1),E(a1),E(d2),E(a2)…E(dn),E(an)を
計算すると次のようになる。
Next, the metal electrodes 11, 12 and a-Si
How the thickness of the film 13 is gradually reduced will be described with reference to a design example shown below. First, the Mo electrode 11 and
The thicknesses of the Ta electrode 12 and the a-Si film 13 are respectively (d 1 , d 3 ,
.. Dn -1 ), (d 2 , d 4 ,... Dn) and (a 1 , a 2 , a 3 ... An), and the total energy decay constant of radiation including secondary radiation particles is α 1 (Mo ), Α 2 (Ta) and α 3 (a-
si). Next, let the initial energy of radiation be Eo,
Energy E absorbed in each layer (d 1 , a 1 , d 2 , a 2 … dn, an)
(D 1 ), E (a 1 ), E (d 2 ), E (a 2 )... E (dn), E (an) are calculated as follows.

E(d1)=Eo{1−exp(−α1d1)} E(a1)={Eo−E(d1)}{1−exp(−α3a1)} E(d2)={Eo−E(d1)−E(a1)}{1 −exp(−α2d2)} E(dn) ={Eo−E(d1)−E(a1)…E(dn-1)}{1−exp
(−αndn)} E(an)={Eo−E(d1) −E(a1)…E(dn-1)E(an-1)}{1 −exp(−αn-1an)} 上記のような計算を経て、求める厚さは、吸収エネル
ギーの平衡を考慮して次式で与えられる。
E (d 1 ) = Eo {1−exp (−α 1 d 1 )} E (a 1 ) = {Eo−E (d 1 )} {1−exp (−α 3 a 1 )} E (d 2 ) = {Eo−E (d 1 ) −E (a 1 )} 1 −exp (−α 2 d 2 )} E (dn) = {Eo−E (d 1 ) −E (a 1 ). (Dn -1 )} {1-exp
(−αndn)} E (an) = {Eo−E (d 1 ) −E (a 1 )... E (dn −1 ) E (an −1 )} 1 −exp (−αn −1 an)} Through the above calculations, the thickness to be obtained is given by the following equation in consideration of the equilibrium of the absorbed energy.

d1:d2:d3…:dn=E(d1):E(d2):E(d3) ……E(dn) a1:a2:a3…:an=E(a1):E(a2):E(a3) ……E(an) 上記式に基づく計算結果例を第3図に示す。尚、第3
図は第2図に基づくもので、a1,a2,a3の厚さは、夫々20
μm,15μm,12μmで、d1,d2,d3の厚さは夫々15μm,10μ
m,6μmである。
d 1 : d 2 : d 3 …: dn = E (d 1 ): E (d 2 ): E (d 3 )… E (dn) a 1 : a 2 : a 3 …: an = E (a 1 ): E (a 2 ): E (a 3 )... E (an) FIG. 3 shows an example of a calculation result based on the above equation. The third
The figure is based on FIG. 2 and the thicknesses of a 1 , a 2 and a 3 are 20
μm, 15 μm, 12 μm, the thickness of d 1 , d 2 , d 3 is 15 μm, 10 μm respectively
m, 6 μm.

上記実施例において、金属膜とa−Si膜の両方の膜厚
を入射方向に沿って減少させたが、金属膜又はa−Si膜
のどちらか一方を入射方向に沿って減少させても良く、
また金属膜の一方のみを減少させても良い。
In the above embodiment, the thickness of both the metal film and the a-Si film is decreased along the incident direction, but either the metal film or the a-Si film may be decreased along the incident direction. ,
Alternatively, only one of the metal films may be reduced.

次に本発明の他の実施例を第4図にて説明する。基本
構造はTa電極12とa−Si膜13の周期的積層中に、くし形
Mo電極45を挿入した形になっている。入射する放射線
は、主としてTa電極12と相互作用し、エネルギー変換に
より光電子等の二次放射線粒子が発生する。次に二次放
射線粒子がa−Si膜13中で電子−正孔対を発生して、信
号電荷としてくし形Mo電極45により収集される。
Next, another embodiment of the present invention will be described with reference to FIG. The basic structure is a comb-shaped during periodic lamination of Ta electrode 12 and a-Si film 13.
The Mo electrode 45 is inserted. The incident radiation mainly interacts with the Ta electrode 12, and secondary radiation particles such as photoelectrons are generated by energy conversion. Next, secondary radiation particles generate electron-hole pairs in the a-Si film 13 and are collected by the comb-shaped Mo electrode 45 as signal charges.

Ta電極12はオーミック性、Mo電極45はショットキー性
であるので、電流増幅器14により、PV(Ph−oto−vltai
c)動作により信号を検出することができる。この第4
図のように構成した放射線検出素子において、くし形電
極45のくし部以外の所を通過する放射線の吸収が少なく
なる為に上記実施例と同様な効果が発生する。また電極
の少なくとも一方をくし形にすることにより、電気的容
量が小さくなり、時間応答性の良いセンサを得ることが
できる。
Since the Ta electrode 12 has ohmic properties and the Mo electrode 45 has Schottky properties, PV (Ph-oto-vl
c) The signal can be detected by the operation. This fourth
In the radiation detecting element configured as shown in the drawing, the same effect as in the above-described embodiment occurs because the absorption of the radiation passing through portions other than the comb portion of the comb-shaped electrode 45 is reduced. Further, by forming at least one of the electrodes in a comb shape, the electric capacity is reduced, and a sensor with good time response can be obtained.

