JP2634085B2 - Satellite - Google Patents

Satellite

Info

Publication number
JP2634085B2
JP2634085B2 JP1294269A JP29426989A JP2634085B2 JP 2634085 B2 JP2634085 B2 JP 2634085B2 JP 1294269 A JP1294269 A JP 1294269A JP 29426989 A JP29426989 A JP 29426989A JP 2634085 B2 JP2634085 B2 JP 2634085B2
Authority
JP
Japan
Prior art keywords
heater
satellite
heat sink
artificial satellite
structural panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1294269A
Other languages
Japanese (ja)
Other versions
JPH03157300A (en
Inventor
芳夫 増田
誠 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU KAIHATSU JIGYODAN
Mitsubishi Electric Corp
Original Assignee
UCHU KAIHATSU JIGYODAN
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU KAIHATSU JIGYODAN, Mitsubishi Electric Corp filed Critical UCHU KAIHATSU JIGYODAN
Priority to JP1294269A priority Critical patent/JP2634085B2/en
Publication of JPH03157300A publication Critical patent/JPH03157300A/en
Application granted granted Critical
Publication of JP2634085B2 publication Critical patent/JP2634085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews
    • B64G2007/005Space simulation vacuum chambers

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,熱設計の評価を行うためのヒータを付け
た人工衛星に関するものである。
Description: TECHNICAL FIELD The present invention relates to an artificial satellite equipped with a heater for evaluating thermal design.

〔従来の技術〕[Conventional technology]

まず従来の熱設計の評価を行うためのヒータを付けた
人工衛星について説明する。第2図および第3図は,従
来の熱設計の評価を行うためのヒータを付けた人工衛星
を示す断面図である。図において,(1)は真空チヤン
バ,(2)は真空チヤンバ内に設置された人工衛星,
(3)は衛星の構体パネル,(4)は構体パネル上に取
付けられた電子機器,(5)は放熱板,(6)は断熱
材,(7)はヒータである。ヒータ(7)の取付位置
は,第2図の場合は電子機器(4)周囲の構体パネル
(3)上,第3図の場合は放熱板(5)上である。
First, an artificial satellite equipped with a heater for evaluating a conventional thermal design will be described. 2 and 3 are cross-sectional views showing a conventional artificial satellite equipped with a heater for evaluating a thermal design. In the figure, (1) is a vacuum chamber, (2) is an artificial satellite installed in the vacuum chamber,
(3) is a structure panel of the satellite, (4) is an electronic device mounted on the structure panel, (5) is a heat sink, (6) is a heat insulating material, and (7) is a heater. The mounting position of the heater (7) is on the structural panel (3) around the electronic device (4) in the case of FIG. 2, and on the heat sink (5) in the case of FIG.

従来の熱設計の評価を行うためのヒータを付けた人工
衛星は上記の様に構成されているので,衛星(2)を高
真空,極低温の宇宙環境を模擬した真空チヤンバ(1)
内に設置し,衛星内の電子機器(4)をONまたはOFF
し,さらに衛星の放熱板(5)が宇宙環境で受ける太陽
光等の軌道熱入力を衛星に取付けたヒータ(7)で模擬
すれば,人工衛星が実際の宇宙環境においてさらされる
熱環境を模擬することができ,宇宙環境における人工衛
星の温度を地上において試験により模擬,評価すること
ができる。
Since the artificial satellite equipped with a heater for evaluating the conventional thermal design is configured as described above, the satellite (2) is a vacuum chamber (1) that simulates a space environment of high vacuum and cryogenic temperature.
And turn on or off the electronic device (4) in the satellite
Further, if the orbital heat input such as sunlight received by the radiator plate (5) of the satellite in the space environment is simulated by the heater (7) attached to the satellite, the heat environment to which the satellite is exposed in the actual space environment is simulated. It is possible to simulate and evaluate the temperature of the satellite in the space environment by tests on the ground.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の様な従来の熱設計の評価を行うためのヒータを
付けた人工衛星では,第2図の場合では通常放熱板
(5)の裏側の構体パネル(3)上には電子機器(4)
が付いているので,放熱板の裏面の構体パネルの衛星内
側全面にヒータ(7)を付けることは難しく,太陽光熱
入力等の外部熱入力の模擬において放熱板に均一に模擬
することができずムラを持つことになるという問題があ
つた。また第3図の場合では,ヒータ(7)は放熱板
(5)の表面(衛星外側)に付けるので,放熱板全面に
ヒータを均一に付けることは可能で,太陽光熱入力等の
外部熱入力の模擬においては放熱板に均一に模擬するこ
とができるが,ヒータで放熱板の表面をおおうので放熱
板の表面の赤外放射率に影響を与えるため,このままで
は放熱板からの熱放射が模擬できないという問題があつ
た。そして実際に衛星を打上げるときはこのヒータを放
熱板から外す必要があるが,放熱板をヒータの接着剤等
で汚染させてしまい,放熱板の熱光学特性(太陽光吸収
率,赤外放射率)に影響を与えるという問題があつた。
In the artificial satellite equipped with a heater for evaluating the conventional thermal design as described above, in the case of FIG. 2, the electronic equipment (4) is usually provided on the structural panel (3) behind the heat sink (5).
It is difficult to attach a heater (7) to the entire inner surface of the structure panel on the back side of the heat sink because of the heat sink, and the heat sink cannot be simulated uniformly when simulating external heat input such as solar heat input. There was a problem of having unevenness. In the case of FIG. 3, since the heater (7) is attached to the surface of the radiator plate (5) (outside the satellite), it is possible to uniformly apply the heater to the entire radiator plate. Can be simulated uniformly on the radiator plate, but since the heater covers the surface of the radiator plate, which affects the infrared emissivity of the surface of the radiator plate, the heat radiation from the radiator plate is simulated as it is. There was a problem that I could not do it. When actually launching the satellite, it is necessary to remove this heater from the radiator plate. However, the radiator plate is contaminated with the adhesive of the heater, and the thermo-optical characteristics of the radiator plate (solar absorption, infrared radiation Rate).

この発明は,かかる問題を解決するためになされたも
ので,放熱板への太陽光熱入力等の外部熱入力の模擬に
おいてムラを持つこともなく,また放熱板の熱光学特性
(太陽光吸収率,赤外放射率)に影響の与えることもな
い熱設計の評価のためのヒータを付けた人工衛星を得る
ことを目的とする。
The present invention has been made to solve such a problem, and has no unevenness in simulating external heat input such as solar heat input to a heat sink, and has a thermo-optical characteristic (solar absorption coefficient) of the heat sink. The objective of the present invention is to obtain an artificial satellite equipped with a heater for evaluating thermal design without affecting the infrared emissivity.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る熱設計の評価のためのヒータを付けた
人工衛星は,放熱板と構体パネルの間にヒータを挿入し
て付けたものである。
The artificial satellite with a heater for evaluation of thermal design according to the present invention has a heater inserted between a heat sink and a structural panel.

〔作用〕[Action]

この発明においては,ヒータは放熱板と構体パネルの
間に挿入して付けるので,ヒータは電子機器の制約を受
けることなく放熱板と構体パネルの間に均一に付けるこ
とができ,放熱板への太陽光熱入力等の外部熱入力の模
擬においてムラなく模擬することができる。またヒータ
は放熱板と構体パネルの間に挿入して付けるので,ヒー
タは放熱板の表面をおおうことなく放熱板の熱光学特性
(太陽光吸収率,赤外放射率)に影響を与えることもな
い。
In the present invention, since the heater is inserted between the heat radiating plate and the structural panel, the heater can be uniformly mounted between the heat radiating plate and the structural panel without being restricted by the electronic equipment. In the simulation of the external heat input such as the solar heat input, the simulation can be performed without unevenness. Also, since the heater is inserted between the radiator plate and the structural panel, the heater can affect the thermo-optical characteristics (sunlight absorption and infrared emissivity) of the radiator without covering the surface of the radiator. Absent.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す断面図である。図
において,(1)は真空チヤンバ,(2)は真空チヤン
バ内に設置された人工衛星,(3)は衛星の構体パネ
ル,(4)は構体パネル上に取付けられた電子機器,
(5)は放熱板,(6)は断熱材,(7)は放熱板と構
体パネルの間に挿入して付けたヒータである。
FIG. 1 is a sectional view showing an embodiment of the present invention. In the figure, (1) is a vacuum chamber, (2) is an artificial satellite installed in the vacuum chamber, (3) is a structural panel of the satellite, (4) is an electronic device mounted on the structural panel,
(5) is a heat sink, (6) is a heat insulator, and (7) is a heater inserted between the heat sink and the structural panel.

上記の様に構成された熱設計の評価のためのヒータを
付けた人工衛星においては,衛星(2)を高真空,極低
温の宇宙環境を模擬した真空チヤンバ(1)内に設置
し,衛星内の電子機器(4)をONまたはOFFし,さらに
衛星の放熱板(5)が宇宙環境で受けた太陽光等の軌道
熱入力を衛星に取付けたヒータ(7)で模擬すれば,人
工衛星が実際の宇宙環境においてさらされる熱環境を模
擬することができ,宇宙環境における人工衛星の温度を
地上において試験により模擬,評価することができる。
In the artificial satellite equipped with a heater for thermal design evaluation configured as described above, the satellite (2) is installed in a vacuum chamber (1) that simulates a space environment of high vacuum and cryogenic temperature. Turn on or off the electronic devices (4) in the satellite, and simulate the orbital heat input such as sunlight received by the radiator plate (5) in the space environment with the heater (7) attached to the satellite. Can simulate the thermal environment exposed in the actual space environment, and can simulate and evaluate the temperature of the satellite in the space environment by tests on the ground.

ここでヒータ(7)は,放熱板(5)と構体パネル
(3)の間に挿入して付けるので,ヒータ(7)は電子
機器(4)の制約を受けることなく放熱板(5)と構体
パネル(3)の間に均一に付けることができ,放熱板
(5)への太陽光熱入力等の外部熱入力の模擬において
ムラなく模擬することができる。またヒータ(7)は,
放熱板(5)と構体パネル(3)の間に挿入して付ける
ので,ヒータ(7)は放熱板(5)の表面をおおうこと
なく放熱板(5)の熱光学特性(太陽光吸収率,赤外放
射率)に影響を与えないで放熱板(5)への太陽光熱入
力等の外部熱入力の模擬ができる。
Here, since the heater (7) is inserted and attached between the heat radiating plate (5) and the structural panel (3), the heater (7) can be connected to the heat radiating plate (5) without being restricted by the electronic device (4). It can be uniformly attached between the structural panels (3), and can simulate evenly in simulating external heat input such as solar heat input to the radiator plate (5). The heater (7)
Since the heater (7) is inserted between the heat sink (5) and the structural panel (3), the heater (7) does not cover the surface of the heat sink (5), and the thermo-optical characteristics of the heat sink (5) (sunlight absorptivity) , Infrared emissivity) can be simulated without external heat input such as solar heat input to the radiator plate (5).

〔発明の効果〕〔The invention's effect〕

この発明は,以上説明した様に,ヒータは放熱板と構
体パネルの間に挿入して付けるため,ヒータを均一に付
けることができ,放熱板への太陽光熱入力等の外部熱入
力をムラなく模擬することができるという効果があり,
また,ヒータは放熱板の表面をおおうこともないので放
熱板の熱光学特性(太陽光吸収率,赤外放射率)に影響
を与えないで放熱板への太陽光熱入力等の外部熱入力を
模擬できるという効果もあり,地上での宇宙環境におけ
る人工衛星の熱環境を模擬した試験の精度を上げること
ができるという効果がある。
According to the present invention, as described above, the heater is inserted between the heat radiating plate and the structural panel, so that the heater can be uniformly attached, and the external heat input such as the solar heat input to the heat radiating plate can be uniformly applied. Has the effect of being able to simulate
Also, since the heater does not cover the surface of the heat sink, external heat input such as solar heat input to the heat sink can be performed without affecting the thermo-optical characteristics (sunlight absorption rate and infrared emissivity) of the heat sink. There is also an effect that the simulation can be performed, and the accuracy of the test that simulates the thermal environment of the artificial satellite in the space environment on the ground can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は,この発明の熱設計の評価を行うためのヒータ
を付けた人工衛星の一実施例を示す断面図,第2図及び
第3図は従来の熱設計の評価を行うためのヒータを付け
た人工衛星の二実施例を示す断面図である。 図において,(2)は人工衛星,(3)は構体パネル,
(4)は電子機器,(5)は放熱板,(7)はヒータで
ある。 なお,図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of an artificial satellite provided with a heater for evaluating a thermal design according to the present invention, and FIGS. 2 and 3 are heaters for evaluating a conventional thermal design. It is sectional drawing which shows 2 examples of the artificial satellite attached with. In the figure, (2) is an artificial satellite, (3) is a structural panel,
(4) is an electronic device, (5) is a heat sink, and (7) is a heater. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】構体パネルの片側に電子機器を、また他の
側に放熱板を取付けた人工衛星で、かつその人工衛星を
真空チャンバ内に設置した人工衛星において、上記放熱
板と上記構体パネルとの間にヒータを取付けたことを特
徴とする人工衛星。
An artificial satellite having an electronic device mounted on one side of a structural panel and a radiator plate on the other side, and the artificial satellite having the artificial satellite installed in a vacuum chamber, wherein the radiator plate and the structural panel are provided. An artificial satellite, comprising a heater mounted between the satellite.
JP1294269A 1989-11-13 1989-11-13 Satellite Expired - Fee Related JP2634085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294269A JP2634085B2 (en) 1989-11-13 1989-11-13 Satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294269A JP2634085B2 (en) 1989-11-13 1989-11-13 Satellite

Publications (2)

Publication Number Publication Date
JPH03157300A JPH03157300A (en) 1991-07-05
JP2634085B2 true JP2634085B2 (en) 1997-07-23

Family

ID=17805530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294269A Expired - Fee Related JP2634085B2 (en) 1989-11-13 1989-11-13 Satellite

Country Status (1)

Country Link
JP (1) JP2634085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085920B (en) * 2009-12-04 2013-06-19 北京卫星环境工程研究所 Atomic oxygen, ultraviolet and electronic integrated environment ground simulation system of low earth orbit space

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004507A3 (en) * 1998-11-25 2000-09-20 Trw Inc. Spacecraft module with embedded heaters and sensors, and related method of manufacture
FR2790731B1 (en) * 1999-03-11 2001-06-08 Cit Alcatel METHOD OF SIMULATING EXTERNAL THERMAL FLOWS ABSORBED IN FLIGHT BY THE EXTERNAL RADIATIVE ELEMENTS OF A SPACE ENGINE AND SPACE ENGINE FOR THE IMPLEMENTATION OF THIS PROCESS
WO2001075841A1 (en) * 2000-03-22 2001-10-11 Chart, Inc. Novel space simulation chamber and method
CN102941930A (en) * 2012-11-25 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 Surface electrification simulation test system and method for satellite tail regions
CN111746828B (en) * 2020-07-22 2022-08-12 上海航天测控通信研究所 Thermal control device for satellite load vacuum thermal balance test
CN112208805A (en) * 2020-09-03 2021-01-12 中国空间技术研究院 External heat flow simulation method and device for space load
CN113148248B (en) * 2021-06-02 2022-10-21 北京理工大学 Space environment simulation platform and method for artificial satellite thermoelectric power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085920B (en) * 2009-12-04 2013-06-19 北京卫星环境工程研究所 Atomic oxygen, ultraviolet and electronic integrated environment ground simulation system of low earth orbit space

Also Published As

Publication number Publication date
JPH03157300A (en) 1991-07-05

Similar Documents

Publication Publication Date Title
US6332591B1 (en) Method of simulating external thermal fluxes absorbed by external radiating components of a spacecraft in flight, and spacecraft for implementing the method
JP2634085B2 (en) Satellite
JPS57113332A (en) Compensating thermopile detector
CN208344553U (en) A kind of earth sensor radiation shield
US3876880A (en) Pyranometer for the measurement of solar radiation
CN204043697U (en) Space optical remote sensor heat test Orbital heat flux simulation system
JP3031281B2 (en) Thermal vacuum test equipment for space specimens
JP2002138904A (en) Aerodynamic heating simulating apparatus
CN114323301B (en) Space-borne monocrystalline silicon type calibration heat source
Gillett The equivalence of outdoor and mixed indoor/outdoor solar collector testing
Biter et al. Electrostatic radiator for spacecraft temperature control
Borsini et al. The AMS-TOF and ECAL thermal tests in vacuum at SERMS
Smale Thermal analysis of a dense dipole array for the ska mid-frequency aperture array
US4634293A (en) Battlefield environment thermal analyzer
JPH07150870A (en) Window structure having heat ray protecting function
Cafferty et al. Radiative cryogenic cooler for Thematic Mapper
JPS5856700U (en) simulated earth source
McEachron SeaWinds scatterometer instrument thermal control system
Kreith et al. Thermal analysis of balloon-borne instrument packages
Ulpiania et al. Coupling a sunspace to a hyper insulated building: Field tests of different configurations to optimize the energy and comfort performance
Kaila et al. Design of thermal control system of INSAT-2 A and its initial in-orbit performance
GB1503800A (en) Solar heat recovery from system
Chehbouni et al. Estimation of sensible heat flux using two and three components model during Monsoon'90 experiment
KAUDER Preliminary results for LDEF/HEPP thermal control samples(Abstract Only)
JPS62261599A (en) Heat-pipe mounted satellite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees