JP2634953B2 - Method for producing iron / polymer powder composition - Google Patents

Method for producing iron / polymer powder composition

Info

Publication number
JP2634953B2
JP2634953B2 JP5513328A JP51332893A JP2634953B2 JP 2634953 B2 JP2634953 B2 JP 2634953B2 JP 5513328 A JP5513328 A JP 5513328A JP 51332893 A JP51332893 A JP 51332893A JP 2634953 B2 JP2634953 B2 JP 2634953B2
Authority
JP
Japan
Prior art keywords
iron
particles
polymer
mixture
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5513328A
Other languages
Japanese (ja)
Other versions
JPH07500140A (en
Inventor
オリバー,クリストファー
クリスビー,シェルトン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoeganaes Corp
Original Assignee
Hoeganaes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoeganaes Corp filed Critical Hoeganaes Corp
Publication of JPH07500140A publication Critical patent/JPH07500140A/en
Application granted granted Critical
Publication of JP2634953B2 publication Critical patent/JP2634953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Soft Magnetic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

A powder composition of iron-based powder particles to which is bonded a polymeric material is prepared by making a dry admixture of the iron-based particles and particles of the polymer, wetting the admixture with a solvent for the polymeric material, and removing the solvent to leave a flowable powder composition. The powder compositions can be compression moulded, generally at a temperature above the glass transition temperature of the polymer, to form magnetic core components.

Description

【発明の詳細な説明】 発明の分野 本発明は、総体的に粒状形で高分子材料に結合してい
る鉄−基材粉末粒子を含んでなる粉末組成物の製造方法
に関する。更に詳しくは、本発明方法は、鉄およびポリ
マーを最初に乾燥形で混合した後、鉄粒子に対するポリ
マーの結合を行なわしめる高分子材料に対する溶剤の使
用に関する。このように造られた粉末粒子は、磁気コア
成分を製造するのに特に有用である。
Description: FIELD OF THE INVENTION The present invention relates to a method of making a powder composition comprising iron-based powder particles bonded to a polymeric material in a generally particulate form. More particularly, the method of the present invention relates to the use of a solvent for the polymeric material that first mixes the iron and polymer in dry form, and then causes the polymer to bind to the iron particles. The powder particles thus produced are particularly useful for producing a magnetic core component.

発明の背景 鉄−基材粒子は、粉末冶金法により構造成分の製造に
おける基材として長く用いられてきている。鉄−基材粒
子を失ず高圧下ダイ中で成型して所望の形状を得る。成
型工程後、構造成分は通常焼結工程を受け成分に必要な
強度を付与する。
BACKGROUND OF THE INVENTION Iron-substrate particles have long been used as substrates in the manufacture of structural components by powder metallurgy. The desired shape is obtained by molding in a die under high pressure without losing the iron-base particles. After the molding step, the structural component typically undergoes a sintering step to impart the necessary strength to the component.

磁気コア成分は又そのような粉末冶金法により製造さ
れてきたが、しかしこれらの方法で用いられる鉄−基材
粒子は一般に絶縁材料の円周方向の層で一般に被覆され
ている。
Magnetic core components have also been produced by such powder metallurgy methods, but the iron-based particles used in these methods are generally coated with a circumferential layer of insulating material.

鉄コア成分の二つの重要な性質は、その透磁率および
コア損失特性である。材料の透磁率はそれが磁性化し得
る能力の指標であるか、又は磁束を帯有し得るその能力
の指標である。透磁率は磁化力又は場の強さに対する誘
動された磁束の割合として定義される。磁性材料は急速
に変化する場にさらされると、コアの全エネルギーは、
ヒステリシスの損失および/又は渦電流損失の発生によ
り減少する。エネルギー損失は、エネルギーの必要な消
費によりもたらされ鉄コア成分内で保持された磁気力を
克服する。渦電流損失は、電流状態を変化させることに
よって生じる変化束のため鉄コア成分内の電流の発生に
よりもたらされる。
Two important properties of the iron core component are its permeability and core loss properties. The permeability of a material is an indicator of its ability to magnetize, or of its ability to carry magnetic flux. Permeability is defined as the ratio of the induced magnetic flux to the magnetizing force or field strength. When a magnetic material is exposed to a rapidly changing field, the total energy of the core is
It is reduced by the occurrence of hysteresis loss and / or eddy current loss. Energy loss overcomes the magnetic forces held within the iron core component caused by the necessary consumption of energy. Eddy current losses are caused by the generation of current in the iron core component due to the changing flux caused by changing the current state.

初期の磁気コア成分は、積層シート鋼から造られてい
たが、しかしこれらの成分は製造困難でありそしてより
高い周波数で多量のコア損失を経験した。これらの積層
−基材コアの適用も又、過剰の渦電流損失を避けるため
シートの平面内で磁束を有することの必要性により制限
される。焼結金属粉末は、磁気コア成分に対する材料と
して積層シートに代わるために用いられたが、しかしこ
れらの焼結部もまた高いコア損失を有しそして電流操作
を指図することに対し主に制限を受けた。
Early magnetic core components were made from laminated sheet steel, but these components were difficult to manufacture and experienced significant core loss at higher frequencies. The application of these laminate-substrate cores is also limited by the need to have a magnetic flux in the plane of the sheet to avoid excessive eddy current losses. Sintered metal powders have been used to replace laminated sheets as a material for the magnetic core component, but these sintered parts also have high core losses and mainly place restrictions on directing current operation. Received.

被覆された鉄−基材粉末を用い磁気コア成分の粉末冶
金製造における研究は、他の性質に不利な影響を与える
ことなく、一定の物理的および磁性を高める鉄粉末組成
的の開発に向けられてきた。望ましい性質には、広範囲
の周波数範囲にわたった高い透磁性、高い圧縮強度、低
コア損失および組成的成型技術に対する適合性が含まれ
る。
Research in powder metallurgy manufacturing of magnetic core components using coated iron-substrate powders has been directed to the development of iron powder compositions that enhance certain physical and magnetic properties without adversely affecting other properties. Have been. Desirable properties include high permeability over a wide frequency range, high compressive strength, low core loss, and compatibility with compositional molding techniques.

交流電力適用のためのコア成分を成型するとき、鉄粒
子がコア損失を減少させるため電気絶縁コーチングを有
することが一般に必要とされる。鉄粒子上へのプラスチ
ックコーチングの使用(山口へ付与された米国特許3,93
5,340参照)および二重コート鉄粒子の使用(ソイレー
等へ付与された米国特許第4,601,765参照)は鉄粒子を
絶縁するためおよび従って渦電流損失を減少させるため
用いられた。
When molding core components for AC power applications, it is generally required that the iron particles have an electrically insulating coating to reduce core loss. Use of plastic coating on iron particles (U.S. Pat.
5,340) and the use of double-coated iron particles (see U.S. Pat. No. 4,601,765 to Soiler et al.) Were used to insulate the iron particles and thus reduce eddy current losses.

