JP2632610B2 - Water cooling system for multi-cylinder engine - Google Patents

Water cooling system for multi-cylinder engine

Info

Publication number
JP2632610B2
JP2632610B2 JP14977791A JP14977791A JP2632610B2 JP 2632610 B2 JP2632610 B2 JP 2632610B2 JP 14977791 A JP14977791 A JP 14977791A JP 14977791 A JP14977791 A JP 14977791A JP 2632610 B2 JP2632610 B2 JP 2632610B2
Authority
JP
Japan
Prior art keywords
temperature
water hole
water
jacket
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14977791A
Other languages
Japanese (ja)
Other versions
JPH04347326A (en
Inventor
修一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14977791A priority Critical patent/JP2632610B2/en
Publication of JPH04347326A publication Critical patent/JPH04347326A/en
Application granted granted Critical
Publication of JP2632610B2 publication Critical patent/JP2632610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多気筒エンジンの水冷
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water cooling device for a multi-cylinder engine.

【0002】[0002]

【前提構造】本発明の多気筒エンジンの水冷装置は、例
えば図4に示すように、次の前提構造を有するものを前
提とする。すなわち、多気筒エンジン1の冷却水を水ポ
ンプ2により、ジャケット入口8からシリンダジャケッ
ト3・水孔4・ヘッドジャケット5・ジャケット出口9
・ラジエータ6及びジャケット入口8の順に、圧送循環
させるように構成したものである。そして、その水孔4
は、上記ジャケット入口8及び上記ジャケット出口9か
ら見て、近い側に位置する手前側水孔4aと、遠い側に
位置する奥側水孔4bとを並列状に設けたものから成
る。
[Prerequisite Structure] A water cooling device for a multi-cylinder engine according to the present invention is assumed to have the following prerequisite structure, for example, as shown in FIG. That is, the cooling water of the multi-cylinder engine 1 is supplied from the jacket inlet 8 to the cylinder jacket 3, the water hole 4, the head jacket 5, and the jacket outlet 9 by the water pump 2.
-The radiator 6 and the jacket inlet 8 are configured to be circulated under pressure in this order. And the water hole 4
When viewed from the jacket inlet 8 and the jacket outlet 9, the front water hole 4a located on the near side and the rear water hole 4b located on the far side are provided in parallel.

【0003】[0003]

【従来の技術】上記前提構造において、従来技術では、
前記水孔4が基準断面積Sbの大きさに形成されてい
た。
2. Description of the Related Art In the above premise structure, in the prior art,
The water hole 4 was formed to have the size of the reference sectional area Sb.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術では、
次の問題がある。水孔4が基準断面積Sbの大きさに形
成されているので、エンジン1の定格を越えない負荷出
力時には、冷却水の循環量が過剰にならず、過冷却によ
る燃焼性能の低下が防止されている。しかし、エンジン
1後部のシリンダジャケット3及びヘッドジャケット5
には冷却水が流れ込みにくいため、シリンダブロック2
1の前部は比較的良く冷却されるが後部はあまり冷却さ
れない。このため、シリンダブロック21に熱歪みが生
じて、甚だしい時にはシリンダ25の焼き付きが発生す
る。さらに、過負荷出力時には、発熱量が増えるのに対
して冷却水の循環量が増えないので、エンジン1がオー
バーヒートすることがある。本発明は、シリンダブロッ
ク21に熱歪みが生じてシリンダ25の焼き付きが発生
したり、エンジン1が過負荷時にオーバーヒートするの
を抑制することを課題とする。
In the above prior art,
There are the following problems: Since the water hole 4 is formed to have the size of the reference cross-sectional area Sb, when the load output does not exceed the rating of the engine 1, the circulation amount of the cooling water does not become excessive, and the deterioration of the combustion performance due to the overcooling is prevented. ing. However, the cylinder jacket 3 and the head jacket 5 at the rear of the engine 1
It is difficult for cooling water to flow into the cylinder block 2
The front of 1 is cooled relatively well, but the rear is less cooled. For this reason, thermal distortion occurs in the cylinder block 21 and, in extreme cases, seizure of the cylinder 25 occurs. Furthermore, at the time of overload output, the amount of heat generated increases, but the amount of circulation of the cooling water does not increase, so that the engine 1 may overheat. An object of the present invention is to suppress the occurrence of seizure of the cylinder 25 due to thermal distortion in the cylinder block 21 and the overheating of the engine 1 during overload.

【0005】[0005]

【課題を解決するための手段】本発明は、上記前提構造
において、上記課題を達成するために、例えば図1及び
図2に示すように、次の改良構造を追加したものであ
る。すなわち、前記手前側水孔4aに通路拡大用感温作
動弁7を設け、この感温作動弁7の通路拡大用作動温度
T1は、前記冷却水の異常高温領域Thよりも少し低い
温度に設定する。この感温作動弁7は、前記手前側水孔
4aを通過する冷却水の温度が、上記通路拡大用作動温
度T1にまで上昇したときに感温作動して、その手前側
水孔4aの通路断面積Sを、基準断面積Sbから拡大断
面積S1にまで拡大するように構成する。さらに、この
手前側水孔4aの基準断面積Sbよりも、前記奥側水孔
4bの通路断面積Sを大きい値に設定して構成する。
According to the present invention, in order to achieve the above-mentioned object, the following improved structure is added to the above-mentioned premise structure, for example, as shown in FIGS. That is, a passage expanding temperature-sensitive operating valve 7 is provided in the near side water hole 4a, and the passage expanding operating temperature T1 of the temperature-sensitive operating valve 7 is set to a temperature slightly lower than the abnormally high temperature region Th of the cooling water. I do. The temperature-sensitive operating valve 7 operates when the temperature of the cooling water passing through the near-side water hole 4a rises to the above-described passage-widening operating temperature T1, and the temperature of the passage of the near-side water hole 4a is increased. The sectional area S is configured to be enlarged from the reference sectional area Sb to the enlarged sectional area S1. Further, the passage cross-sectional area S of the rear water hole 4b is set to a value larger than the reference cross-sectional area Sb of the front water hole 4a.

【0006】[0006]

【作用】本発明は、次のように作用する。エンジン1の
定格を越えない負荷出力時には、水孔4を通過する冷却
水の温度が上記通路拡大用作動温度T1よりも低い温度
になっている。この時、手前側水孔4aの基準断面積S
bよりも、奥側水孔4bの通路断面積Sを大きい値に設
定してあるから、エンジン1後部のシリンダジャケット
3及びヘッドジャケット5に冷却水が流れ込み易く、手
前側水孔4aと奥側水孔4bとの冷却水の循環量が平均
されて、シリンダブロック21が平均に冷却され、熱歪
みの発生を抑制する。又、感温作動弁7が手前側水孔4
aの通路断面積Sを基準断面積Sbに保つので、冷却水
の循環量が過剰にならず、過冷却による燃焼性能の低下
を防止する。一方、エンジンが過負荷出力時には、発熱
量の増大により、水孔4を通過する冷却水の温度が上記
通路拡大用作動温度T1よりも高い温度になる。このた
め、感温作動弁7が感温作動して、上記手前側水孔4a
の通路断面積Sを、基準断面積Sbから拡大断面積S1
にまで拡大する。これにより、冷却水の循環量が増大し
て冷却能力が増大し、エンジン1のオーバーヒートする
のを抑制する。
The present invention operates as follows. When the load output does not exceed the rating of the engine 1, the temperature of the cooling water passing through the water hole 4 is lower than the above-described passage expanding operating temperature T1. At this time, the reference cross-sectional area S of the front side water hole 4a is
Since the passage cross-sectional area S of the rear water hole 4b is set to a value larger than that of the front water hole 4b, the cooling water easily flows into the cylinder jacket 3 and the head jacket 5 at the rear of the engine 1, and the front water hole 4a is The circulation amount of the cooling water with the water hole 4b is averaged, and the cylinder block 21 is cooled averagely, thereby suppressing the occurrence of thermal distortion. In addition, the temperature-sensitive operation valve 7 has the water hole 4 on the front side.
Since the cross-sectional area S of the passage a is maintained at the reference cross-sectional area Sb, the circulation amount of the cooling water does not become excessive, and a decrease in combustion performance due to supercooling is prevented. On the other hand, when the engine outputs an overload, the temperature of the cooling water passing through the water hole 4 becomes higher than the above-described passage expanding operating temperature T1 due to an increase in the amount of generated heat. For this reason, the temperature-sensitive operation valve 7 operates temperature-sensitively, and the front side water hole 4a is formed.
From the reference cross-sectional area Sb to the enlarged cross-sectional area S1
Expand to As a result, the circulation amount of the cooling water increases, the cooling capacity increases, and overheating of the engine 1 is suppressed.

【0007】[0007]

【発明の効果】本発明は、上記のように構成され、作用
することから、次の効果を奏する。エンジン後部のシリ
ンダジャケット及びヘッドジャケットに冷却水が流れ込
み易く、冷却水の循環量が平均されて、シリンダブロッ
クが平均に冷却され、熱歪みの発生を抑制する。又、エ
ンジンの過負荷出力時に発熱量が増えるのに対し、感温
作動弁の感温作動で水孔の通路断面積が増大して、冷却
水の循環量が増えるので、エンジンのオーバーヒートを
抑制することができる。
The present invention is configured and operated as described above, and has the following effects. Cooling water easily flows into the cylinder jacket and the head jacket at the rear of the engine, the circulation amount of the cooling water is averaged, the cylinder block is cooled evenly, and the occurrence of thermal distortion is suppressed. In addition, the amount of heat generated during overload output of the engine increases, while the temperature-sensitive operation of the temperature-sensitive valve increases the cross-sectional area of the water hole and increases the amount of circulation of cooling water, thus suppressing overheating of the engine. can do.

【0008】[0008]

【実施例】以下、本発明の実施例を図面で説明する。図
1(A)はエンジンのヘッドガスケットの要部平面図、
図1(B)は図1(A)のX−X線矢視断面図、図2は
水孔断面積と冷却水温との関係を示す線図、図3はヘッ
ドガスケットの平面図、図4はエンジンの縦断面概略図
である。図4において、エンジン1は、クランクケース
20の上方にシリンダブロック21を一体に形成すると
ともに、このシリンダブロック21の上面にヘッドガス
ケット22を介してシリンダヘッド23及びヘッドカバ
ー24を順に載置固定して、エンジン本体を形成してい
る。上記シリンダブロック21内には、シリンダ25の
中を摺動するピストン26と、このピストン26をクラ
ンク軸27につなぐコネクチングロッド28、その他が
ある。そして、シリンダブロック21及びシリンダヘッ
ド23の内壁には、シリンダジャケット3からヘッドジ
ャケット5へ冷却水を通す水孔4がヘッドガスケット2
2を貫いて連通している。その水孔4は、そのジャケッ
ト入口8及びそのジャケット出口9から見て、近い側に
位置する手前側水孔4aと、遠い側に位置する奥側水孔
4bとを並列状に設けたものから成る。エンジン1の冷
却水はクランク軸27からベルト29・プーリ30を介
して駆動される水ポンプ2により、ジャケット入口8か
らシリンダジャケット3・水孔4・ヘッドジャケット5
・ラジエータ6及びジャケット入口8の順に、圧送循環
されるように構成してある。さらに、冷却水の循環路の
途中には冷却水温を検知するサ−モスタット31があ
り、ラジエータ6はラジエータファン32で高温の冷却
水を空冷する。そして、上記ヘッドガスケット22には
図3に示すように、各シリンダ用開放部22a・各プッ
シュロッド用開放部22b・各水孔用開放部22c・2
2d及び22fと、各取付ボルト用開放部22eとがそ
れぞれ必要個数開けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view of a main part of an engine head gasket,
1 (B) is a cross-sectional view taken along line XX of FIG. 1 (A), FIG. 2 is a diagram showing a relationship between a water hole cross-sectional area and a cooling water temperature, FIG. 3 is a plan view of a head gasket, and FIG. 1 is a schematic longitudinal sectional view of an engine. In FIG. 4, the engine 1 has a cylinder block 21 integrally formed above a crankcase 20 and a cylinder head 23 and a head cover 24 placed and fixed in order on a top surface of the cylinder block 21 via a head gasket 22. , Forming the engine body. The cylinder block 21 includes a piston 26 that slides in the cylinder 25, a connecting rod 28 that connects the piston 26 to a crankshaft 27, and the like. Water holes 4 through which cooling water flows from the cylinder jacket 3 to the head jacket 5 are formed in the inner walls of the cylinder block 21 and the cylinder head 23.
They communicate through two. When viewed from the jacket inlet 8 and the jacket outlet 9, the water hole 4 is formed by providing a near side water hole 4a located on the near side and a far side water hole 4b located on the far side in parallel. Become. Cooling water of the engine 1 is supplied from a crankshaft 27 to a cylinder jacket 3, a water hole 4, a head jacket 5 by a water pump 2 driven through a belt 29 and a pulley 30.
-It is configured so that the radiator 6 and the jacket inlet 8 are circulated under pressure in this order. Further, a thermostat 31 for detecting the temperature of the cooling water is provided in the middle of the cooling water circulation path, and the radiator 6 air-cools the high-temperature cooling water by the radiator fan 32. As shown in FIG. 3, the head gasket 22 has an opening 22a for each cylinder, an opening 22b for each push rod, and an opening 22c for each water hole.
The required number of 2d and 22f and the opening part 22e for each mounting bolt are respectively opened.

【0009】(第1実施例)本発明の第1実施例では、
前記シリンダジャケット3とヘッドジャケット5とを連
通させる水孔4のうち、手前側水孔4aの途中に位置す
るヘッドガスケット22の水孔用開放部22cに,例え
ば図1に示すように、形状記憶合金で形成された通路拡
大用感温作動弁7を設けてある。この感温作動弁7の通
路拡大用作動温度T1は、前記冷却水の異常高温領域T
hよりも少し低い温度に設定してある。そして、奥側水
孔4bに臨むヘッドガスケット22の水孔用開放部22
fには感温作動弁7を形成せずに、しかも、手前側水孔
4aの水孔用開放部22cの基準断面積Sbよりも、前
記奥側水孔4bの水孔用開放部22fの通路断面積Sを
大きい値に設定する。このため、エンジン1後部のシリ
ンダジャケット3及びヘッドジャケット5に冷却水が流
れ込み易く、手前側水孔4aと奥側水孔4bとの冷却水
の循環量が平均されて、シリンダブロック21が平均に
冷却され、熱歪みの発生を抑制する。又、感温作動弁7
が手前側水孔4aの通路断面積Sを基準断面積Sbに保
つので、冷却水の循環量が過剰にならず、過冷却による
燃焼性能の低下を防止する。さらに、上記感温作動弁7
は、図2(A)に示すように、前記手前側水孔4aを通
過する冷却水温Tが、上記通路拡大用作動温度T1にま
で上昇したときに感温作動して、その手前側水孔4aの
通路断面積Sを基準断面積Sbから拡大断面積S1にま
で拡大するように構成してある。このため、冷却水の循
環量が増えて冷却能力が増大し、エンジン1のオーバー
ヒートを抑制することができる。尚、ヘッドガスケット
22のシリンダ間の水孔用開放部22dには感温作動弁
7を形成せずに、常時冷却水を流すようにして熱的に苛
酷な気筒間の冷却を促進する。
(First Embodiment) In a first embodiment of the present invention,
As shown in FIG. 1, for example, as shown in FIG. 1, a shape memory is provided in a water hole opening 22c of a head gasket 22 located in the middle of a front water hole 4a among water holes 4 communicating the cylinder jacket 3 and the head jacket 5. A passage enlarging temperature-sensitive operating valve 7 made of an alloy is provided. The passage-expanding operating temperature T1 of the temperature-sensitive operating valve 7 is set in the abnormally high temperature region T of the cooling water.
h is set to a temperature slightly lower than h. The water hole opening 22 of the head gasket 22 facing the back side water hole 4b.
f, the temperature-sensitive operating valve 7 is not formed, and the reference cross-sectional area Sb of the water hole opening 22c of the front water hole 4a is larger than that of the water hole opening 22f of the rear water hole 4b. The passage sectional area S is set to a large value. For this reason, the cooling water easily flows into the cylinder jacket 3 and the head jacket 5 at the rear of the engine 1, and the circulation amount of the cooling water between the front side water hole 4 a and the back side water hole 4 b is averaged, so that the cylinder block 21 is averaged. It is cooled and suppresses the occurrence of thermal distortion. Also, the temperature-sensitive operating valve 7
Keeps the passage cross-sectional area S of the front water hole 4a at the reference cross-sectional area Sb, so that the circulation amount of the cooling water does not become excessive, and the deterioration of combustion performance due to overcooling is prevented. Further, the temperature-sensitive operation valve 7
As shown in FIG. 2A, when the cooling water temperature T passing through the near side water hole 4a rises to the above-described passage enlarging operation temperature T1, the temperature sensing operation is performed, and the near side water hole is operated. The passage sectional area S of 4a is configured to be enlarged from the reference sectional area Sb to the enlarged sectional area S1. For this reason, the circulation amount of the cooling water increases, the cooling capacity increases, and overheating of the engine 1 can be suppressed. The temperature-sensitive operating valve 7 is not formed in the water hole opening 22d between the cylinders of the head gasket 22, and cooling water is always supplied to promote thermally severe cooling between cylinders.

【0010】(第2実施例)本発明の第2実施例では、
感温作動弁7を例えば図5に示すように形成する。図2
(B)に示すように水孔4を通過する冷却水温Tがサー
モスタット31の開弁温度T2(例えば82℃)より1
〜2℃高い温度にまで上昇した時に、上側作動弁7aが
感温作動して、その水孔4の通路断面積Sを縮小断面積
S2から拡大断面積S1にまで拡大させる。始動直後の
ように冷却水温Tがサーモスタット31の開弁温度T2
(例えば82℃)より1〜2℃高い温度未満の場合は、
上側作動弁7aが感温作動せず、その水孔4の通路断面
積Sは縮小断面積S2まで絞られているから、冷却水の
循環量が少なくエンジン内部の冷却水温は急速に上昇し
均一化される。この結果、従来のようにサーモスタット
31を閉じてバイパス通路33でラジエータ6をバイパ
スする必要が無くなり、サ−モスタット31を廃止する
事もできる。又、サーモスタット31が開いた時に、ラ
ジエータ6にあった低温の冷却水がシリンダジャケット
3へ多量に流れ込み、せっかく均一化されたエンジン内
部を局部的に過冷却する事があり、冷却損失が生じる。
サーモスタット31を廃止する事で、そのような場合の
エンジン過冷却をなくせるから、常温での冷却損失が少
ない。そして、冷却水温Tがサーモスタット31の開弁
温度T2(例えば82℃)より1〜2℃高い温度以上の
場合は、上側作動弁7aが感温作動して、その水孔4の
通路断面積Sは拡大断面積S1になる。さらに、冷却水
温Tが通路拡大用作動温度T1にまで上昇したときに、
下側作動弁7bが感温作動して、その水孔4の通路断面
積Sを基準断面積Sbから拡大断面積S1にまで拡大さ
せるように構成してある。このため、冷却水の循環量が
増えて冷却脳直が増大し、エンジン1のオーバーヒート
を抑制することができる。本実施例での上側作動弁7a
と下側作動弁7bとは、相互に位置を替えて構成する事
が可能である。
(Second Embodiment) In a second embodiment of the present invention,
The temperature-sensitive operating valve 7 is formed, for example, as shown in FIG. FIG.
As shown in FIG. 3B, the temperature T of the cooling water passing through the water hole 4 is one more than the valve opening temperature T2 of the thermostat 31 (eg, 82 ° C.)
When the temperature rises to about 2 ° C. higher, the upper operating valve 7a performs a temperature-sensitive operation to expand the passage sectional area S of the water hole 4 from the reduced sectional area S2 to the enlarged sectional area S1. Just after the start, the cooling water temperature T becomes equal to the valve opening temperature T2 of the thermostat 31.
(E.g., 82 ° C.) below 1-2 ° C.
Since the upper working valve 7a does not perform temperature sensing and the passage sectional area S of the water hole 4 is reduced to the reduced sectional area S2, the cooling water circulation amount is small and the cooling water temperature inside the engine rises rapidly and becomes uniform. Be transformed into As a result, there is no need to close the thermostat 31 and bypass the radiator 6 by the bypass passage 33 as in the conventional case, and the thermostat 31 can be eliminated. Further, when the thermostat 31 is opened, a large amount of low-temperature cooling water in the radiator 6 flows into the cylinder jacket 3, which may locally supercool the interior of the engine that has been made uniform, resulting in cooling loss.
By eliminating the thermostat 31, it is possible to eliminate engine overcooling in such a case, so that cooling loss at room temperature is small. When the cooling water temperature T is higher than the temperature of the thermostat 31 by 1 to 2 ° C. higher than the valve opening temperature T2 (for example, 82 ° C.), the upper operating valve 7a operates temperature-sensitively and the passage cross-sectional area S of the water hole 4 is increased. Is the enlarged sectional area S1. Further, when the cooling water temperature T rises to the passage expanding operating temperature T1,
The lower actuating valve 7b is configured to perform a temperature-sensitive operation so as to enlarge the passage sectional area S of the water hole 4 from the reference sectional area Sb to the enlarged sectional area S1. For this reason, the circulation amount of the cooling water increases, and the cooling temperature increases, so that the overheating of the engine 1 can be suppressed. Upper working valve 7a in this embodiment
The lower operating valve 7b and the lower operating valve 7b can be configured by changing their positions with respect to each other.

【0011】前記感温作動弁7は、ヘッドガスケット2
2の水孔用開放部22cに形成するのに代えて、シリン
ダジャケット3又はヘッドジャケット5に形成しても良
い。さらに、感温作動弁7は、形状記憶合金で形成する
のに代えてバイメタルで形成しても良い。
The temperature-sensitive operating valve 7 includes a head gasket 2
Instead of being formed in the second water hole opening 22c, it may be formed in the cylinder jacket 3 or the head jacket 5. Further, the temperature-sensitive operating valve 7 may be formed of a bimetal instead of being formed of a shape memory alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例を示し、図1(A)はエンジンの
ヘッドガスケットの要部平面図、図1(B)は図1
(A)のX−X線矢視断面図である。
1A and 1B show an embodiment of the present invention. FIG. 1A is a plan view of a main part of an engine head gasket, and FIG.
FIG. 3A is a sectional view taken along line XX of FIG.

【図2】本発明実施例を示し、水孔断面積と冷却水温と
の関係を示す線図である。
FIG. 2 is a diagram showing an example of the present invention and showing a relationship between a water hole cross-sectional area and a cooling water temperature.

【図3】本発明実施例を示し、ヘッドガスケットの平面
図である。
FIG. 3 is a plan view of a head gasket according to the embodiment of the present invention.

【図4】本発明実施例を示し、エンジンの縦断面概略図
である。
FIG. 4 is a schematic longitudinal sectional view of an engine according to the embodiment of the present invention.

【図5】本発明の他の実施例を示し、図5(A)は図1
(A)に相当する図、図5(B)は図5(A)のY−Y
線矢視断面図である。
FIG. 5 shows another embodiment of the present invention, and FIG.
FIG. 5A is a diagram corresponding to FIG. 5A, and FIG.
FIG.

【図6】従来例を示し、図6(A)は図1(A)に相当
する図、図6(B)は図6(A)のZ−Z線矢視断面図
である。
6A and 6B show a conventional example, FIG. 6A is a view corresponding to FIG. 1A, and FIG. 6B is a cross-sectional view taken along line ZZ of FIG. 6A.

【符号の説明】[Explanation of symbols]

1…多気筒エンジン、2…水ポンプ、3…シリンダジャ
ケット、4…水孔、4a…手前側水孔、4b…奥側水
孔、5…ヘッドジャケット、6…ラジエータ、7…感温
作動弁、8…ジャケット入口、9…ジャケット出口、T
1…通路拡大用作動温度、Th…異常高温領域、S…通
路断面積、S1…拡大断面積、Sb…基準断面積。
DESCRIPTION OF SYMBOLS 1 ... Multi-cylinder engine, 2 ... Water pump, 3 ... Cylinder jacket, 4 ... Water hole, 4a ... Front side water hole, 4b ... Back side water hole, 5 ... Head jacket, 6 ... Radiator, 7 ... Temperature-sensitive operation valve , 8 ... jacket entrance, 9 ... jacket exit, T
1: working temperature for passage enlargement, Th: abnormally high temperature region, S: sectional area of passage, S1: enlarged sectional area, Sb: reference sectional area.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多気筒エンジン(1)の冷却水を水ポンプ
(2)により、ジャケット入口(8)からシリンダジャケッ
ト(3)・水孔(4)・ヘッドジャケット(5)・ジャケット
出口(9)・ラジエータ(6)及びジャケット入口(8)の順
に圧送循環させるように構成し、その水孔(4)は、その
ジャケット入口(8)及びそのジャケット出口(9)から見
て、近い側に位置する手前側水孔(4a)と、遠い側に位
置する奥側水孔(4b)とを並列状に設けたものから成る
ように構成した多気筒エンジンの水冷装置において、前
記手前側水孔(4a)に通路拡大用感温作動弁(7)を設
け、この感温作動弁(7)の通路拡大用作動温度(T1)
は、前記冷却水の異常高温領域(Th)よりも少し低い温
度に設定し、この感温作動弁(7)は、前記手前側水孔
(4a)を通過する冷却水の温度が上記通路拡大用作動温
度(T1)にまで上昇したときに感温作動して、その手前
側水孔(4a)の通路断面積(S)を基準断面積(Sb)から
拡大断面積(S1)にまで拡大するように構成し、この手
前側水孔(4a)の基準断面積(Sb)よりも、前記奥側水
孔(4b)の通路断面積(S)を大きい値に設定して構成し
たことを特徴とする、多気筒エンジンの水冷装置。
A water pump for cooling water of a multi-cylinder engine (1)
According to (2), the pressure is circulated from the jacket inlet (8) to the cylinder jacket (3), the water hole (4), the head jacket (5), the jacket outlet (9), the radiator (6), and the jacket inlet (8) in this order. When viewed from the jacket inlet (8) and the jacket outlet (9), the water hole (4) has a near water hole (4a) located on the near side and a rear water hole (4a) located on the far side. In a water cooling device for a multi-cylinder engine configured to be configured such that a side water hole (4b) is provided in parallel with the side water hole (4b), a passage enlarging temperature-sensitive operating valve (7) is provided in the front side water hole (4a), Operating temperature (T1) for expanding the passage of the temperature-sensitive operating valve (7)
Is set at a temperature slightly lower than the abnormally high temperature region (Th) of the cooling water, and the temperature-sensitive operation valve (7) is connected to the front side water hole.
When the temperature of the cooling water passing through (4a) rises to the above-mentioned passage expanding operating temperature (T1), the temperature-sensitive operation is performed, and the passage cross-sectional area (S) of the water hole (4a) on the front side is cut off as a reference. It is configured to expand from the area (Sb) to the enlarged cross-sectional area (S1), and the passage cross-sectional area of the back water hole (4b) is larger than the reference cross-sectional area (Sb) of the front water hole (4a). A water cooling system for a multi-cylinder engine, wherein (S) is set to a large value.
JP14977791A 1991-05-24 1991-05-24 Water cooling system for multi-cylinder engine Expired - Lifetime JP2632610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14977791A JP2632610B2 (en) 1991-05-24 1991-05-24 Water cooling system for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14977791A JP2632610B2 (en) 1991-05-24 1991-05-24 Water cooling system for multi-cylinder engine

Publications (2)

Publication Number Publication Date
JPH04347326A JPH04347326A (en) 1992-12-02
JP2632610B2 true JP2632610B2 (en) 1997-07-23

Family

ID=15482499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14977791A Expired - Lifetime JP2632610B2 (en) 1991-05-24 1991-05-24 Water cooling system for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP2632610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681663B (en) * 2019-01-17 2024-04-09 宣达实业集团有限公司 Top-mounted ultra-high temperature ball valve with high-temperature expansion blocking prevention structure

Also Published As

Publication number Publication date
JPH04347326A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
US7237511B2 (en) Cooling device of engine
US5497734A (en) Cooling system for liquid-cooled engine
JPH0786324B2 (en) Engine cooling system
US6830016B2 (en) System and method for cooling an engine
JP2632610B2 (en) Water cooling system for multi-cylinder engine
JPH04347324A (en) Water cooler of engine
JPH07101006B2 (en) Water-cooled engine cooling system
JP3127695B2 (en) Engine cooling system
JPH04347327A (en) Water cooler of engine
KR102335493B1 (en) Water jacket for engine
JPH1144208A (en) Oil temperature control device for internal combustion engine
JP2626972B2 (en) Partial liquid cooling system for overhead valve type forced air cooling engine
US4979472A (en) Internal combustion engine having a hermetically sealed heat exchanger tube system
JP2560186B2 (en) Water-cooled internal combustion engine cooling system
JP2553842B2 (en) Partial liquid cooling system for overhead valve type forced air cooling engine
JPH04347325A (en) Water cooler of engine
JP2019065804A (en) Temperature retaining control device for internal combustion engine
US10858981B2 (en) Water jacket of engine and engine cooling system having the same
JP2524876B2 (en) Cylinder head liquid cooling device for sub-chamber engine
JPH0427710A (en) Cooling device for internal combustion engine
JP3651079B2 (en) Engine cooling system
KR970000755B1 (en) Cooling device of engine with a deflector
JPS63170519A (en) Cylinder head oil cooling device for auxiliary chamber type engine
JPH0741861Y2 (en) Air-cooled overhead valve engine cylinder head
JPH0718337B2 (en) Cylinder head cooling device for liquid-cooled air-cooled engine