上記の実施例においてはTa電極間に1つのくし形電極
12を設けたが、Ta電極間に、2つ以上のくし形電極を挿
入することも可能である。また本実施例に上述した一実
施例を組み合せればより効果がある。
In the above embodiment, one interdigital electrode between the Ta electrodes
Although 12 is provided, two or more interdigital electrodes can be inserted between the Ta electrodes. It is more effective to combine this embodiment with the above-described embodiment.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、a−Si膜中での電
子−正孔対の発生効率がすぐれている放射線検出素子を
得ることができる。又電極の一方をくし形にすれば、上
記効果の他に電気的容量が小さくなり、時間応答性も良
くなる。
As described above, according to the present invention, it is possible to obtain a radiation detecting element having excellent electron-hole pair generation efficiency in an a-Si film. Further, if one of the electrodes is formed in a comb shape, in addition to the above effects, the electric capacity is reduced, and the time response is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図は本発明の一実施例を説明するための
図、第4図は本発明の他の実施例を説明するための図、
第5図は従来例を説明するための図である。 11,12……金属膜、13……半導体膜 14……電流増幅器、45……くし形Mo電極
1 to 3 are diagrams for explaining one embodiment of the present invention, FIG. 4 is a diagram for explaining another embodiment of the present invention,
FIG. 5 is a diagram for explaining a conventional example. 11,12 Metal film, 13 Semiconductor film 14 Current amplifier 45 Comb-shaped Mo electrode

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属膜と半導体膜とが交互に積層されてな
る放射線検出素子において、少なくとも前記金属膜ある
いは半導体膜の一方の厚さは放射線の入射側が厚く、入
射側に対向する側が薄く構成されていることを特徴とす
る放射線検出素子。
1. A radiation detecting element comprising a metal film and a semiconductor film alternately laminated, wherein at least one of the metal film and the semiconductor film is thicker on the radiation incident side and thinner on the side facing the incident side. A radiation detection element characterized in that:
【請求項2】半導体膜はアモルファスシリコン膜であっ
て、その厚さは放射線の入射方向に沿って順次薄く構成
されていることを特徴とする請求項1記載の放射線検出
素子。
2. The radiation detecting element according to claim 1, wherein the semiconductor film is an amorphous silicon film, and the thickness of the semiconductor film is sequentially reduced along the radiation incident direction.
【請求項3】金属膜の厚さは、放射線の入射方向に沿っ
て順次薄く構成されていることを特徴とする請求項1及
び2記載の放射線検出素子。
3. The radiation detecting element according to claim 1, wherein the thickness of the metal film is gradually reduced along the radiation incident direction.
【請求項4】金属膜と半導体膜とが交互に積層された放
射線検出素子において、前記半導体膜の両側に形成され
る一方の前記金属膜が、くし形に構成されていることを
特徴とする放射線検出素子。
4. A radiation detecting element in which a metal film and a semiconductor film are alternately stacked, wherein one of the metal films formed on both sides of the semiconductor film is formed in a comb shape. Radiation detection element.
【請求項5】くし型の金属膜の材料がMoで構成されてい
ることを特徴とする請求項4記載の放射線検出素子。
5. The radiation detecting element according to claim 4, wherein the material of the comb-shaped metal film is made of Mo.
JP63131423A 1988-05-31 1988-05-31 Radiation detection element Expired - Lifetime JP2635683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131423A JP2635683B2 (en) 1988-05-31 1988-05-31 Radiation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131423A JP2635683B2 (en) 1988-05-31 1988-05-31 Radiation detection element

Publications (2)

Publication Number Publication Date
JPH01302775A JPH01302775A (en) 1989-12-06
JP2635683B2 true JP2635683B2 (en) 1997-07-30

Family

ID=15057615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131423A Expired - Lifetime JP2635683B2 (en) 1988-05-31 1988-05-31 Radiation detection element

Country Status (1)

Country Link
JP (1) JP2635683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059463B2 (en) * 1998-12-10 2008-03-12 株式会社島津製作所 Radiation detector

Also Published As

Publication number Publication date
JPH01302775A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US4785186A (en) Amorphous silicon ionizing particle detectors
EP2005215B1 (en) Multi-layer pixellated gamma-ray detector
EP0239808A1 (en) Radiation detecting device
JPH05102511A (en) Solar cell module
JP2635683B2 (en) Radiation detection element
JP2687122B2 (en) Multilayer CdTe radiation detection element
JP2574341B2 (en) Multi-channel semiconductor radiation detector
JP2837302B2 (en) Solar cell
EP1391940A1 (en) Semiconductor radiation detecting element
JPH058595B2 (en)
US20020117626A1 (en) Method and arrangement relating to x-ray imaging
JP3688933B2 (en) Radiation detector
JPH0447993B2 (en)
JPH053550B2 (en)
JP2733930B2 (en) Semiconductor radiation detector
JPS6398582A (en) Radiation detector
JP3644306B2 (en) Radiation detector
JPH0227776A (en) Semiconductor neutron beam detector
JPH06105302B2 (en) Radiation detector
JPS62162986A (en) Semiconductor radiation detector
JP3143392B2 (en) Stacked solar cell
JPH0473636B2 (en)
JPS58139477A (en) Semiconductor radiation detector
JP2755670B2 (en) Photoelectric conversion element and photovoltaic device
JPH03190285A (en) Radiation detector