最近、以下の内容が見出された。すなわち、絶縁高分
子材料は個々の鉄粒子の十分なコーチングとして粉末組
成物中に存在する必要はなく、むしろばらばらな粒子の
形で存在できそしてこの粒子は鉄粒子と完全に混合す
る。本発明は均質性を確保するような方法でこの混合物
を形成する方法に関しそしてこれにより鉄組成物で造ら
れた加圧部の磁性を改善する。本発明は鉄−基材粒子に
高分子材料の周囲のコーチングを付与する必要性を排除
するものであり、このコーチングはより高価な流動床プ
ロセスの使用を総体的に必要とした。
Recently, the following has been found. That is, the insulating polymeric material need not be present in the powder composition as a sufficient coating of the individual iron particles, but rather can be present in discrete particles and the particles are completely mixed with the iron particles. The present invention relates to a method of forming this mixture in such a way as to ensure homogeneity and thereby improve the magnetism of the pressurized part made of the iron composition. The present invention eliminates the need to apply a coating around the polymeric material to the iron-based particles, which generally required the use of a more expensive fluidized bed process.

発明の要約 本発明は鉄/ポリマー粉末組成物を製造する方法を提
供し、この組成物は鉄−基材粉末粒子および該鉄−基材
粉末粒子に結合された高分子材料を含んでなる。この方
法によれば、鉄−基材粒子と高分子の粒子の乾燥混合物
が造られる。一般に、高分子材料は鉄−基材粒子とポリ
マーの合計重量の約0.001〜15重量%を構成するであろ
う。次いで、乾燥混合物を高分子材料の溶剤で湿潤させ
る。好ましくは、溶剤を混合物上に散布し、同時に混合
物は更に混合される。しかる後、溶剤を除去し、高分子
材料に結合した鉄−基材粒子の流動性粉末組成物を残
す。
SUMMARY OF THE INVENTION The present invention provides a method of making an iron / polymer powder composition, the composition comprising iron-based powder particles and a polymeric material bound to the iron-based powder particles. According to this method, a dry mixture of iron-base particles and polymer particles is produced. Generally, the polymeric material will comprise about 0.001 to 15% by weight of the combined weight of iron-based particles and polymer. The dry mixture is then wetted with the polymeric solvent. Preferably, the solvent is sprinkled over the mixture, while the mixture is further mixed. Thereafter, the solvent is removed, leaving a flowable powder composition of iron-substrate particles bound to the polymeric material.

この方法はいかなる鉄−基材粒子および高分子材料か
ら粉末組成物を形成するために適用可能である。「鉄−
基材粒子」とは、粉末冶金方法において一般に用いられ
るいかなる鉄含有粒子も含むものと意味されるが、しか
しこれに制限されることなく、実質的に純粋な鉄および
例えば遷移金属および/又は他の強化元素と共に予備合
金された鉄粒子をも意味する。この方法はいかなる高分
子材料の使用にも適用できるけれども、それは磁気コア
成分の使用に関しその最も意義なる有用性を有する。好
ましい熱可塑性材料はビフェニレンエーテルおよびポリ
エーテルイミドであり、そしてこれらのポリマーと共に
使用のための好ましい溶剤は塩化メチレンである。
The method is applicable for forming powder compositions from any iron-based particles and polymeric materials. "Iron-
By "substrate particles" is meant to include, but is not limited to, any iron-containing particles commonly used in powder metallurgy processes, including, but not limited to, substantially pure iron and transition metals and / or other metals. Also means pre-alloyed iron particles with the strengthening element. Although this method is applicable to the use of any polymeric material, it has its most significant utility with respect to the use of a magnetic core component. Preferred thermoplastic materials are biphenylene ether and polyetherimide, and the preferred solvent for use with these polymers is methylene chloride.

発明の詳細な記載 本発明によれば、以下の内容が見出された。すなわ
ち、高分子絶縁材料は接着剤でつけることができあるい
は又鉄−基材粉末に結合して実質的に均質性を有しそし
て圧縮すると秀れた磁性を有する磁気コア成分を与える
であろう組成物を提供する。本発明によれば、鉄−基材
粒子および高分子材料の粒子を総体的に乾燥状態で先ず
混合し、二種の実質的に均質な混合物を形成する。次い
で、乾燥混合物を、以下に十分に記載する如く混合物全
体の実質的湿潤を確保するような方法でポリマーに対す
る比較的少量の溶剤により接触させる。しかる後、溶剤
を除去し高分子材料が結合している鉄−基材粒子の乾
燥、流動性粉末組成物を提供する。次いで、磁気コア成
分は公知方法により粉末組成物により製造できる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the following has been found. That is, the polymeric insulating material can be glued or bonded to the iron-based powder and will provide a magnetic core component having substantially homogeneity and excellent magnetic properties upon compression. A composition is provided. According to the present invention, the iron-substrate particles and the particles of the polymeric material are first mixed, generally in the dry state, to form two substantially homogeneous mixtures. The dry mixture is then contacted with a relatively small amount of solvent for the polymer in a manner to ensure substantial wetting of the entire mixture, as described more fully below. Thereafter, the solvent is removed to provide a dry, free-flowing powder composition of the iron-base particles to which the polymer material is bound. The magnetic core component can then be produced from the powder composition by known methods.

本発明で有用な鉄−基材粒子は粉末冶金方法で一般に
用いられるいかなる純粋な鉄又は鉄−コーチング(鋼又
は強磁性)粒子である。例としては、実質的に純粋な鉄
並びに他の元素(例えば、鋼−製造用元素)と鉄予備合
金化した粒子があげられるが、該他の元素は最終製品の
強度、焼入性、電磁特性又は他の所望の性質を増加する
元素である。本発明で有用な鉄−基材材料の粒子は、1
ミクロン又はそれ以下、又は約850〜1,000ミクロンまで
の小さな重量平均粒径を有することができるが、しか
し、一般に粒子は約10〜500ミクロンの範囲内の重量平
均粒径を有するであろう。最大平均粒径約350ミクロン
を有する粒子組成物が好ましく、そして最大平均粒径約
250ミクロンを有する粒子組成物がより好ましい。
Iron-based particles useful in the present invention are any pure iron or iron-coated (steel or ferromagnetic) particles commonly used in powder metallurgy processes. Examples include substantially pure iron as well as iron pre-alloyed particles with other elements (eg, steel-making elements), where the other elements include strength, hardenability, and electromagnetic properties of the final product. An element that increases a property or other desired property. The particles of the iron-base material useful in the present invention are:
It can have a small weight average particle size of microns or less, or up to about 850 to 1,000 microns, but generally the particles will have a weight average particle size in the range of about 10 to 500 microns. Particle compositions having a maximum average particle size of about 350 microns are preferred, and a maximum average particle size of about 350 microns.
Particle compositions having 250 microns are more preferred.

本発明において使用するための好ましい鉄−基材粒子
は、実質的に純粋な鉄の高圧縮性粉末であり;すなわち
約1.0重量%以下、好ましくは約0.5重量%以下の通常の
不純物を含有する鉄である。そのような金属学的等級の
純粋な鉄粉末の例はヘガネス社(リバートン、ニュージ
ャージー)から入手可能な鉄粉末のANCORSTEEL 1000シ
リーズである。特に好ましいそのような粉末はANCORSTE
EL 1000C鉄粉末であり、これはNo.325篩以下の粒子約13
重量%およびNo.100篩より大の約17重量%の典型的スク
リーンプロファイルを有し、残りはこれらの2つ寸法の
間にある(No.60篩よりもより大の微量)。ANCORSTEEL
1000C粉末は約2.8〜約3.0g/cm2の見掛け密度を有する。
Preferred iron-based particles for use in the present invention are substantially pure iron highly compressible powders; that is, containing up to about 1.0% by weight, preferably up to about 0.5% by weight of common impurities. It is iron. An example of such a metallurgical grade of pure iron powder is the ANCORSTEEL 1000 series of iron powders available from Höganäs (Riverton, NJ). A particularly preferred such powder is ANCORSTE
EL 1000C iron powder, which has a particle size of about 13
It has a typical screen profile of about 17% by weight and greater than No. 100 sieve, the balance being between these two dimensions (greater traces than No. 60 sieve). ANCORSTEEL
1000C powder has an apparent density of from about 2.8 to about 3.0 g / cm 2.

本発明の実施において有用な他の鉄−基材粉末は鉄と
共に予備合金化される合金用元素の有効量を含有する強
磁性又は鋼粉末である。
Other iron-based powders useful in the practice of the present invention are ferromagnetic or steel powders that contain an effective amount of an alloying element that is prealloyed with iron.

良好な強磁性材料の例は、少量のリンと共に予備合金
化される鉄の粒子である。他の良好な強磁性材料は、実
質的に純粋な鉄の粒子と混合される。フェロホスホル粉
末、例えば鉄−リン合金又は粉末形の鉄燐化物化合物の
ブレンドである。そのような粉末混合物はテングゼニウ
ス等に対し1974年9月に発行された米国特許4,093,449
およびスベンソン等に対し1978年6月に発行された米国
特許4,093,449に開示されている。鋼粉末の例は1種又
はそれ以上の遷移元素又は他の強化用元素例えばモリブ
デン、ニッケル、マンガン、銅およびクロムで予備合金
化される鉄の粒子である。本発明の実施で使用できる種
々の予備合金鋼粉末は、鋼粉末のそのANCORSTEELライン
の一部としてヘガネス社から入手できる。
An example of a good ferromagnetic material is iron particles that are pre-alloyed with small amounts of phosphorus. Other good ferromagnetic materials are mixed with substantially pure iron particles. Ferrophosphor powder, for example an iron-phosphorus alloy or a blend of iron phosphide compounds in powder form. Such a powder mixture is disclosed in U.S. Pat. No. 4,093,449 issued Sep. 1974 to Tengsenius et al.
And U.S. Pat. No. 4,093,449 issued to Svenson et al. In June 1978. Examples of steel powders are iron particles that are pre-alloyed with one or more transition elements or other strengthening elements such as molybdenum, nickel, manganese, copper and chromium. Various prealloyed steel powders that can be used in the practice of the present invention are available from Höganäs as part of their ANCORSTEEL line of steel powders.

鉄−基材粒子は先ず絶縁無機材料でコートでき結合高
分子材料の下にある内側コーチングを与える。この内側
コーチングは、被覆粒子の約0.2重量%以下であること
が好ましい。そのような内側コーチングにはルッツ等に
対し1991年11月に発行された米国特許5,063,011に開示
された如き鉄ホスフェートおよびソイレー等に対し1986
年7月に発行されるた米国特許4,601,765に開示された
如きアルカリ金属シリケートが含まれる。これらの特許
の開示は引用してその内容が本明細書に加入される。
The iron-based particles can be first coated with an insulating inorganic material to provide an inner coating underlying the binding polymeric material. Preferably, the inner coating is no more than about 0.2% by weight of the coated particles. Such inner coatings include iron phosphate and soyray, etc. as disclosed in U.S. Patent 5,063,011 issued to Lutz et al.
And alkali metal silicates as disclosed in U.S. Pat. No. 4,601,765 issued July. The disclosures of these patents are incorporated herein by reference.

鉄−基材粒子の表面に接着又は結合し得るように溶剤
により十分に軟化および/又は溶解できる如何なる高分
子材料も本発明で使用できる。好ましい高分子材料は熱
可塑性材料、特に約10,000〜50,000の重量平均分子量を
有する材料である。より好ましくは、約175〜450°F
(約80〜230℃)の範囲内にガラス転移温度を有するよ
うな分子量範囲を有する熱可塑性ポリマーである。熱可
塑性材料の例は、ポリエーテルイミド、ポリエチレンエ
ーテル、ポリエーテルスルホン、ポリカーボネート、ポ
リエチレングリコール、ポリビニルアセテートおよびポ
リビニルアルコールである。
Any polymeric material that can be sufficiently softened and / or dissolved by a solvent so that it can adhere or bond to the surface of the iron-substrate particles can be used in the present invention. Preferred polymeric materials are thermoplastic materials, especially those having a weight average molecular weight of about 10,000 to 50,000. More preferably, about 175-450 ° F.
It is a thermoplastic polymer having a molecular weight range such that it has a glass transition temperature in the range (about 80-230 ° C.). Examples of thermoplastic materials are polyetherimide, polyethylene ether, polyether sulfone, polycarbonate, polyethylene glycol, polyvinyl acetate and polyvinyl alcohol.

本発明で熱可塑樹脂として使用できる適当なポリカー
ボネートは、ポリ(ビスフェノール−A−カーボネー
ト)としても知られているビスフェノール−A−ポリカ
ーボネートである。これらのポリカーボネートは約1.2
〜1.6の比重範囲を有する。特定の例は、実験式(C16H14
O3)n(式中、nは約30〜60の整数である)を有するポリ
(オキシカルボニルオキシ−1,4−フェニレン−(1−
メチルエチリデン)−1,4−フェニレン)である。商業
的に入手可能なポリカーボネートはゼネラルエレクトリ
ック社からのLEXAN樹脂である。最も好ましいLEXAN樹脂
はLEXAN 121および141グレードである。
A suitable polycarbonate that can be used as a thermoplastic in the present invention is bisphenol-A-polycarbonate, also known as poly (bisphenol-A-carbonate). These polycarbonates are about 1.2
It has a specific gravity range of ~ 1.6. A specific example is the empirical formula (C 16 H 14
O 3 ) n , wherein n is an integer of about 30 to 60, and a poly (oxycarbonyloxy-1,4-phenylene- (1-
Methylethylidene) -1,4-phenylene). Commercially available polycarbonate is LEXAN resin from General Electric. The most preferred LEXAN resins are LEXAN 121 and 141 grades.

適当なポリフェニレンエーテル熱可塑性樹脂は、実験
式(C8H8O)n(式中、nは約30〜100の整数である)を有
するポリ(2,6−ジメチル、1,4−フェニレンオキシド)
である。ポリフェニレンエーテルホモポリマーは合金用
/ブレンド用樹脂、例えば耐衝撃性ホリスチレン、例え
ばポリ(ブタジエン−スチレン);およびポリイミド、
例えばポリカプロラクタム又はポリ(ヘキサメチレンジ
アミン−アジペート)としてナイロン66と混合できる。
これらの熱可塑性材料は約1.0〜1.4の範囲内の比重を有
する。商業的に入手可能なポリエチレンは、ゼネラルエ
レクトリック社からNORYL樹脂として市販されている。
最も好ましいNORYL樹脂は、NORYL 844,888および1222グ
レードである。
Suitable polyphenylene ether thermoplastic resin, (wherein, n about 30 to 100 of an integer) empirical formula (C 8 H 8 O) n a poly (2,6-dimethyl, 1,4-phenylene oxide )
It is. Polyphenylene ether homopolymers are alloying / blending resins such as high impact polystyrenes such as poly (butadiene-styrene); and polyimides.
For example, it can be mixed with nylon 66 as polycaprolactam or poly (hexamethylenediamine-adipate).
These thermoplastic materials have a specific gravity in the range of about 1.0 to 1.4. Commercially available polyethylene is commercially available from General Electric Company as NORYL resin.
The most preferred NORYL resins are NORYL 844,888 and 1222 grades.

適当なポリエーテルイミド熱可塑性樹脂はポリ〔2,
2′−ビス(3,4−ジカルボキシフェノキシ)フェニルプ
ロパン)−2−フェニレンビスイミド〕であり、これは
実験式(C37H24O6N2)n(式中、nは約15〜27の整数であ
る)を有する。ポリエチレンイミド熱可塑性樹脂は約1.
2〜1.6の範囲内の比重を有する。商業的に入手可能なポ
リエーテルイミドは、ゼネラルエレクトリック社からUL
TEM樹脂として市販されている。最も好ましいULTEM樹脂
はULTEM 1000グレードである。
A suitable polyetherimide thermoplastic is poly [2,
A 2'-bis (3,4-dicarboxyphenoxy) phenylpropane) -2-phenylene-bis-imide], which is in the empirical formula (C 37 H 24 O 6 N 2) n ( wherein, n is from about 15 to Which is an integer of 27). Polyethylene imide thermoplastic resin is about 1.
It has a specific gravity in the range of 2 to 1.6. Commercially available polyetherimides are available from General Electric under UL
It is commercially available as TEM resin. The most preferred ULTEM resin is ULTEM 1000 grade.

適当なポリエーテルスルホン熱可塑性樹脂は実験式(C
12H16SO3)n(式中、nは約50〜200の整数である)を有
する。商業的に入手可能な適当なポリエーテルスルホン
の例は、ICI社よりVICTREX PESとして市販されている。
これらの樹脂の内最も好ましいものは、VICTREX PES 52
00グレードである。
Suitable polyethersulfone thermoplastics have the empirical formula (C
12 H 16 SO 3) n (wherein, n has about 50 to 200 of an integer). An example of a suitable commercially available polyethersulfone is commercially available from ICI as VICTREX PES.
The most preferred of these resins is VICTREX PES 52
It is 00 grade.

本発明で使用するための高分子材料は一般に粒子の形
で与えられ、これは好ましくは球体であるが、しかし例
えばレンズ形又はフレーク形状であってもよい。粒子
は、好ましくはNo.60篩、米国シリーズ(約250ミクロン
又はそれ以下)を通過するのに十分に細かいものであ
り、より好ましくはNo.100篩(約150ミクロン又はそれ
以下)を通過するか、そして最も好ましくはNo.140篩
(約105ミクロン又はそれ以下)を通過するのに十分細
かいものである。ポリマー粒子の絶対径は、しかし鉄−
基材粒子のサイズに関しそれらのサイズよりも重要性は
少ない;ポリマー粒子は一般に鉄−基材粒子よりもより
微細であることが好ましい。ポリマーの量は、一般に鉄
−基材粒子と高分子粒子の合計重量の約0.001〜15重量
%である。好ましくは、ポリマーはこの組合せの少なく
とも0.2重量%であり、約5重量%までである。より好
ましくは、ポリマーは鉄−基材粒子と高分子材料の合計
重量の約0.4〜2重量%であり、そして最も好ましくは
約0.6〜1.0重量%である。
The polymeric material for use in the present invention is generally provided in the form of particles, which are preferably spherical, but may be, for example, lens-shaped or flake-shaped. The particles are preferably fine enough to pass a No. 60 sieve, US series (about 250 microns or less), and more preferably a No. 100 sieve (about 150 microns or less) And most preferably fine enough to pass through a No. 140 sieve (about 105 microns or less). The absolute diameter of the polymer particles, however,
It is less important than the size of the base particles relative to their size; it is generally preferred that the polymer particles are finer than the iron-base particles. The amount of polymer is generally from about 0.001 to 15% by weight of the combined weight of iron-based particles and polymer particles. Preferably, the polymer is at least 0.2% by weight of the combination and up to about 5% by weight. More preferably, the polymer is about 0.4-2% by weight of the total weight of iron-based particles and polymeric material, and most preferably about 0.6-1.0% by weight.

鉄−基材粒子および高分子粒子は、通常の混合技術よ
り好ましくは乾燥形で共に混合され実質的に均質な粒子
ブレンドを形成する。次いで、乾燥混合物を十分な溶剤
と接触させ粒子を湿潤させ、更に特にポリマー粒子の表
面を軟化させおよび/又は部分的に溶解させ、これら粒
子を粘着性にしそして鉄−基材粒子の表面に接着させ又
は結合させる。好ましくは、乾燥ブレンドの混合中溶剤
の微細小滴を散布することにより溶剤を乾燥混合物に適
用する。最も好ましくは混合を溶解適用中継続し高分子
材料の湿潤性および最終混合物の均質性を確保する。し
かる後、溶剤を所望により加熱、強制通風又は真空によ
り除去する。混合は溶剤除去工程中継続でき、この工程
はそれ自信溶剤の蒸発を助けるであろう。粒子の初期乾
燥配合並びに溶剤の適用および除去は、適当な溶剤適用
および回収手段を用意した通常の混合装置で行うことが
できる。ナウタ社から入手できる円錐スクリューミキサ
ーはこの目的に対し使用できる。
The iron-based particles and the polymeric particles are mixed together in a dry form, preferably by conventional mixing techniques, to form a substantially homogeneous particle blend. The dry mixture is then contacted with a sufficient solvent to wet the particles and more particularly to soften and / or partially dissolve the surface of the polymer particles, to make them sticky and adhere to the surface of the iron-based particles Or combined. Preferably, the solvent is applied to the dry mixture by sprinkling fine droplets of the solvent during mixing of the dry blend. Most preferably, mixing is continued during the dissolution application to ensure wettability of the polymeric material and homogeneity of the final mixture. Thereafter, the solvent is optionally removed by heating, forced ventilation or vacuum. Mixing can be continued during the solvent removal step, which will help the solvent evaporate. Initial dry blending of the particles and application and removal of the solvent can be carried out in a conventional mixing apparatus provided with appropriate solvent application and recovery means. A conical screw mixer available from Nauta can be used for this purpose.

