JP2634077B2 - Trace iodide measuring device - Google Patents

Trace iodide measuring device

Info

Publication number
JP2634077B2
JP2634077B2 JP1010135A JP1013589A JP2634077B2 JP 2634077 B2 JP2634077 B2 JP 2634077B2 JP 1010135 A JP1010135 A JP 1010135A JP 1013589 A JP1013589 A JP 1013589A JP 2634077 B2 JP2634077 B2 JP 2634077B2
Authority
JP
Japan
Prior art keywords
reagent
water
iodide
reaction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1010135A
Other languages
Japanese (ja)
Other versions
JPH02189459A (en
Inventor
達也 畝本
敏男 桝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
Original Assignee
DAISERU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP1010135A priority Critical patent/JP2634077B2/en
Publication of JPH02189459A publication Critical patent/JPH02189459A/en
Application granted granted Critical
Publication of JP2634077B2 publication Critical patent/JP2634077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は資料中の微量のヨウ化物を定量する上で有用
な微量ヨウ化物の測定装置に関する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for measuring a small amount of iodide, which is useful for quantifying a small amount of iodide in a material.

[従来の技術と発明が解決しようとする課題] ヨウ素やロウ化物は、ヨードチンキ、ヨードホルム上
の医薬、写真薬品、分析用試薬や、有機化合物の合成用
触媒、例えばメタノールと一酸化炭素とを出発原料とす
る酢酸製造時のロジウム−ヨウ素系触媒や助触媒として
のヨウ化メチル等として広く使用されている。このよう
なヨウ素やヨウ化物を定量することは、排水処理上や反
応の工程管理上有用である。特に合成用触媒は、一般に
使用量が少量であるため製品中に存在する微量のヨウ化
物を定量することは品質管理上も重要である。
[Problems to be Solved by the Prior Art and the Invention] Iodine and waxes start from iodine tincture, pharmaceuticals on iodoform, photographic chemicals, analytical reagents, and catalysts for synthesizing organic compounds, such as methanol and carbon monoxide. It is widely used as a rhodium-iodine catalyst in the production of acetic acid as a raw material, methyl iodide as a cocatalyst, and the like. Quantifying such iodine or iodide is useful in wastewater treatment and in process control of the reaction. In particular, since a synthesis catalyst is generally used in a small amount, it is important for quality control to determine a trace amount of iodide present in a product.

このヨウ化物の定量は、一般にヨウ素イオン(I-)が
四価のセリウムイオン(Ce〔IV〕)と三価のヒ素イオン
(As〔III〕)に対して触媒的に作用し、三価のセリウ
ムイオン(Ce〔III〕)と五価のヒ素イオン(As
〔V〕)とを生成することを利用している。この反応を
利用したヨウ価物の定量方法として比色法が知られてい
る。該比色法では、Ce〔IV〕イオンとAs〔III〕イオン
とが硫酸で安定化された所定量の試薬に、ヨウ化物を含
む試料を所定量添加し、上記酸化還元反応の後、残存す
るCe〔IV〕イオンを二価の鉄〔Fe〔II〕)イオンにより
還元してFe〔III〕イオンを生成させ、チオシアン酸イ
オン(SCN-)を含む試薬を加えると赤色に発色する鉄錯
体[Fe(SCN)3-が生成することを利用している。
より具体的には、この比色法では、例えば、0.02NのCe
〔IV〕試薬0.5ml、0.1NのAs〔III〕試薬5ml及び試料5ml
を25mlのメスフラスコ中で混合した後、温度50℃で10分
間程度加熱し、酸化還元反応を行なう。次いで0.08NのF
e〔II〕試薬1mlを添加し、冷却して室温で約15分間程度
放置し、1.0NのSCN-試薬1mlを添加し、水で所定量にメ
スアップした後、光路長1cmのセルに収容し、波長488nm
の光線で比色することによりヨウ素イオン濃度を定量で
きる。しかしながら、この比色法は、秤量、混合、加熱
等の多数の工程をマニュアル操作で行なう必要がある。
しかも4種類の反応試薬を必要とする。従って、分析操
作が煩雑化すると共にヨウ化物の分析に1時間以上の長
時間を要し、分析精度も必然的に低下する。このように
従来の比色法では微量のヨウ化物を含有する試料を迅速
かつ精度よく測定できず、工程管理及び品質管理上支障
を来す。
The determination of iodide is generally based on the fact that iodide ion (I ) acts catalytically on tetravalent cerium ion (Ce [IV]) and trivalent arsenic ion (As [III]), Cerium ion (Ce [III]) and pentavalent arsenic ion (As
[V]). A colorimetric method is known as a method for quantifying iodide using this reaction. In the colorimetric method, a predetermined amount of a sample containing iodide is added to a predetermined amount of a reagent in which Ce [IV] ion and As [III] ion are stabilized with sulfuric acid, and after the above-described oxidation-reduction reaction, iron complex coloring in red when adding a reagent containing a) - Ce (IV) ion of divalent iron [Fe (II)) to produce a Fe [III] ion was reduced by ion, thiocyanate ion (SCN that [Fe (SCN) 6 ] 3- is used.
More specifically, in this colorimetric method, for example, Ce of 0.02N
(IV) reagent 0.5 ml, 0.1N As (III) reagent 5 ml and sample 5 ml
Is mixed in a 25 ml volumetric flask, and then heated at a temperature of 50 ° C. for about 10 minutes to perform an oxidation-reduction reaction. Then 0.08N F
e [II] Add 1 ml of reagent, cool, leave at room temperature for about 15 minutes, add 1 ml of 1.0N SCN - reagent, make up to a predetermined amount with water, and store in a 1 cm optical path length cell And a wavelength of 488 nm
The iodine ion concentration can be quantified by performing colorimetry with this light beam. However, in this colorimetric method, it is necessary to manually perform many steps such as weighing, mixing, and heating.
Moreover, four types of reaction reagents are required. Accordingly, the analysis operation becomes complicated, and the analysis of iodide requires a long time of one hour or more, and the analysis accuracy is necessarily reduced. As described above, the conventional colorimetric method cannot quickly and accurately measure a sample containing a small amount of iodide, which hinders process control and quality control.

一方、微量のヨウ化物を迅速に定量する方法として、
下記ドレックス反応 により生成したCe〔III〕が蛍光検出可能であることを
利用したフローインジェクション分析法(Flow Injecti
on Analysis、FIA)が提案されている[アナリティカル
・サイエンス(Analytical Sciences),,197−198
(1986)]。
On the other hand, as a method for quickly quantifying a small amount of iodide,
The following Drex reaction Injection analysis (Flow Injecti) utilizing the fact that Ce [III] generated by
on Analysis, FIA) [Analytical Sciences, 2 , 197-198
(1986)].

第3図は従来のFIAを利用した装置を示す概略図であ
る。この装置は、Ce〔IV〕試薬を定常的に送液する第1
の試薬送液ライン(31)と、As〔III〕試薬を定常的に
送液し、かつ第1の試薬送液ライン(31)と合流する第
2の試薬送液ライン(32)と、合流したCe〔IV〕試薬と
As〔III〕試薬とを混合する混合部(33)と、脱ガス水
を定常的に送液し、かつ上記混合部(33)で混合された
混合試薬と合流する水送液ライン(34)と、水送液ライ
ン(34)の途中部で試料を注入する試料注入部(35)と
を有している。ここでいう脱ガス水は、酸化還元反応を
妨害する不純物を含まない水を脱気したものである。な
お、各ライン(31)(32)(34)及び混合部(33)はチ
ューブ又はコイル状チューブで構成されている。また各
試薬と合流して混合された試料は、反応部(36)に送液
され、該反応部(36)で温度90℃程度に加熱されてCe
〔III〕とAs〔V〕とを生成し、冷却部(37)で冷却さ
れる。反応部(36)および冷却部(37)は混合液及び反
応液を送液するチューブ又はコイル状チューブと加熱浴
及び冷却浴とでそれぞれ構成されている。そして、試料
中のヨウ素イオン濃度が生成したCe〔III〕濃度に比
例し、かつCe〔III〕を波長254nmの光線で励起すると、
波長365nmの蛍光を発することを利用して、蛍光検出部
(38)で蛍光を検出し、予め求められた検量線に基づい
てヨウ素イオン濃度を測定している。なお、図中、符合
(P)は各試薬等を定常的に供給する蠕動ポンプであ
る。またこの報文では、試料としてヨウ素溶液を用いた
場合、検出限界0.4ppb程度のヨウ化物を定量できること
が報告されている。
FIG. 3 is a schematic view showing a conventional apparatus using FIA. This device is the first to send Ce [IV] reagent constantly.
And a second reagent sending line (32) that constantly sends the As [III] reagent and joins the first reagent sending line (31). Ce [IV] reagent
A mixing section (33) for mixing the As [III] reagent, and a water feeding line (34) for constantly sending degassed water and joining with the mixed reagent mixed in the mixing section (33). And a sample injection section (35) for injecting a sample in the middle of the water supply line (34). The degassed water referred to here is degassed water that does not contain impurities that hinder the oxidation-reduction reaction. Each of the lines (31), (32), (34) and the mixing section (33) is constituted by a tube or a coiled tube. The sample mixed with each reagent and mixed is sent to a reaction section (36), and heated to a temperature of about 90 ° C. in the reaction section (36) to produce Ce.
[III] and As [V] are produced and cooled in the cooling section (37). The reaction section (36) and the cooling section (37) are each composed of a tube or a coiled tube for sending the mixed solution and the reaction solution, and a heating bath and a cooling bath. Then, when the iodine ion - concentration in the sample is proportional to the generated Ce [III] concentration, and Ce [III] is excited by a light beam having a wavelength of 254 nm,
Utilizing the emission of 365-nm wavelength fluorescence, the fluorescence detection unit (38) detects the fluorescence, and measures the iodine ion concentration based on a previously obtained calibration curve. In the figure, the symbol (P) is a peristaltic pump that constantly supplies each reagent and the like. This report also reports that when an iodine solution is used as a sample, iodide with a detection limit of about 0.4 ppb can be quantified.

このFIA法は、前記マニュアル法に比べて、熟練を必
要とせず、再現性がよく、個人差がないだけでなく、分
析時間も短く、多数の試料の処理及び自動化が可能であ
るという利点を有している。
Compared to the manual method, the FIA method has the advantage that it does not require skill, has good reproducibility, has no individual differences, has a short analysis time, and can process and automate a large number of samples. Have.

しかしながら、このFIA法による検出限界が0.4ppb程
度であるため、極微量のヨウ化物を精度よく定量するこ
とが困難である。また工業的に製造されたヨウ化物を含
有する有機化合物、例えば酢酸等に適用すると、水送液
ライン(34)の途中部に試料が注入されるためか、検出
精度が著しく低下し、工業的に製造された製品の工程管
理や品質管理に適用することが困難である。
However, since the detection limit by this FIA method is about 0.4 ppb, it is difficult to accurately quantify a trace amount of iodide. In addition, when applied to industrially produced organic compounds containing iodide, such as acetic acid, the detection accuracy is significantly reduced, probably because the sample is injected into the middle of the water supply line (34). It is difficult to apply to process control and quality control of manufactured products.

従って、本発明の目的は、微量のヨウ化物を精度よ
く、しかも迅速に測定することができる信頼性の高い微
量ヨウ化物の測定装置を提供することにある。
Accordingly, it is an object of the present invention to provide a highly reliable trace iodide measuring device capable of accurately and quickly measuring a trace amount of iodide.

また本発明の他の目的は、多数の試料を連続的かつ自
動的に処理できる微量ヨウ化物の測定装置を提供するこ
とにある。
Another object of the present invention is to provide a trace iodide measuring device capable of continuously and automatically processing a large number of samples.

さらに本発明の目的は、FIA法を利用しつつも、工業
的に製造された製品に対しても適用できる微量ヨウ化物
の測定装置を提供することにある。
It is a further object of the present invention to provide an apparatus for measuring trace iodide, which can be applied to industrially manufactured products while utilizing the FIA method.

[課題を解決するための手段] 濃度0.1〜10mMの四価のセリウムCe[IV]試薬と濃度
5〜100mMの三価のヒ素As[III]試薬とを、容量比(前
者/後者)=3/7〜7/3の割合で混合した混合液を安定化
状態で定常的に送液する試薬送液ラインと、この試薬送
液ラインと合流し、かつ脱ガス水を定常的に送液する水
送液ラインと、この水送液ラインの途中部で、ヨウ化物
を含有する試料を注入する試料注入部と、合流した試薬
と試料との酸化還元反応を行なう反応部と、生成した三
価のセリウムを検出する検出部とを少なくとも有する装
置であって、上記試料注入部が、定常的に水溶性溶媒が
送液され、かつ水送液ラインと合流する水溶性溶媒送液
ラインの途中部に設けられていることを特徴とする微量
ヨウ化物の測定装置により、上記課題を解決するもので
ある。
[Means for Solving the Problems] A volume ratio (former / latter) of a tetravalent cerium Ce [IV] reagent having a concentration of 0.1 to 10 mM and a trivalent arsenic As [III] reagent having a concentration of 5 to 100 mM is 3 A reagent feed line for constantly feeding a mixed solution mixed at a ratio of / 7 to 7/3 in a stabilized state, and merging with the reagent feed line, and constantly sending degassed water. A water supply line, a sample injection part in the middle of the water supply line for injecting a sample containing iodide, a reaction part for performing an oxidation-reduction reaction between the combined reagent and the sample, A detection unit for detecting cerium, wherein the sample injection unit is a middle part of a water-soluble solvent feeding line where the water-soluble solvent is constantly fed, and merges with the water feeding line. The above problem is solved by a trace iodide measuring device characterized by being provided in is there.

[作 用] 上記構成の本発明によれば、試料注入部が、水溶性溶
媒送液ラインの途中部に設けられているので、試料が、
定常的に供給される水溶性溶媒送液ライン及び水送液ラ
インに順次合流する。また反応部では、ヨウ素イオンI-
が触媒的に作用して前記のレドックス反応によりCe〔II
I〕とAs〔V〕とが生成し、生成したCe〔III〕の濃度は
試料中のヨウ素イオンI-濃度に比例する。その際、水溶
性溶媒送液ラインで送液される水溶性溶媒が緩衝作用を
有すると共に、試料が特定濃度のCe[IV]試薬及びAs
[III]試薬を特定の割合で含む混合液と合流するため
か、工業的に製造された製品等であっても試料中の極微
量のヨウ化物を検出部で精度よく検出することができ
る。
[Operation] According to the present invention having the above configuration, the sample injection section is provided in the middle of the water-soluble solvent supply line, so that the sample
The water-soluble solvent feed line and the water feed line which are constantly supplied are sequentially merged. In the reaction section, iodide ion I -
Acts as a catalyst and Ce [II
I] and is and As (V) to produce a concentration of the generated Ce (III) is iodide ion I in the sample - is proportional to the concentration. At this time, the water-soluble solvent sent in the water-soluble solvent sending line has a buffering action, and the sample has a specific concentration of Ce [IV] reagent and As
[III] The detection unit can accurately detect a trace amount of iodide in a sample even for an industrially manufactured product or the like, probably because of a confluence with a mixture containing a reagent at a specific ratio.

[実施例] 以下に、添付図面に基づいて、本発明の実施例を詳細
に説明する。なお、本明細書において、ppbとは重量基
準の十億分率を意味する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings. In this specification, ppb means parts per billion by weight.

第1図は本発明の微量ヨウ化物の測定装置の一実施例
を示す概略図であり、四価のセリウムCe〔IV〕試薬と三
価のヒ素As〔III〕試薬とは、定流量ポンプ(P1)と第
1の試薬送液チューブ(t1)とで構成された第1の試薬
送液ライン(1a)と、定流量ポンプ(P2)と第2の試薬
送液チューブ(t2)とで構成された第2の試薬送液ライ
ン(1b)とでそれぞれ定常的に送液される。また第1の
試薬送液ライン(1a)と第2の試薬送液ライン(1b)と
は、互いに合流しており、試薬送液ライン(1)を構成
している。なお、各試薬は、安定化のため、硫酸溶液、
例えば0.1〜2M、好ましくは0.5〜1.5M程度の硫酸水溶液
として用いられる。
FIG. 1 is a schematic view showing one embodiment of the device for measuring a small amount of iodide of the present invention, in which a tetravalent cerium Ce [IV] reagent and a trivalent arsenic As [III] reagent are supplied by a constant flow pump ( P1) and a first reagent delivery tube (t1) composed of a first reagent delivery tube (t1), a constant flow pump (P2) and a second reagent delivery tube (t2). The liquid is constantly supplied to the second reagent liquid supply line (1b). In addition, the first reagent solution sending line (1a) and the second reagent solution sending line (1b) merge with each other to form a reagent solution sending line (1). In addition, each reagent is a sulfuric acid solution for stabilization,
For example, it is used as a sulfuric acid aqueous solution of about 0.1 to 2M, preferably about 0.5 to 1.5M.

Ce[IV]試薬の濃度は0.1〜10mM、好ましくは0.5〜5m
M程度であり、As[III]試薬の濃度は5〜100mM、好ま
しくは5〜50mM程度である。
The concentration of the Ce [IV] reagent is 0.1-10 mM, preferably 0.5-5 m
M, and the concentration of the As [III] reagent is about 5 to 100 mM, preferably about 5 to 50 mM.

第1の試薬送液チューブ(1a)と第2の試薬送液チュ
ーブ(1b)の内径は、所望する試薬の送液量に応じて適
宜設定することができるが、通常0.5〜5mm程度、好まし
くは約1mm程度である。上記Ce[IV]試薬とAs[III]試
薬とは、両者の供給比が(前者/後者)が3/7〜7/3(容
量比)の範囲内において、それぞれ同一又は異なる速度
で送液できるが、第1の試薬送液チューブ(1a)と第2
の試薬送液チューブ(1b)の内径が1mm程度である場
合、通常0.1〜1ml/分程度、好ましくは0.3〜0.7ml/分程
度の速度でそれぞれ送液できる。
The inner diameter of the first reagent delivery tube (1a) and the second reagent delivery tube (1b) can be appropriately set according to the desired reagent delivery volume, but is usually about 0.5 to 5 mm, preferably about 0.5 to 5 mm. Is about 1 mm. The above-mentioned Ce [IV] reagent and As [III] reagent are sent at the same or different rates, respectively, when the supply ratio of the two is within the range of 3/7 to 7/3 (volume ratio). Yes, the first reagent delivery tube (1a) and the second
When the inner diameter of the reagent feeding tube (1b) is about 1 mm, the solution can be sent at a rate of usually about 0.1 to 1 ml / min, preferably about 0.3 to 0.7 ml / min.

またこの装置は、定流量ポンプ(P3)と水送液チュー
ブ(2a)とで構成された水送液ライン(2)を有してお
り、この水送液ライン(2)は、蒸留水等の脱ガス水を
定常的に送液し、前記試薬送液ライン(1)の途中部で
合流している。この脱ガス水は、適宜の速度で送液でき
る。例えば、水送液チューブ(2a)の内径が1mm程度で
ある場合、通常、0.1〜1ml/分程度、好ましくは0.2〜0.
6ml/分程度の速度で送液することができる。
This apparatus has a water feed line (2) composed of a constant flow pump (P3) and a water feed tube (2a), and the water feed line (2) is made of distilled water or the like. Degassed water is constantly fed and merges in the middle of the reagent solution sending line (1). This degassed water can be sent at an appropriate speed. For example, when the inner diameter of the water supply tube (2a) is about 1 mm, it is usually about 0.1 to 1 ml / min, preferably 0.2 to 0.1 ml / min.
The liquid can be sent at a speed of about 6 ml / min.

そして、工業製品中に微量含有されているヨウ化物で
あっても安定して精度よくヨウ化物を検出するため、定
流量ポンプ(P4)と水溶性溶媒送液チューブ(3a)とで
構成された水溶性溶媒送液ライン(3)が設けられてお
り、の水溶性溶媒送液ライン(3)は、水溶性溶媒を定
常的に送液し、前記水送液ライン(2)と合流してい
る。またヨウ化物を含む所定量の試料は、水溶性溶媒送
液ライン(3)の途中部に設けられた試料注入部(4)
から注入される。試料注入部(4)は、従来慣用の注入
バルブ等で構成することができる。従って、試料注入部
(4)から注入された試料は、水溶性溶媒送液ライン
(3)及び水送液ライン(2)と順次合流し、さらに前
記試薬送液ライン(1)と合流する。
In order to stably and accurately detect iodide even in the case of a small amount of iodide contained in industrial products, it is composed of a constant flow pump (P4) and a water-soluble solvent feeding tube (3a). A water-soluble solvent feed line (3) is provided. The water-soluble solvent feed line (3) constantly feeds a water-soluble solvent, and merges with the water feed line (2). I have. A predetermined amount of the sample containing iodide is supplied to a sample injection section (4) provided in the middle of the water-soluble solvent supply line (3).
Injected from. The sample injection section (4) can be constituted by a conventionally used injection valve or the like. Therefore, the sample injected from the sample injection section (4) joins the aqueous solvent sending line (3) and the water sending line (2) sequentially, and further joins the reagent sending line (1).

上記水溶性溶媒は、水溶性であれば特に制限されな
い。このような水溶性溶媒としては、例えば、メタノー
ル、エタノール、プロパノール、イソプロパノール、エ
チレングリコール、ジエチレングリコール、ポリエチレ
ングリコール、メトキシエタノール、エトキシエタノー
ル、グリセリン等のアルコール類;アセトン等のケトン
類;ジオキサン、テトラヒドロフラン、ジエチレングリ
コールジメチルエーテル等のエーテル類;ギ酸、酢酸、
モノクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、
チオグリコール酸、ホルムアミド、N−メチルホルムア
ミド、N,N−ジメチルホルムアミド、N−メチルアセト
アミド、ヘキサメチルリン酸トリアミド等の有機酸とそ
の誘導体;ピリジン、モルホリン等のアミン類等やこれ
らの混合溶媒が例示される。これらの水溶性溶媒は試料
中の溶媒と同じ系統の溶媒、特に同一の溶媒であるのが
好ましい。
The water-soluble solvent is not particularly limited as long as it is water-soluble. Examples of such a water-soluble solvent include alcohols such as methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, polyethylene glycol, methoxyethanol, ethoxyethanol, and glycerin; ketones such as acetone; dioxane, tetrahydrofuran, and diethylene glycol. Ethers such as dimethyl ether; formic acid, acetic acid,
Monochloroacetic acid, trichloroacetic acid, trifluoroacetic acid,
Organic acids and their derivatives such as thioglycolic acid, formamide, N-methylformamide, N, N-dimethylformamide, N-methylacetamide and hexamethylphosphoric triamide; amines such as pyridine and morpholine, and mixed solvents thereof Is exemplified. These water-soluble solvents are preferably the same type of solvent as the solvent in the sample, particularly preferably the same solvent.

水溶性溶媒は適宜の速度で送液できるが、水溶性溶媒
送液チューブ(3a)の内径が1mm程度である場合、通常
0.2〜4ml/分、好ましくは0.5〜2ml/分程度の速度で送液
される。
The water-soluble solvent can be sent at an appropriate speed, but when the inner diameter of the water-soluble solvent delivery tube (3a) is about 1 mm,
The liquid is sent at a rate of about 0.2 to 4 ml / min, preferably about 0.5 to 2 ml / min.

合流した各試料と試料との混合液は、反応部(5)に
送液され、酸化還元反応が行なわれる。この反応部
(5)は、検出感度を高めるため、送液しながら上記反
応を行なう反応コイル(5a)と加熱浴(5b)とで構成さ
れている。上記反応コイル(5a)の内径及び長さは、反
応時間を確保する上で支障のない範囲であれば得に制限
されない、反応コイル(5a)の内径は、前記試薬送液チ
ューブ(1a)(1b)と同様に設定することができる。な
お、反応コイル(5a)の長さ及び反応温度に略比例して
検出感度が大きくなるので、反応コイル(5a)の長さ及
び反応温度は、所望するヨウ化物の検出限界値に応じて
適宜設定することができる。反応コイル(5a)の長さは
通常0.5〜10m、好ましくは1〜5m程度で十分である。ま
た前記加熱浴(5b)による反応部(5)の反応温度は、
30〜110℃程度、好ましくは40〜100℃程度、更に好まし
くは50〜90℃程度である。反応コイル(5a)の長さ及び
反応温度を上記のように設定すると0.1ppb程度のヨウ化
物を精度よく検出できる。また反応温度が80℃程度であ
る場合、反応時間は1〜2分程度で十分である。
The mixed liquid of each of the combined samples is sent to the reaction section (5), where an oxidation-reduction reaction is performed. The reaction section (5) is composed of a reaction coil (5a) for performing the above-mentioned reaction while feeding a liquid and a heating bath (5b) in order to increase the detection sensitivity. The inner diameter and length of the reaction coil (5a) are not particularly limited as long as they do not hinder the reaction time. The inner diameter of the reaction coil (5a) is the same as the reagent feeding tube (1a) ( It can be set as in 1b). Since the detection sensitivity increases substantially in proportion to the length of the reaction coil (5a) and the reaction temperature, the length and the reaction temperature of the reaction coil (5a) are appropriately determined according to the desired detection limit value of iodide. Can be set. The length of the reaction coil (5a) is usually about 0.5 to 10 m, preferably about 1 to 5 m. The reaction temperature of the reaction section (5) by the heating bath (5b) is as follows:
The temperature is about 30 to 110 ° C, preferably about 40 to 100 ° C, and more preferably about 50 to 90 ° C. When the length of the reaction coil (5a) and the reaction temperature are set as described above, iodide of about 0.1 ppb can be accurately detected. When the reaction temperature is about 80 ° C., a reaction time of about 1 to 2 minutes is sufficient.

また上記反応部(5)で反応した反応液は、冷却コイ
ル(6a)と冷却浴(6b)で構成された冷却部(6)で冷
却される。この冷却部(6)の温度は特に制限されない
が、通常−10℃〜30℃程度、好ましくは0℃程度で十分
である。また冷却コイル(6a)の内径及び長さは、反応
液を冷却しうる範囲で設定される。冷却コイル(6a)の
内径は前記試薬送液チューブ(1a)(1b)と同様に設定
でき、長さは通常0.1〜4m程度、好ましくは0.3〜3m程度
で十分である。
The reaction solution reacted in the reaction section (5) is cooled in a cooling section (6) composed of a cooling coil (6a) and a cooling bath (6b). The temperature of the cooling section (6) is not particularly limited, but is usually about -10C to 30C, preferably about 0C. The inner diameter and length of the cooling coil (6a) are set within a range in which the reaction solution can be cooled. The inner diameter of the cooling coil (6a) can be set in the same manner as the reagent feeding tubes (1a) and (1b), and the length is usually about 0.1 to 4 m, preferably about 0.3 to 3 m.

そして、反応部(5)での還元反応により生成したCe
〔III〕を検出部(7)で検出する。この検出部(7)
では前記Ce〔IV〕試薬とAs〔III〕試薬の酸化還元電位
に対する反応後の酸化還元電位等を検出してもよいが、
検出感度を高めるため、生成したCe〔III〕の蛍光強度
を検出するのが好ましい。Ce〔III〕濃度は、所定の波
長の光線を照射して励起させ、発せられる蛍光を検出す
ることにより測定できる。従って、検出部(7)は蛍光
検出器で構成されているのが好ましい。なお、Ce〔II
I〕の励起、蛍光の両波長は、水溶性溶媒によって異な
るため、予め最適波長を測定する必要がある。水溶性溶
媒が酢酸の場合は、励起波長260nm、蛍光波長352nmであ
る。
Then, Ce produced by the reduction reaction in the reaction section (5)
[III] is detected by the detection unit (7). This detector (7)
Although the Ce [IV] reagent and the As [III] reagent may be used to detect the oxidation-reduction potential or the like after the reaction with respect to the oxidation-reduction potential,
In order to enhance the detection sensitivity, it is preferable to detect the fluorescence intensity of the generated Ce [III]. The Ce [III] concentration can be measured by irradiating a light beam having a predetermined wavelength to excite it and detecting emitted fluorescence. Therefore, it is preferable that the detection section (7) is constituted by a fluorescence detector. Note that Ce [II
Since the excitation and fluorescence wavelengths of I) differ depending on the water-soluble solvent, it is necessary to measure the optimum wavelength in advance. When the water-soluble solvent is acetic acid, the excitation wavelength is 260 nm and the fluorescence wavelength is 352 nm.

検出部(7)での検出データはレコーダの記録部
(8)で記録される。また検出部(7)でCe〔III〕濃
度を検出した反応液は、排出される。
The data detected by the detection section (7) is recorded by the recording section (8) of the recorder. The reaction solution whose Ce [III] concentration has been detected by the detection section (7) is discharged.

上記の測定装置によると、従来の比色法では4種類の
反応試薬が必要であるのに対して、2種類の反応試薬を
用いればよい。また従来の比色法では測定に1時間以上
要していたのに対して、1試料当り2分程度の短時間で
測定できる。従って、測定時間を短縮化でき、多数の試
料を連続的に処理できる。しかも、従来のFIA法に比べ
て、微量のヨウ化物を精度よく測定することができ、信
頼性が高い。すなわち、上記測定装置では0.1ppb程度の
ヨウ化物も精度よく測定でき、しかも、分析の変動係数
(CV値)が試料数n=3で3%程度であり、信頼性が高
い。さらには、工業的に製造された有機化合物に対して
も適用できる。
According to the above-described measuring device, two kinds of reaction reagents may be used, while four kinds of reaction reagents are required in the conventional colorimetric method. In contrast to the conventional colorimetric method, which required one hour or more for measurement, the measurement can be performed in a short time of about two minutes per sample. Therefore, the measurement time can be shortened, and a large number of samples can be processed continuously. In addition, compared to the conventional FIA method, a trace amount of iodide can be measured with high accuracy, and the reliability is high. That is, the above measuring device can accurately measure iodide of about 0.1 ppb, and the coefficient of variation (CV value) of the analysis is about 3% when the number of samples is n = 3, so that the reliability is high. Furthermore, the present invention can be applied to industrially produced organic compounds.

なお、上記各試験、水や水溶性溶媒の流量は電磁弁等
の流量調整手段で調整することができる。またCe〔IV〕
試薬とAs〔III〕試薬は、必要に応じて混合した状態で
送液してもよい。また各試薬や、脱ガス水と水溶性溶媒
との合流点を経た送液ラインの適宜箇所には、混合効率
を高めるため、混合コイルを設けてもよい。またチュー
ブ、コイルやこれらを接続するコネクタは、非腐蝕性材
料、例えば、ステンレス、ポリテトラフルオロエチレン
やセラミック等で形成することができる。またポンプの
接液部の材質は、非腐蝕性材料、例えばルビー、サファ
イア、セラミック等を使用することが好ましい。
In addition, in each of the above tests, the flow rate of water or a water-soluble solvent can be adjusted by a flow rate adjusting means such as a solenoid valve. Also Ce [IV]
The reagent and the As [III] reagent may be sent in a mixed state as necessary. Further, a mixing coil may be provided at an appropriate position of each reagent or a liquid sending line passing through a junction of degassed water and a water-soluble solvent in order to increase mixing efficiency. Further, the tube, the coil, and the connector for connecting these can be formed of a non-corrosive material, for example, stainless steel, polytetrafluoroethylene, ceramic, or the like. It is preferable to use a non-corrosive material, for example, ruby, sapphire, ceramic, or the like, as the material of the liquid contact portion of the pump.

更には、検出部(7)におけるCe〔III〕濃度C Ce〔I
II〕は、試薬中のCe〔IV〕濃度C Ce〔IV〕、As〔III〕
濃度C As〔III〕、試料中のヨウ化物濃度CI、反応温度
T、反応時間RT、換言すれば流量により影響を受ける。
すなわち、試料中のヨウ化物濃度CIは検出部(7)のC
e〔III〕濃度C Ce〔III〕に比例し、このCe〔III〕濃度
C Ce〔III〕と上記各因子との関係は、下記の関係式で
表わされる。
Further, the Ce [III] concentration C Ce [I
II] is the Ce [IV] concentration in the reagent C Ce [IV], As [III]
It is affected by the concentration C As [III], the iodide concentration CI in the sample, the reaction temperature T, the reaction time RT, in other words, the flow rate.
That is, the iodide concentration CI in the sample is determined by the detection unit (7) C
e [III] concentration C is proportional to Ce [III] and this Ce [III] concentration
The relationship between C Ce [III] and each of the above factors is represented by the following relational expression.

C Ce〔III〕=f(C Ce〔IV〕、C As〔III〕、CI、
T、RT) 従って、精度よくヨウ化物の濃度CIを検出するには、
試薬の濃度補償、反応温度の温度補償、反応時間、換言
すれば流量補償するのが好ましい。このような補償は、
各要因の変動に伴う検出値の変化を求めることにより行
なうことができる。
C Ce [III] = f (C Ce [IV], C As [III], CI,
T, RT) Therefore, to accurately detect the concentration CI of iodide,
It is preferable to compensate the concentration of the reagent, the temperature of the reaction temperature, the reaction time, in other words, the flow rate. Such compensation,
This can be performed by obtaining a change in the detection value accompanying a change in each factor.

また多数の試料を迅速に測定するため、自動化しても
よい。第2図は本発明の他の実施例を示すブロック図で
ある。この装置では、前記と同様にしてCe〔III〕濃度
を検出する検出部(17)と、検出部(17)で検出された
検出データをA/D変換するA/Dコンバータ(18)と、変換
されたデータを格納するメモリ(19)と、下記関係式 C Ce〔III〕=f(C Ce〔IV〕、C As〔III〕、CI、
T、RT) で示されるプログラムを格納するROM等の記憶部(20)
と、メモリ(19)に格納された検出データと記憶部(2
0)に格納されたプログラムとに基づいてCe〔III〕濃度
を演算する演算部(21)と、演算結果を表示する表示部
(22)とを有している。なお、試薬送液ライン(11)、
水送液ライン(12)、水溶性溶媒送液ライン(13)、試
料注入部(14)、反応部(15)及び冷却部(16)は、前
記と同様に構成されている。
In addition, in order to quickly measure a large number of samples, it may be automated. FIG. 2 is a block diagram showing another embodiment of the present invention. In this device, a detection unit (17) for detecting the Ce [III] concentration in the same manner as described above, an A / D converter (18) for A / D converting detection data detected by the detection unit (17), A memory (19) for storing the converted data, and the following relational expression C Ce [III] = f (C Ce [IV], C As [III], CI,
(T, RT) Storage unit such as ROM for storing the program indicated by (20)
And the detection data stored in the memory (19) and the storage unit (2
An arithmetic unit (21) for calculating the Ce [III] concentration based on the program stored in (0) and a display unit (22) for displaying the calculation result. In addition, reagent sending line (11),
The water feed line (12), the water-soluble solvent feed line (13), the sample injection section (14), the reaction section (15), and the cooling section (16) are configured as described above.

なお、各送液ライン(11)(12)(13)には試薬等の
流量を検出する流量センサ(図示せず)が設けられ、反
応部(15)及び冷却部(16)には温度センサ(図示せ
ず)が設けられている。またメモリ(19)には試薬濃度
データを入力するデータ入力部(図示せず)が設けられ
ている。上記流量センサ、温度センサ及び試薬濃度デー
タは、それぞれA/DコンバータでA/D変換され、前記メモ
リ(19)にそれぞれ格納され、上記関係式に基づく演算
に供されると共に、フィードバック制御部(図示せず)
で流量や温度が制御される。
Each of the liquid sending lines (11), (12) and (13) is provided with a flow rate sensor (not shown) for detecting a flow rate of a reagent or the like, and a temperature sensor is provided in the reaction section (15) and the cooling section (16). (Not shown) is provided. The memory (19) is provided with a data input unit (not shown) for inputting reagent concentration data. The flow rate sensor, the temperature sensor, and the reagent concentration data are A / D-converted by an A / D converter, respectively stored in the memory (19), subjected to an arithmetic operation based on the relational expression, and provided with a feedback control unit ( (Not shown)
Controls the flow rate and temperature.

上記の装置によれば、検出部(17)での検出データに
基づいて演算部(21)で迅速かつ連続的に多数の試料中
のヨウ化物濃度を算出し、表示し、必要に応じてプリン
トアウトすることができる。
According to the above apparatus, the calculating section (21) calculates and displays iodide concentrations in a large number of samples quickly and continuously on the basis of the data detected by the detecting section (17), and displays and prints as necessary. Can be out.

なお、試薬濃度や反応温度などが一定の条件下で試料
中のヨウ化物濃度を測定する場合、上記記憶部(20)に
記憶された関係式はC Ce〔III〕=f(CI)に単純化さ
れる。
When measuring the iodide concentration in a sample under the condition that the reagent concentration and the reaction temperature are constant, the relational expression stored in the storage unit (20) is simply expressed as C Ce [III] = f (CI). Be transformed into

また工程管理を精度よく行なうため、上記のようにし
て測定されたヨウ素イオン濃度に基づき、製造プラント
における原料や触媒の供給量を自動的に制御してもよ
い。
Further, in order to perform the process control with high accuracy, the supply amounts of the raw materials and the catalyst in the production plant may be automatically controlled based on the iodine ion concentration measured as described above.

[発明の効果] 以上のように、本発明によれば、試料注入部が、定常
的に水溶性溶媒が送液され、かつ水送液ラインと合流す
る水溶性溶媒送液ラインの途中部に設けられていると共
に、試料が特定濃度の四価のセリウムCe[IV]試薬及び
三価のヒ素As[III]試薬を特定の割合で含む混合液と
合流するので、従来のFIA法によるよりも、微量のヨウ
化物を精度よく測定することができる。また2種類の反
応試薬を用いればよく、1試料の測定に要する時間が2
分程度であるため、迅速に測定することができ、しかも
信頼性が高い。さらには、多数の試料を連続的かつ自動
的に処理できると共に、工業的に製造された有機化合物
に対しても適用できる。
[Effects of the Invention] As described above, according to the present invention, the sample injection section is provided with a water-soluble solvent that is constantly fed, and is located in the middle of the water-soluble solvent feeding line that merges with the water feeding line. In addition to the conventional FIA method, the sample is combined with a mixture containing a specific concentration of a tetravalent cerium Ce [IV] reagent and a trivalent arsenic As [III] reagent in a specific ratio. , A small amount of iodide can be accurately measured. In addition, two types of reaction reagents may be used, and the time required to measure one sample is 2
Because it is on the order of minutes, it can be measured quickly and has high reliability. Furthermore, while being able to process a large number of samples continuously and automatically, it is also applicable to industrially produced organic compounds.

[実験例] 以下に、実験例に基づき本発明をより詳細に説明す
る。
[Experimental Examples] Hereinafter, the present invention will be described in more detail based on experimental examples.

実験例1 第1図に示す装置において、試薬送液チューブ(1
a)、水送液チューブ(2a)、水溶性溶媒送液チューブ
(3a)、反応コイル(5a)および冷却コイル(6a)が内
径1mmのテフロンチューブで形成されていると共に、検
出部(7)が、励起波長260nm、検出波長352nmの蛍光検
出器を有する装置を用いた。またCe〔IV〕濃度/1M硫酸
溶液を変えて、下記の条件で、ヨウ化物濃度1ppb、2pp
b、4ppb及び10ppbの試料の蛍光強度を測定したところ、
第4図に示す結果を得た。
Experimental Example 1 In the apparatus shown in FIG.
a), a water feeding tube (2a), a water-soluble solvent feeding tube (3a), a reaction coil (5a) and a cooling coil (6a) are formed of a Teflon tube having an inner diameter of 1 mm, and a detection unit (7). However, an apparatus having a fluorescence detector with an excitation wavelength of 260 nm and a detection wavelength of 352 nm was used. Also, changing the Ce [IV] concentration / 1 M sulfuric acid solution, under the following conditions, iodide concentration 1 ppb, 2 pp
b, 4ppb and 10ppb when the fluorescence intensity of the sample was measured,
The results shown in FIG. 4 were obtained.

Ce〔IV〕濃度:0.325mM、0.65mM、1.3mM、2.6mM、流速0.
5ml/分 As〔III〕濃度:25mM/1M硫酸溶液、流速0.5ml/分 水:流速0.4ml/分 水溶性溶媒:酢酸、流速1.2ml/分 反応コイル(5a)の長さ:3m、反応温度80℃ 冷却コイル(6a)の長さ:0.6m、冷却温度0℃(氷水) 第4図から、Ce〔IV〕試薬の濃度が大きくなるにつれ
て検出強度が大きくなる。
Ce (IV) concentration: 0.325 mM, 0.65 mM, 1.3 mM, 2.6 mM, flow rate 0.
5 ml / min As [III] concentration: 25 mM / 1 M sulfuric acid solution, flow rate 0.5 ml / min Water: flow rate 0.4 ml / min Water-soluble solvent: acetic acid, flow rate 1.2 ml / min Reaction coil (5a) length: 3 m, reaction Temperature: 80 ° C. Length of the cooling coil (6a): 0.6 m, cooling temperature: 0 ° C. (ice water) From FIG. 4, the detection intensity increases as the concentration of the Ce [IV] reagent increases.

実験例2 実験例1に示す装置において、下記の条件で行なう以
外、実験例1と同様にして、ヨウ化物濃度1ppb、2ppb、
4ppb及び10ppbの試料の蛍光強度を測定したところ、第
5図に示す結果を得た。
EXPERIMENTAL EXAMPLE 2 The same procedure as in Experimental Example 1 was carried out, except that the iodide concentration was 1 ppb, 2 ppb,
When the fluorescence intensities of the 4 ppb and 10 ppb samples were measured, the results shown in FIG. 5 were obtained.

Ce〔IV〕濃度:1.3mM/1M硫酸溶液、流速0.5ml/分 As〔III〕濃度:6.25mM、12.5mM、25mM、50mM/1M硫酸溶
液、流速0.5ml/分 実験例3 実験例1に示す装置において、下記の条件で行なう以
外、実験例1と同様にして、ヨウ化物濃度1ppb、2ppb及
び4ppbの酢酸溶液試料の蛍光強度を測定したところ、第
6図に示す結果を得た。
Ce [IV] concentration: 1.3 mM / 1M sulfuric acid solution, flow rate 0.5 ml / min As [III] concentration: 6.25 mM, 12.5 mM, 25 mM, 50 mM / 1M sulfuric acid solution, flow rate 0.5 ml / min The fluorescence intensity of an acetic acid solution sample having an iodide concentration of 1 ppb, 2 ppb, and 4 ppb was measured in the same manner as in Experimental Example 1 except that the measurement was performed under the following conditions, and the results shown in FIG. 6 were obtained.

Ce〔IV〕濃度:1.3mM/1M硫酸溶液、流速0.5ml/分 反応温度:80℃(空気浴)、60℃(湯浴)、70℃(湯
浴)、80(湯浴) 第6図から、反応温度が高くなるにつれて検出強度が
大きくなる。
Ce [IV] concentration: 1.3mM / 1M sulfuric acid solution, flow rate 0.5ml / min Reaction temperature: 80 ° C (air bath), 60 ° C (hot water bath), 70 ° C (hot water bath), 80 (hot water bath) Fig. 6 Thus, the detection intensity increases as the reaction temperature increases.

実験例4 実験例1に示す装置において、下記の条件で行なう以
外、実験例1と同様にして、ヨウ化物濃度1ppb、2ppb及
び4ppbの試料の蛍光強度を測定したところ、第7図に示
す結果を得た。
Experimental Example 4 The fluorescence intensity of the samples with iodide concentrations of 1 ppb, 2 ppb, and 4 ppb was measured in the same manner as in Experimental Example 1 except that the apparatus shown in Experimental Example 1 was used under the following conditions, and the results shown in FIG. 7 were obtained. I got

Ce〔IV〕濃度:1.3mM/1M硫酸溶液、流速0.5ml/分 反応コイル(5a)の長さ:2m、3m及び4m 第7図から、反応コイルの長さが長い程、換言すれ
ば、反応時間が長い程検出強度が大きくなる。
Ce [IV] concentration: 1.3 mM / 1 M sulfuric acid solution, flow rate 0.5 ml / min Length of reaction coil (5a): 2 m, 3 m and 4 m From FIG. 7, the longer the length of the reaction coil, in other words, The longer the reaction time, the greater the detection intensity.

実験例5 実験例1に示す装置において、下記の条件で行なう以
外、実験例1と同様にして、ヨウ化物濃度0.1ppb、0.2p
pb、0.4ppb及び1ppbの試料の蛍光強度を測定し、検量線
に基づきヨウ化物濃度を算出した。なお、同一試料につ
いて3回(n=3)測定を繰返し、変動係数を求めた。
EXPERIMENTAL EXAMPLE 5 The iodide concentration was 0.1 ppb and 0.2 pb in the apparatus shown in Experimental Example 1 in the same manner as in Experimental Example 1 except that the following conditions were used.
The fluorescence intensities of the pb, 0.4 ppb and 1 ppb samples were measured, and the iodide concentration was calculated based on the calibration curve. The measurement was repeated three times (n = 3) for the same sample to determine the coefficient of variation.

Ce〔IV〕濃度:1.3mM/1M硫酸溶液、流速0.5ml/分 反応温度:80℃(湯浴) この条件での検量線を第8図に示した。Ce [IV] concentration: 1.3 mM / 1 M sulfuric acid solution, flow rate 0.5 ml / min Reaction temperature: 80 ° C. (water bath) The calibration curve under these conditions is shown in FIG.

また上記試料中のヨウ化物の濃度を、従来の比色法で
測定した。
The concentration of iodide in the sample was measured by a conventional colorimetric method.

結果を表に示す。 The results are shown in the table.

比較実験例 第3図に示す従来の装置において、上記実験例1と同
様の条件で、試料として、ヨウ化物濃度1ppbの酢酸溶液
を用い、ヨウ化物濃度を測定したところ、酢酸溶液であ
るためか、ヨウ化物を検出できなかった。なお、ヨウ化
物濃度1ppbの水溶液を用いたところ、1ppbのヨウ化物を
検出することができた。
Comparative Experimental Example In the conventional apparatus shown in FIG. 3, an iodide concentration of 1 ppb acetic acid solution was used as a sample under the same conditions as in the above experimental example 1, and the iodide concentration was measured. , Iodide could not be detected. When an aqueous solution having an iodide concentration of 1 ppb was used, 1 ppb of iodide could be detected.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の微量ヨウ化物の測定装置の一実施例を
示す概略図、 第2図は本発明の他の実施例を示すブロック図、 第3図は従来のFIAを利用した装置を示す概略図、 第4図(A)〜第8図はそれぞれ実験例における結果を
示す図である。 (1)(11)……試薬送液ライン、 (2)(12)……水送液ライン、 (3)(13)……水溶性溶媒送液ライン、 (4)(14)……試料注入部、(5)(15)……反応
部、 (5a)(15a)……反応コイル、(6)(16)……冷却
部、 (7)(17)……検出部
FIG. 1 is a schematic view showing one embodiment of a measuring device for a trace iodide of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. FIGS. 4 (A) to 8 are schematic diagrams respectively showing the results of the experimental examples. (1) (11) ... reagent sending line, (2) (12) ... water sending line, (3) (13) ... water-soluble solvent sending line, (4) (14) ... sample Injection section, (5) (15) ... reaction section, (5a) (15a) ... reaction coil, (6) (16) ... cooling section, (7) (17) ... detection section

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】濃度0.1〜10mMの四価のセリウムCe[IV]
試薬と濃度5〜100mMの三価のヒ素As[III]試薬とを、
容量比(前者/後者)=3/7〜7/3の割合で混合した混合
液を安定化状態で定常的に送液する試薬送液ラインと、
この試薬送液ラインと合流し、かつ脱ガス水を定常的に
送液する水送液ラインと、この水送液ラインの途中部
で、ヨウ化物を含有する試料を注入する試料注入部と、
合流した試薬と試料との酸化還元反応を行なう反応部
と、生成した三価のセリウムを検出する検出部とを少な
くとも有する装置であって、上記試料注入部が、定常的
に水溶性溶媒が送液され、かつ水送液ラインと合流する
水溶性溶媒送液ラインの途中部に設けられていることを
特徴とする微量ヨウ化物の測定装置。
1. Tetravalent cerium Ce [IV] having a concentration of 0.1 to 10 mM
A reagent and a trivalent arsenic As [III] reagent having a concentration of 5 to 100 mM,
A reagent sending line for constantly sending a mixed solution mixed at a volume ratio (former / latter) = 3/7 to 7/3 in a stabilized state;
A water feeding line that merges with the reagent feeding line, and constantly feeds degassed water, and a sample injection unit that injects a sample containing iodide at an intermediate portion of the water feeding line,
An apparatus having at least a reaction unit for performing an oxidation-reduction reaction between a combined reagent and a sample, and a detection unit for detecting the generated trivalent cerium, wherein the sample injection unit constantly supplies a water-soluble solvent. A trace iodide measuring device, which is provided in a middle part of a water-soluble solvent sending line which is liquefied and merges with a water sending line.
【請求項2】反応部の温度が30〜110℃である請求項1
記載の微量ヨウ化物の測定装置。
2. The reaction section according to claim 1, wherein the temperature of the reaction section is 30 to 110 ° C.
An apparatus for measuring a trace amount of iodide as described in the above.
【請求項3】反応部が長さ0.5〜10mの反応コイルを有す
る請求項1記載の微量ヨウ化物の測定装置。
3. The apparatus according to claim 1, wherein the reaction section has a reaction coil having a length of 0.5 to 10 m.
JP1010135A 1989-01-18 1989-01-18 Trace iodide measuring device Expired - Lifetime JP2634077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010135A JP2634077B2 (en) 1989-01-18 1989-01-18 Trace iodide measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010135A JP2634077B2 (en) 1989-01-18 1989-01-18 Trace iodide measuring device

Publications (2)

Publication Number Publication Date
JPH02189459A JPH02189459A (en) 1990-07-25
JP2634077B2 true JP2634077B2 (en) 1997-07-23

Family

ID=11741843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010135A Expired - Lifetime JP2634077B2 (en) 1989-01-18 1989-01-18 Trace iodide measuring device

Country Status (1)

Country Link
JP (1) JP2634077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104794A1 (en) * 2014-01-08 2015-07-16 株式会社日立製作所 Sample pretreatment device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302076A (en) * 1983-06-10 1985-01-02 Tno METHOD FOR DETERMINING THE CONTENT OF ORGANICALLY BONDED HALOGEN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Anal.Sci.2,P.197−198(1986)

Also Published As

Publication number Publication date
JPH02189459A (en) 1990-07-25

Similar Documents

Publication Publication Date Title
US7153693B2 (en) Method and apparatus for determining urea concentration
CN104713994B (en) For the analytical equipment for the digestion parameter for determining fluid sample
JP2987483B2 (en) Method and apparatus for measuring gaseous medium using chemical sensor
US4920056A (en) Apparatus and method for automated microbatch reaction
US5192509A (en) Apparatus for automatic titration
KR20010082302A (en) Process control method in acetic acid production
US11454619B2 (en) Methods for colorimetric endpoint detection and multiple analyte titration systems
EP3141895B1 (en) Nitrogen analysis device
Asprey et al. Applications of temperature scanning in kinetic investigations: The hydrolysis of acetic anhydride
Roughton et al. Photoelectric methods of measuring the velocity of rapid reactions I-General principles and controls
JP2634077B2 (en) Trace iodide measuring device
Lin et al. Flow injection analysis method for determination of total dissolved nitrogen in natural waters using on-line ultraviolet digestion and vanadium chloride reduction
JPS639616B2 (en)
JP2001174448A (en) Nitrogen concentration measuring apparatus
US3567385A (en) Method and apparatus for determining the oxygen demand of oxidizable materials
JP2000146942A (en) Device for measuring concentration of nitrogen in water
Sancier et al. Luminescence of solids excited by surface recombination of atoms. II. Recombination coefficients
JP2002267653A (en) Nitrogen concentration measuring instrument
JP2694024B2 (en) Carbon content measuring device
CN103353448A (en) Resonant rayleigh scattering spectrometry scattering method for measuring dissolved oxygen
Crompton et al. Measurement of total organoaluminum-reactable impurities in hydrocarbons by continuous flow thermometric analysis
US20220168701A1 (en) Process and apparatus for quantitative monitoring of the composition of an oligomer/monomer mixture
US4244696A (en) Method and apparatus for determining the chemical oxygen demand of organic materials dissolved in water
JP2008164290A (en) Flow analytical system
JPH04279863A (en) Flow injection analyzer