高分子材料に対する有機溶剤は、使用できる。好まし
くは、塩化メチレン、1,1,2−トリクロロエタンおよび
アセトンである。これらの溶剤のブレンドも使用でき
る。本発明において使用するための好ましい組合せは、
高分子材料としてポリエーテルイミド熱可塑性樹脂並び
に溶剤として塩化メチレンを用いる。乾燥混合物に適用
される溶剤の量は、鉄−基材粉末100重量部当たり約1
〜25重量部の溶剤であろう。しかし、一般に、存在する
高分子物質の量を基準にして溶剤の量を計算するのが好
都合であろう。これらの点から、ポリマーの重量単位当
たり、約1.5〜50重量部、好ましくは約3〜20重量部、
より好ましくは約5〜10重量部の溶剤が混合物を十分に
湿潤させるであろう。
Organic solvents for the polymeric material can be used. Preferred are methylene chloride, 1,1,2-trichloroethane and acetone. Blends of these solvents can also be used. Preferred combinations for use in the present invention are
Polyetherimide thermoplastic resin is used as the polymer material, and methylene chloride is used as the solvent. The amount of solvent applied to the dry mixture is about 1/100 parts by weight of iron-base powder.
~ 25 parts by weight of solvent. However, it will generally be convenient to calculate the amount of solvent based on the amount of polymeric material present. From these points, about 1.5 to 50 parts by weight, preferably about 3 to 20 parts by weight, per weight unit of the polymer,
More preferably, about 5 to 10 parts by weight of the solvent will wet the mixture well.

本発明方法によって製造される鉄/ポリマー粉末組成
物は、適当な成型技術により磁気コアに形成できる。好
ましい態様において、圧縮成型技術(ここにおいて粉末
組成物がダイに装入されそして熱可塑性物質のガラス転
移温度以上の温度に加熱される)が磁気成分を形成する
ため用いられる。好ましくは、ダイおよび組成物は、ガ
ラス転移温度よりも約25〜85℃高い温度に加熱される。
通常の粉末冶金学圧力が所望成分を加圧するため示され
た温度で適用される。典型的圧縮成型技術は、平方イン
チ当たり約5〜100トン(69〜1379MPa)、好ましくは約
30〜60tsi(414〜828MPa)の範囲の圧縮圧を用いる。通
常約1重量%までの量の潤滑剤が鉄/ポリマー粉末組成
物に混合できるが、しかし潤滑材はダイ壁に直接適用で
きる。潤滑材を用いるとストリッピング圧および滑り圧
を減少する。適当な潤滑材の例は、ステアリン酸鉛又は
ACRAWAX合成ワックスとしてグリコールケミカル社から
入手可能な合成ワックスの1つである。鉄/ポリマー粉
末組成物と直接混合できる他の潤滑材は粒状窒化ホウ素
である。
The iron / polymer powder composition produced by the method of the present invention can be formed into a magnetic core by a suitable molding technique. In a preferred embodiment, compression molding techniques, wherein the powder composition is charged to a die and heated to a temperature above the glass transition temperature of the thermoplastic, are used to form the magnetic component. Preferably, the die and the composition are heated to a temperature about 25-85 ° C. above the glass transition temperature.
Normal powder metallurgy pressures are applied at the indicated temperatures to pressurize the desired ingredients. A typical compression molding technique is about 5 to 100 tons per square inch (69 to 1379 MPa), preferably about 5 to 100 tons.
A compression pressure in the range of 30-60 tsi (414-828 MPa) is used. Usually up to about 1% by weight of a lubricant can be incorporated into the iron / polymer powder composition, but the lubricant can be applied directly to the die wall. The use of a lubricant reduces the stripping pressure and the sliding pressure. Examples of suitable lubricants are lead stearate or
ACRAWAX is one of the synthetic waxes available from Glycol Chemical Company as a synthetic wax. Another lubricant that can be mixed directly with the iron / polymer powder composition is particulate boron nitride.

圧縮工程に続き成型成分は所望により熱処理される。
この手順により、圧縮成分は、好ましくはダイから除去
後そして高分子材料のガラス転移に少なくとも等しい低
い温度に冷却せしめた後、ガラス転移温度よりも高い
「プロセス」温度に、好ましくは成分が圧縮される温度
よりも高い約140℃までの温度に別個に加熱される。圧
縮成分を、成分が完全に加熱されるために十分なプロセ
ス時間で維持しそしてその内部温度をプロセス温度に実
質的にもたらす。一般に、加圧部のサイズおよび初期温
度に応じて、加熱は約0.5〜3時間必要である。熱処理
は空気中又は不活性雰囲気例えば窒素中で行うことがで
きる。
Following the compression step, the molding components are optionally heat treated.
By this procedure, the compressed component is preferably removed from the die and allowed to cool to a temperature at least equal to the glass transition of the polymeric material, and then the component is compressed to a `` process '' temperature above the glass transition temperature, preferably. Separately heated to a temperature of up to about 140 ° C. The compressed component is maintained for a process time sufficient for the component to be fully heated and substantially brings its internal temperature to the process temperature. Generally, heating requires about 0.5 to 3 hours, depending on the size of the pressing section and the initial temperature. The heat treatment can be performed in air or in an inert atmosphere such as nitrogen.

例1 鉄/熱可塑性粉末組成物を、粒状ULTEM 1000ポリエー
テルイミド(150ミクロンよりも大きい粒子を除くため
篩別された)および解離したアンモニア中ですでにアニ
ールされそして150ミクロンよりも小さくそして約375ミ
クロンよりも大きい粒子を除くため篩別された実質的に
純粋な鉄の粒子を用いて調製した。鉄粒子および熱可塑
性粒子を乾燥状態で手で混合し、熱可塑性材料の0.6総
重量%である鉄/熱可塑性樹脂組成物を得た。試験組成
物は以下に延べる量の乾燥混合物上に塩化メチレンを散
布して調製し、この間混合を継続した。湿潤された混合
物の場合は、溶剤の添加が均質混合物を達成しそして蒸
発による溶剤の除去において助成するため完結された後
更に2〜3分間継続した。この期間の後、混合物をトレ
ー上に散布しそして空気中で乾燥せしめた。
Example 1 An iron / thermoplastic powder composition was previously annealed in granular ULTEM 1000 polyetherimide (sieved to remove particles larger than 150 microns) and dissociated ammonia and smaller than about 150 microns and Prepared using substantially pure iron particles sieved to remove particles larger than 375 microns. The iron particles and the thermoplastic particles were mixed by hand in the dry state to obtain an iron / thermoplastic resin composition that was 0.6% by weight of the thermoplastic material. The test composition was prepared by sprinkling methylene chloride over the following amount of the dry mixture while mixing was continued. In the case of a wet mixture, it continued for a further 2-3 minutes after the addition of the solvent was completed to achieve a homogeneous mixture and to assist in removing the solvent by evaporation. After this period, the mixture was sprinkled on trays and dried in air.

3種の異なる試験組成物を次の如き種々の量の塩化メ
チレンを用い上記方法により調製した:組成物Aは100
重量部の鉄粉末当たり1.7重量部の溶剤を用いて作成し
た;組成物Bは100重量部の鉄粉末当たり3.3重量部の溶
剤を用いて作成した;そして組成物Cは100重量部の鉄
粉末当たり8.3重量部の溶剤を用いた。乾燥混合物(こ
れは、本発明方法によって溶剤結合技術で処理されてい
なかった)を対照組成物として保った。
Three different test compositions were prepared by the above method using various amounts of methylene chloride as follows: Composition A was 100
Composition B was made with 1.7 parts by weight of solvent per part by weight of iron powder; Composition B was made with 3.3 parts by weight of solvent per 100 parts by weight of iron powder; and Composition C was made with 100 parts by weight of iron powder 8.3 parts by weight of solvent were used. The dry mixture, which had not been treated with the solvent binding technique according to the method of the invention, was kept as a control composition.

トロイド(Toroids)および強度試験棒を磁性および
横方向破壊強度を測定するため粉末組成物から製造し
た。材料を40tsi(約552MPa)の圧力下、525°F(約27
4℃)の温度でダイ中で均一に成型した。圧縮後、加圧
された品を空気中600°F(約316℃)の温度で1時間熱
処理した。横方向破壊強度はASTM B528−76に従い、熱
処理された試験棒に対して測定された。結果を表1Aに示
す。明らかなように、パーツの強度はより高い溶剤レベ
ルで増加した。
Toroids and strength test bars were made from the powder composition to measure magnetic and transverse breaking strength. The material is placed at 525 ° F (about 27 MPa) under 40 tsi (about 552 MPa) pressure.
(4 ° C.) in a die. After compression, the pressurized article was heat treated in air at a temperature of 600 ° F (about 316 ° C) for 1 hour. Transverse rupture strength was measured on heat treated test bars according to ASTM B528-76. The results are shown in Table 1A. As can be seen, the part strength increased at higher solvent levels.

交流鉄損(ワット/ポンド;500Hz,1テスラで測定)を
熱処理されたトロイドに対し測定した。結果を表1Bに示
す。対照(溶剤結合なし)組成物から作成したトロイド
は、最高の鉄損を示し、このことは溶剤の使用は簡単な
混合物を超えた改善を証明したことを示す。
AC iron loss (watts / lb; measured at 500 Hz, 1 Tesla) was measured on the heat treated toroid. The results are shown in Table 1B. Toroids made from the control (no solvent binding) composition exhibited the highest core loss, indicating that the use of solvent demonstrated improvement over simple mixtures.

例2 鉄/熱可塑性粉末組成物を、粒状ULTEM 1000ポリエー
テルイミド(104ミクロンより大きい粒子を除くため篩
別された)およびANCORSTEEL 1000C鉄粉末を用いて調製
した。鉄粒子(297.75ポンド)および熱可塑性粒子(2.
25ポンド)をナウタ円錐スクリューミキサー中で15分間
混合した。塩化メチレン(15ポンド)を15分にわたって
混合物に添加し、この間混合を続けた。湿潤化された混
合物の混合を更に10分間継続した。しかる後混合容器を
真空に委ねることにより溶剤を除去し、この間混合を継
続した。得られた乾燥粉末を混合容器から排出せしめ
た。
Example 2 An iron / thermoplastic powder composition was prepared using granular ULTEM 1000 polyetherimide (sieved to remove particles larger than 104 microns) and ANCORSTEEL 1000C iron powder. Iron particles (297.75 pounds) and thermoplastic particles (2.
25 pounds) was mixed in a Nauta conical screw mixer for 15 minutes. Methylene chloride (15 pounds) was added to the mixture over 15 minutes while mixing continued. Mixing of the moistened mixture was continued for another 10 minutes. Thereafter, the solvent was removed by subjecting the mixing vessel to a vacuum, and mixing was continued during this time. The obtained dry powder was discharged from the mixing vessel.

強度試験棒およびトロイドを作成しそして例1の如く
試験した。結果を例1で用いた同じ対照サンプルと比較
した。結果を表2に示す。
Strength test bars and toroids were made and tested as in Example 1. The results were compared to the same control sample used in Example 1. Table 2 shows the results.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−66106(JP,A) 特開 平3−81098(JP,A) 特開 平2−19401(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-66106 (JP, A) JP-A-3-81098 (JP, A) JP-A-2-19401 (JP, A)

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高分子材料に結合する鉄−基材粉末粒子の
鉄/ポリマー粉末組成物の製造方法であって、 (a)鉄−基材粉末粒子および高分子材料の粒子の乾燥
混合物を形成し、 ポリマーは混合物の約0.001〜5.0重量%を構成する; (b)乾燥混合物を高分子材料のための溶剤で湿潤し;
次いで (c)溶剤を除去する、 を含んでなる前記方法。
1. A method for producing an iron / polymer powder composition of iron-base powder particles bonded to a polymer material, comprising: (a) drying a mixture of iron-base powder particles and polymer material particles; Forming, the polymer comprises about 0.001-5.0% by weight of the mixture; (b) wetting the dry mixture with a solvent for the polymeric material;
Then (c) removing the solvent.
【請求項2】高分子材料が、熱可塑性ポリマーでありそ
して鉄−基材粉末粒子が実質的に純粋な鉄である、請求
の範囲第1項記載の方法。
2. The method according to claim 1, wherein the polymeric material is a thermoplastic polymer and the iron-based powder particles are substantially pure iron.
【請求項3】高分子材料が、約10,000〜50,000の重量平
均分子量を有する熱可塑性材料である、請求の範囲第2
項記載の方法。
3. The method of claim 2, wherein the polymeric material is a thermoplastic having a weight average molecular weight of about 10,000 to 50,000.
The method described in the section.
【請求項4】熱可塑性材料が、約80〜230℃の範囲内の
ガラス転移温度を有しそして混合物の約0.2〜5.0重量%
を構成する、請求の範囲第2項記載の方法。
4. The thermoplastic material has a glass transition temperature in the range of about 80-230 ° C. and about 0.2-5.0% by weight of the mixture.
3. The method according to claim 2, comprising:
【請求項5】熱可塑性材料がポリエーテルイミド、ポリ
フェニレンエーテル、ポリエーテルスルホン又はポリカ
ーボネートである、請求の範囲第2項記載の方法。
5. The method according to claim 2, wherein the thermoplastic material is a polyetherimide, polyphenylene ether, polyethersulfone or polycarbonate.
【請求項6】前記湿潤工程が混合物上に溶剤を散布し、
この間更に混合物を混合し、ここにおいて鉄粒子は約50
0ミクロンまでの重量平均粒径を有しそしてここにおい
て高分子材料の粒子は約250ミクロンよりもより細かい
ものである、請求の範囲第1項記載の方法。
6. The method of claim 1, wherein the wetting step includes spraying a solvent over the mixture;
During this time the mixture is further mixed, where the iron particles are about 50
The method of claim 1 having a weight average particle size of up to 0 microns and wherein the particles of polymeric material are finer than about 250 microns.
【請求項7】前記湿潤工程が混合物上に溶剤を散布し、
この間混合物を更に混合し、そしてここにおいて溶剤が
塩化メチレンである、請求の範囲第5項記載の方法。
7. The method of claim 1, wherein the wetting step includes spraying a solvent over the mixture.
6. The method of claim 5, wherein the mixture is further mixed during this time, wherein the solvent is methylene chloride.
【請求項8】鉄粒子が約500ミクロンまでの重量平均粒
径を有しそしてここにおいて高分子材料が約250ミクロ
ンよりもより細かいものである、請求の範囲第5項記載
の方法。
8. The method of claim 5, wherein the iron particles have a weight average particle size of up to about 500 microns and wherein the polymeric material is finer than about 250 microns.
【請求項9】ポリマーが該乾燥混合物の約0.4〜2重量
%を構成する、請求の範囲第5項記載の方法。
9. The method according to claim 5, wherein the polymer comprises about 0.4 to 2% by weight of the dry mixture.
【請求項10】ポリマーが該乾燥混合物の約0.4〜2重
量%を構成する、請求の範囲第8項記載の方法。
10. The method according to claim 8, wherein the polymer comprises about 0.4 to 2% by weight of the dry mixture.
【請求項11】請求の範囲第1項記載の方法によって形
成される鉄/ポリマー粉末組成物。
11. An iron / polymer powder composition formed by the method of claim 1.
【請求項12】請求の範囲第2項記載の方法によって形
成される鉄/ポリマー粉末組成物。
12. An iron / polymer powder composition formed by the method of claim 2.
【請求項13】請求の範囲第5項記載の方法によって形
成される鉄/ポリマー粉末組成物。
13. An iron / polymer powder composition formed by the method of claim 5.
【請求項14】請求の範囲第7項記載の方法によって形
成される鉄/ポリマー粉末組成物。
14. An iron / polymer powder composition formed by the method of claim 7.
【請求項15】請求の範囲第8項記載の方法によって形
成される鉄/ポリマー粉末組成物。
15. An iron / polymer powder composition formed by the method of claim 8.
【請求項16】請求の範囲第9項記載の方法によって形
成される鉄/ポリマー粉末組成物。
16. An iron / polymer powder composition formed by the method of claim 9.
【請求項17】請求の範囲第10項記載の方法によって形
成される鉄/ポリマー粉末組成物。
17. An iron / polymer powder composition formed by the method of claim 10.
JP5513328A 1992-01-31 1993-01-19 Method for producing iron / polymer powder composition Expired - Fee Related JP2634953B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/830,137 US5225459A (en) 1992-01-31 1992-01-31 Method of making an iron/polymer powder composition
US830,137 1992-01-31
PCT/US1993/000559 WO1993015133A1 (en) 1992-01-31 1993-01-19 Method of making an iron/polymer powder composition

Publications (2)

Publication Number Publication Date
JPH07500140A JPH07500140A (en) 1995-01-05
JP2634953B2 true JP2634953B2 (en) 1997-07-30

Family

ID=25256390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5513328A Expired - Fee Related JP2634953B2 (en) 1992-01-31 1993-01-19 Method for producing iron / polymer powder composition

Country Status (8)

Country Link
US (2) US5225459A (en)
EP (1) EP0554009B1 (en)
JP (1) JP2634953B2 (en)
KR (2) KR950700351A (en)
AT (1) ATE157034T1 (en)
DE (1) DE69313153T2 (en)
ES (1) ES2105095T3 (en)
WO (1) WO1993015133A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185998B2 (en) * 1993-01-29 2001-07-11 戸田工業株式会社 Spherical conductive magnetic particles and method for producing the same
US5418069A (en) * 1993-11-10 1995-05-23 Learman; Thomas J. Formable composite magnetic flux concentrator and method of making the concentrator
US5529747A (en) * 1993-11-10 1996-06-25 Learflux, Inc. Formable composite magnetic flux concentrator and method of making the concentrator
US5538158A (en) * 1994-05-05 1996-07-23 Toter, Inc. Rotationally-molded refuse container with integrally-molded handle sealed from communication with refuse-carrying compartment
US5629092A (en) * 1994-12-16 1997-05-13 General Motors Corporation Lubricous encapsulated ferromagnetic particles
US5567746A (en) * 1994-12-16 1996-10-22 General Motors Corporation Moldable ferromagnetic particles and method
US5782954A (en) * 1995-06-07 1998-07-21 Hoeganaes Corporation Iron-based metallurgical compositions containing flow agents and methods for using same
US5824728A (en) 1995-06-09 1998-10-20 Scot H. Laney Iron-ferrite-filled polymer-based composite material and method of making the same
US5796018A (en) * 1997-01-29 1998-08-18 Procedyne Corp. Process for coating iron particles with phosphorus and forming compacted articles
US6039784A (en) * 1997-03-12 2000-03-21 Hoeganaes Corporation Iron-based powder compositions containing green strength enhancing lubricants
US5767426A (en) * 1997-03-14 1998-06-16 Hoeganaes Corp. Ferromagnetic powder compositions formulated with thermoplastic materials and fluoric resins and compacted articles made from the same
US5919848A (en) * 1997-10-03 1999-07-06 Eastman Chemical Company Magnetic polyester compositions
US5988689A (en) * 1997-12-26 1999-11-23 Central Plastics Company Heat-shrinkable electrofusion fittings and methods
US6372348B1 (en) 1998-11-23 2002-04-16 Hoeganaes Corporation Annealable insulated metal-based powder particles
US6068813A (en) * 1999-05-26 2000-05-30 Hoeganaes Corporation Method of making powder metallurgical compositions
US6224990B1 (en) * 1999-09-23 2001-05-01 Kemet Electronics Corporation Binder systems for powder metallurgy compacts
DE60025931T2 (en) * 1999-11-04 2006-08-31 Hoeganaes Corp. PREPARATION METHOD FOR IMPROVED METALLURGICAL POWDER COMPOSITION AND USE OF THE SAME
US6365094B1 (en) * 2000-01-31 2002-04-02 Stackpole Limited Lubricated die
US6534564B2 (en) 2000-05-31 2003-03-18 Hoeganaes Corporation Method of making metal-based compacted components and metal-based powder compositions suitable for cold compaction
US6689183B2 (en) 2001-01-09 2004-02-10 Delphi Technologies, Inc. Ferrite powder coating insulating layer for molding a powder metal core
US7504920B2 (en) 2001-09-26 2009-03-17 Tekonsha Engineering Company Magnetic brake assembly
US7238220B2 (en) 2002-10-22 2007-07-03 Höganäs Ab Iron-based powder
SE0203134D0 (en) * 2002-10-22 2002-10-22 Hoeganaes Ab Method of preparing iron-based components
SE0203133D0 (en) * 2002-10-22 2002-10-22 Hoeganaes Ab Iron-based powder
US7585459B2 (en) 2002-10-22 2009-09-08 Höganäs Ab Method of preparing iron-based components
EP1498445A1 (en) * 2003-07-18 2005-01-19 DSM IP Assets B.V. Heat stabilized moulding composition
CA2534472A1 (en) 2003-09-03 2005-03-17 Apex Advanced Technologies, Llc Composition for powder metallurgy
US20080096009A1 (en) * 2004-06-24 2008-04-24 University Of Delaware High Frequency Soft Magnetic Materials With Laminated Submicron Magnetic Layers And The Methods To Make Them
US7604678B2 (en) 2004-08-12 2009-10-20 Hoeganaes Corporation Powder metallurgical compositions containing organometallic lubricants
CN107667136B (en) 2015-05-27 2020-11-17 巴斯夫欧洲公司 Composition for producing magnetic core and method for producing the same
US10304604B2 (en) 2016-05-03 2019-05-28 The United States Of America As Represented By The Secretary Of The Army Deformable inductive devices having a magnetic core formed of an elastomer with magnetic particles therein along with a deformable electrode
FR3058918B1 (en) * 2016-11-18 2021-01-01 Arkema France COMPOSITION OF MAGNETIC SINTERABLE POWDER AND THREE-DIMENSIONAL OBJECTS MANUFACTURED BY SINTERING SUCH COMPOSITION
GB2585648B (en) * 2019-07-09 2021-12-01 Applied Graphene Mat Uk Ltd Waterborne coatings

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766096A (en) * 1971-11-02 1973-10-16 Du Pont Compositions of matter containing ferromagnetic particles with electrically insulative coatings and nonmagnetic aluminum particles in an elastic material
US3766095A (en) * 1971-11-02 1973-10-16 Du Pont Compositions of matter containing ferromagnetic particles and nonferromagnetic aluminum particles in an elastic material
JPS5146552B2 (en) * 1972-12-04 1976-12-09
US4106932A (en) * 1974-07-31 1978-08-15 H. L. Blachford Limited Lubricants for powdered metals, and powdered metal compositions containing said lubricants
US4065519A (en) * 1975-07-03 1977-12-27 Rilsan Corporation Process for coating fine powders with a nylon and products made therewith
SE427434B (en) * 1980-03-06 1983-04-11 Hoeganaes Ab IRON-BASED POWDER MIXED WITH ADDITION TO MIXTURE AND / OR DAMAGE
DE3376911D1 (en) * 1982-12-14 1988-07-07 Shinetsu Chemical Co Plastic magnets impregnated with a dye-coated metallic magnet powder
US4601765A (en) * 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
JPH0611008B2 (en) * 1983-11-16 1994-02-09 株式会社東芝 Dust core
DE3587010T3 (en) * 1984-09-29 1999-06-10 Toshiba Kawasaki Kk Pressed magnetic powder core.
US4834800A (en) * 1986-10-15 1989-05-30 Hoeganaes Corporation Iron-based powder mixtures
US5063011A (en) * 1989-06-12 1991-11-05 Hoeganaes Corporation Doubly-coated iron particles
US5198137A (en) * 1989-06-12 1993-03-30 Hoeganaes Corporation Thermoplastic coated magnetic powder compositions and methods of making same
US4947065A (en) * 1989-09-22 1990-08-07 General Motors Corporation Stator assembly for an alternating current generator
US5187220A (en) * 1990-12-21 1993-02-16 Morton International, Inc. Thermosetting resin-based coating powders containing metal flakes
US5211896A (en) * 1991-06-07 1993-05-18 General Motors Corporation Composite iron material

Also Published As

Publication number Publication date
JPH07500140A (en) 1995-01-05
KR950700351A (en) 1995-01-16
DE69313153D1 (en) 1997-09-25
US5321060A (en) 1994-06-14
DE69313153T2 (en) 1998-02-19
EP0554009A1 (en) 1993-08-04
ES2105095T3 (en) 1997-10-16
ATE157034T1 (en) 1997-09-15
WO1993015133A1 (en) 1993-08-05
EP0554009B1 (en) 1997-08-20
KR0140748B1 (en) 1998-07-01
US5225459A (en) 1993-07-06

Similar Documents

Publication Publication Date Title
JP2634953B2 (en) Method for producing iron / polymer powder composition
US5268140A (en) Thermoplastic coated iron powder components and methods of making same
US6126715A (en) Iron-based powder compositions containing green strength enhancing lubricant
EP0647180B1 (en) Thermoplastic coated magnetic powder compositions and methods of making same
EP1773526B1 (en) Powder metallurgical composition comprising carbon black as flow enhancing agent
CA2195423C (en) Iron powder components containing thermoplastic resin and method of making same
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
WO1997030810A1 (en) Phosphate coated iron powder and method for the manufacturing thereof
US5306524A (en) Thermoplastic coated magnetic powder compositions and methods of making same
MXPA01005153A (en) Annealable insulated metal-based powder particles and methods of making and using the same
CN102543350A (en) Production process of dust core and dust core obtained thereby
US6136265A (en) Powder metallurgy method and articles formed thereby
US5767426A (en) Ferromagnetic powder compositions formulated with thermoplastic materials and fluoric resins and compacted articles made from the same
RU2326461C2 (en) Composition of powder, method for manufacture of soft magnetic components and soft magnetic constituent
US6534564B2 (en) Method of making metal-based compacted components and metal-based powder compositions suitable for cold compaction
JPH076911A (en) Magnetic core consisting of agglomerate
CN112166479A (en) Ferromagnetic powder composition
JP2002217015A (en) Dust core, iron-based powder therefor iron-based mixed powder therefor, and method of manufacturing iron- based powder therefor
CN114664509A (en) Iron-based magnetic powder with double coating layers and preparation method and application thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees