JP2630640B2 - Calcium phosphate cement pit fissure cold material - Google Patents

Calcium phosphate cement pit fissure cold material

Info

Publication number
JP2630640B2
JP2630640B2 JP63286649A JP28664988A JP2630640B2 JP 2630640 B2 JP2630640 B2 JP 2630640B2 JP 63286649 A JP63286649 A JP 63286649A JP 28664988 A JP28664988 A JP 28664988A JP 2630640 B2 JP2630640 B2 JP 2630640B2
Authority
JP
Japan
Prior art keywords
weight
fluoride
powder
calcium
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63286649A
Other languages
Japanese (ja)
Other versions
JPH02134306A (en
Inventor
鎮雄 祖父江
正実 楽木
努 大土
隆志 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63286649A priority Critical patent/JP2630640B2/en
Publication of JPH02134306A publication Critical patent/JPH02134306A/en
Application granted granted Critical
Publication of JP2630640B2 publication Critical patent/JP2630640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、萌出途上の幼若な永久歯の萌出後の成熟を
促進すると共に、歯質の強化によりウ蝕を予防し、且
つ、既に存在する初期ウ蝕病巣を再石灰化させるため、
一時的に臼歯のの小窩裂溝部を口腔環境から隔絶すべ
く、臼歯の小窩裂溝部に填塞するリン酸カルシウムセメ
ント系小窩裂溝填塞材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention promotes post-eruptive maturation of young permanent teeth in the process of eruption, prevents tooth decay by strengthening the tooth quality, and prevents the presence of existing teeth. To remineralize the early caries lesions
The present invention relates to a calcium phosphate cement-based pit and fissure filling material for temporarily filling the pit and fissure of a molar in order to temporarily isolate the pit and fissure of a molar from the oral environment.

〔従来の技術〕[Conventional technology]

臼歯の小窩裂溝部はウ蝕の好発生部位である。そこで
萌出途上の第1大臼歯の小窩裂溝に流動性のよいレジン
系材料を填塞し、この部位を口腔環境から隔絶すること
によってウ蝕の発生を予防しようとする、レジン系填塞
材による小窩裂溝填塞法が近年普及している。レジン系
填塞材に用いられるレジン基材の主成分は、殆どの製品
に於いて2,2−ビス〔4−(3−メタクリロキシ−2−
ヒドロキシプロポキシ)−フェニル〕プロパンであるが
これだけでは粘度が高い。そのため粘度低下と共に架橋
効率の向上を目的として、各種のメタクリレート系或い
はジメタクリレート系モノマーが配合されている。これ
らレジン系填塞材は有機過酸化物と第3級アミン等によ
る化学重合起媒方法又はカンファーキノンと第3級アミ
ン等による光重合起媒方法で重合硬化させるものである
が、両方法共ラジカル重合で重合硬化させるシステムで
あり、そのためレジン系填塞材はラバーダム防湿下で適
用する必要がある。しかし萌出途上の歯はラバーダムに
よる防湿が困難であり、レジン系填塞材の応用は制限さ
れている。又、一般にレジン系填塞材には、歯質の萌出
後成熟の促進作用はないため、填塞材の脱離後はウ蝕予
防の硬化は期待できない。
The pits and fissures of molars are good sites for caries. Therefore, a resinous material with good fluidity is filled in the pits and fissures of the first molars during eruption, and this site is isolated from the oral environment to prevent the occurrence of dental caries. The pit and fissure filling method has become widespread in recent years. The main component of the resin base material used for the resin-based filling material is 2,2-bis [4- (3-methacryloxy-2-) in most products.
[Hydroxypropoxy) -phenyl] propane alone but has a high viscosity. Therefore, various methacrylate-based or dimethacrylate-based monomers are blended for the purpose of improving the crosslinking efficiency as well as reducing the viscosity. These resin-based fillers are those which are polymerized and cured by a chemical polymerization initiator method using an organic peroxide and a tertiary amine or a photopolymerization initiator method using camphorquinone and a tertiary amine. It is a system that cures by polymerization. Therefore, it is necessary to apply the resin-based sealing material under rubber dam moisture proof. However, erupting teeth are difficult to protect against moisture with a rubber dam, which limits the application of resin-based filling materials. Further, since the resin-based filling material generally does not have the effect of promoting the maturation after eruption of the tooth material, it is not expected to cure the caries after removal of the filling material.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の如く、現在普及しているレジン系填塞材による
小窩裂溝填塞法には、ラバーダム等による防湿が困難な
萌出直後の歯への適用が制限されること及び歯質の萌出
後成熟の促進作用がないという問題点がある。従って、
小児歯科の分野に於いては、萌出直後の歯への適用が可
能でしかも歯質の萌出後成熟の促進作用を有する小窩裂
溝填塞材の開発が望まれている。
As described above, the method of filling pits and fissures with resin-based filling materials that are currently in widespread use is limited to the application to teeth immediately after eruption, which is difficult to prevent from moisture due to rubber dams, etc. There is a problem that there is no promoting action. Therefore,
In the field of pediatric dentistry, it is desired to develop a pit and fissure filling material that can be applied to a tooth immediately after eruption and has an effect of promoting post-eruption maturation of tooth material.

〔課題点を解決するための手段〕[Means for solving the problems]

本発明の小窩裂溝填塞材は、萌出直後の歯への適用が
可能で、歯質の萌出後成熟の促進作用をも有するもので
ある。又、簡易防湿下でも硬化し、填塞部に於いてカル
シウムとリンとを高濃度に維持しながら、低濃度のフッ
素を歯質に長期間供給し続けるため、萌出後成熟だけで
なく初期ウ蝕病巣をも再石灰化させる作用及び歯質を強
化する作用を有する。
The pit and fissure filling material of the present invention can be applied to a tooth immediately after eruption, and also has an action of promoting post-eruption maturation of tooth material. In addition, it hardens even under simple moisture proofing and keeps calcium and phosphorus at high concentration in the filling part while supplying low-concentration fluorine to the dentin for a long period of time. It also has the action of remineralizing the lesion and the action of strengthening the tooth quality.

即ち、本発明は、リン酸四カルシウム粉末、フッ化
物、有機酸水溶液及び不飽和カルボン酸共重合体水溶液
からなるリン酸カルシウムセメント系小窩裂溝填塞材に
関する。
That is, the present invention relates to a calcium phosphate cement-based pit and fissure filling material comprising tetracalcium phosphate powder, fluoride, an aqueous solution of an organic acid, and an aqueous solution of an unsaturated carboxylic acid copolymer.

本発明に於いて酸水溶液と反応し硬化体を形成すると
共に、カルシウムとリンの供給源となるリン酸四カルシ
ウム粉末は次のようにして得ることができる。
In the present invention, tetracalcium phosphate powder which reacts with an aqueous acid solution to form a cured product and serves as a supply source of calcium and phosphorus can be obtained as follows.

γ−ピロリン酸カルシウム1モルと炭酸カルシウム2
モルの割合で均一に混合し、1400〜1650℃の温度で1〜
3時間焼成し、脱二酸化炭素によってリン酸四カルシウ
ムを得、生成物をボールミル等で粉砕し、粒径100μm
以下の、微粉末とする。又、リン酸水素カルシウム二水
和物と炭酸カルシウムとを1対1のモル比で均一に混合
した後、前記と同一の条件で焼成し、得られた生成物を
前記と同様にして粉砕することにより得ることもでき
る。
1 mol of calcium γ-pyrophosphate and calcium carbonate 2
Mix evenly in a molar ratio, and at a temperature of 1400-1650 ° C
Baking for 3 hours, obtaining tetracalcium phosphate by removing carbon dioxide, pulverizing the product with a ball mill or the like, and particle size of 100 μm
The following fine powder is used. Also, calcium hydrogen phosphate dihydrate and calcium carbonate are uniformly mixed at a molar ratio of 1: 1 and then calcined under the same conditions as above, and the obtained product is ground in the same manner as above. Can also be obtained.

リン酸四カルシウムは粉剤と液剤とから構成される本
発明の填塞材の、粉剤の主成分であり、粉剤中に65〜9
9.9重量%の割合で使用される。
Tetracalcium phosphate is the main component of the powder of the filling material of the present invention composed of the powder and the liquid, and 65 to 9
Used at a rate of 9.9% by weight.

本発明に於いてフッ素の供給源となるフッ化物として
は、水に難溶性のフッ化カルシウム又はフッ化ストロン
チウムが好適である。フッ化物としてフッ化カルシウム
を使用する場合は、粉剤中に0.1〜35重量%の割合で使
用することが好ましい。フッ化カルシウムが0.1重量%
未満では、歯質へのフッ素の供給量が不充分となり、35
重量%を越える場合は、硬化時間がADA規格No.61の規格
値(小窩裂溝填塞材は直接この規格では定められていな
いが、性能評価の基準として準用する)9分を越えて長
くなり、圧縮強度も規格値51kg f/cm2以下となり実用上
問題がある。フッ化物としてフッ化ストロンチウムを使
用する場合は、粉剤中に、0.1〜15重量%の割合で使用
することが好ましい。フッ化ストロンチウムが上限或い
は下限より外れる場合は上記と同様の問題が生ずる。
As the fluoride serving as a source of fluorine in the present invention, calcium fluoride or strontium fluoride which is hardly soluble in water is suitable. When calcium fluoride is used as the fluoride, it is preferable to use 0.1 to 35% by weight in the powder. 0.1% by weight of calcium fluoride
If it is less than 35, the amount of fluorine supplied to the tooth becomes insufficient,
If the amount exceeds 10% by weight, the curing time is longer than 9 minutes of the ADA standard No. 61 standard value (the pit and fissure filling material is not directly specified in this standard, but is applied mutatis mutandis as a standard for performance evaluation). And the compressive strength is less than the standard value of 51 kg f / cm 2, which poses a practical problem. When strontium fluoride is used as the fluoride, it is preferable to use 0.1 to 15% by weight in the powder. When strontium fluoride is out of the upper limit or the lower limit, the same problem as described above occurs.

有機酸水溶液としてはリンゴ酸及びトリカルバリル酸
の水溶液が好適である。液剤中でのリンゴ酸の濃度は5
〜45重量%、好ましくは10〜20重量%の範囲である。リ
ンゴ酸の濃度が5重量%未満では、填塞材の圧縮強度が
充分ではなく、45重量%を越えて水に溶解しない。トリ
カルバリル酸の濃度は1〜15重量%、好ましくは3〜10
重量%の範囲が好適である。トリカルバリル酸の濃度が
1重量%未満では粉剤と液剤との馴染みが不良であって
練和い難くなり、15重量%を越えては水に溶解しない。
As the organic acid aqueous solution, an aqueous solution of malic acid and tricarballylic acid is preferable. Malic acid concentration in the solution is 5
4545% by weight, preferably 10-20% by weight. If the concentration of malic acid is less than 5% by weight, the compressive strength of the filling material is not sufficient, and it does not dissolve in water at more than 45% by weight. The concentration of tricarballylic acid is 1 to 15% by weight, preferably 3 to 10%.
A range of weight percent is preferred. If the concentration of tricarballylic acid is less than 1% by weight, the affinity between the powder and the liquid is poor, making it difficult to mix, and if it exceeds 15% by weight, it does not dissolve in water.

不飽和カルボン酸共重合体水溶液を構成する、不飽和
カルボン酸共重合体としては、アクリル酸とイタコン酸
とを7:3のモル比で共重合した共重合体が好適である。
共重合体の液剤中での濃度は、10〜50重量%、好ましく
は20〜40重量%の範囲が好適である。共重合体の濃度が
10重量%未満では、液剤の粘度が低過ぎ、粉剤との練和
性が不良であり、又、粉剤との馴染みも悪い。更に、圧
縮強度がADA規格値510kg f/cm2より低くなる。又、共重
合体は50重量%を越えては水に溶解しない。
As the unsaturated carboxylic acid copolymer constituting the aqueous solution of the unsaturated carboxylic acid copolymer, a copolymer obtained by copolymerizing acrylic acid and itaconic acid in a molar ratio of 7: 3 is preferable.
The concentration of the copolymer in the solution is preferably from 10 to 50% by weight, and more preferably from 20 to 40% by weight. If the copolymer concentration is
If the amount is less than 10% by weight, the viscosity of the liquid preparation is too low, the kneadability with the powder preparation is poor, and the compatibility with the powder preparation is poor. Further, the compressive strength is lower than the ADA standard value of 510 kg f / cm 2 . Further, the copolymer does not dissolve in water if it exceeds 50% by weight.

更に、液剤中の有機酸と不飽和カルボン酸共重合体の
合計濃度は20重量%以上であることが好ましい。この濃
度が20重量%未満であると、圧縮強度がADA規格値510kg
f/cm2より低くなる。
Further, the total concentration of the organic acid and the unsaturated carboxylic acid copolymer in the liquid preparation is preferably 20% by weight or more. If this concentration is less than 20% by weight, the compressive strength will be ADA standard value 510kg
lower than f / cm 2 .

本発明の小窩裂溝填塞材は前記各成分の混合物である
が、実際には取扱い上の便宜性を考慮して、粉剤(リン
酸四カルシウムとフッ化物)と液剤(有機酸と不飽和カ
ルボン酸共重合体の水溶液)とを各別に準備し、使用に
際し、これらを練和し硬化させて目的の硬化体とするの
が好ましい。
Although the pit and fissure filling material of the present invention is a mixture of the above components, in actuality, in consideration of convenience in handling, a powder (tetracalcium phosphate and fluoride) and a liquid (organic acid and unsaturated And a carboxylic acid copolymer (aqueous solution of a carboxylic acid copolymer) are separately prepared and kneaded and cured at the time of use to obtain a desired cured product.

粉剤と液剤とは重量比で0.6〜1.8から1.0〜1.5(この
割合を粉液比という)の範囲で練和使用するのが好まし
い。この比が0.6より小さいと硬化時間が長くなり、圧
縮強度が使用に耐えない程低くなる。又、この比が1.8
を越える場合は粉剤と液剤との練和性が不良となる。
It is preferable that the powder and the liquid are kneaded and used in a weight ratio of 0.6 to 1.8 to 1.0 to 1.5 (this ratio is referred to as a powder-liquid ratio). If this ratio is less than 0.6, the curing time will be long and the compressive strength will be too low to withstand use. Also, this ratio is 1.8
If the ratio exceeds the above range, the kneadability of the powder and the liquid will be poor.

以下に実施例及び比較例によって、本発明を更に詳し
く説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

〔実施例及び比較例〕(Examples and Comparative Examples)

(製造例1) リン酸水素カルシウム二水和物と炭酸カルシウムと
を、1:1のモル比で均一に混合し、1600℃の温度で2時
間焼成した後急冷してリン酸四カルシウムを合成した。
このリン酸四カルシウムをボールミルで微粉砕し、350
メッシュの篩を通過させて所定の粒度のリン酸四カルシ
ウム粉末を得た。
(Production Example 1) Calcium hydrogen phosphate dihydrate and calcium carbonate are uniformly mixed at a molar ratio of 1: 1 and calcined at a temperature of 1600 ° C. for 2 hours and then quenched to synthesize tetracalcium phosphate. did.
This tetracalcium phosphate is finely pulverized with a ball mill,
The powder was passed through a mesh sieve to obtain tetracalcium phosphate powder having a predetermined particle size.

(製造例2) リンゴ酸15重量%、トリカルバリル酸5重量%、アク
リル酸−イタコン酸共重合体(モル比は7:3、数平均分
子量9000)30重量%を、50重量%の精製水に溶解して液
剤を製造した。
(Production Example 2) 15% by weight of malic acid, 5% by weight of tricarballylic acid, 30% by weight of an acrylic acid-itaconic acid copolymer (molar ratio: 7: 3, number average molecular weight 9000) were added to 50% by weight of purified water To prepare a liquid preparation.

(実施例1〜4) 製造例1で製造したリン酸四カルシウム粉末に、フッ
化物を第1表に示す割合で配合し、製造例2で製造した
液剤と粉液比1.3で練和し、ADA−No.61に準拠して圧縮
強度と硬化時間を測定した。結果を第1表に示す。
(Examples 1 to 4) Fluoride was blended with the tetracalcium phosphate powder produced in Production Example 1 at the ratio shown in Table 1, and kneaded with the liquid preparation produced in Production Example 2 at a powder-liquid ratio of 1.3. Compressive strength and cure time were measured according to ADA-No.61. The results are shown in Table 1.

(比較例1〜2) 第2表に示す割合で調整した液剤と、実施例1で使用
した粉剤を粉液比1.3で練和し、ADA−No.61に準拠して
圧縮強度と硬化時間を測定した。結果を第2表に示す。
(Comparative Examples 1 and 2) The liquid material adjusted at the ratio shown in Table 2 and the powder used in Example 1 were kneaded at a powder-liquid ratio of 1.3, and the compressive strength and the curing time were determined according to ADA-No.61. Was measured. The results are shown in Table 2.

(実施例5) 牛前歯より切り出した牛歯ブロックの、表層のフッ素
の含有率の高い部分を研磨により除去した後、この牛歯
ブロックの一方の唇側エナメル質全体を、実施例1で使
用した粉剤(フッ化カルシウムを2重量%含有する)と
製造例2で調整した液剤とを粉液比1.3で練和したセメ
ントで被い、9分後に37℃の温度の蒸留水中に浸漬し、
4日及び8日後に取り出し、セメントを彫刻刀で除去
し、1規定の水酸化カリウム水溶液中に2日間浸漬し
て、残存している可能性のあるセメントを完全に除去し
た。この牛歯ブロックに4×5mmのウインドをマニュキ
ュアを用いて作成し、エナメル質中へのフッ素取り込み
量測定用の試料とした。この試料のウインド部分のエナ
メル質を0.1モル過塩素酸溶液0.2mlで2分間脱灰し、0.
5モルクエン酸ナトリウム溶液0.1mlで直ちに中和し、フ
ッ素イオン電極を用いてこの液のフッ素量を、又、原子
吸光分析法を用いてカルシウム量を測定した。そしてエ
ナメル質中のカルシウム含有量とエナメル質の比重か
ら、過塩素酸により脱灰された部分の深さとフッ素濃度
を計算し、同一歯牙の対照群の同じ深さのフッ素濃度を
差し引いた値を、試料をセメントで被ったことによるエ
ナメル質のフッ素取り込み量とした。尚、脱灰操作を同
一試料で5回行い、深さ平均50μm迄のフッ素取り込み
量を測定した。結果を第1表に示す。
(Example 5) After removing a portion having a high fluorine content in the surface layer of a bovine tooth block cut out from a bovine front tooth by polishing, the whole enamel on one labial side of the bovine tooth block is used in Example 1. The powder (containing 2% by weight of calcium fluoride) and the liquid prepared in Production Example 2 were covered with cement kneaded at a powder-liquid ratio of 1.3, immersed in distilled water at a temperature of 37 ° C. 9 minutes later,
After 4 days and 8 days, the cement was removed with a chisel and immersed in a 1 N aqueous potassium hydroxide solution for 2 days to completely remove any remaining cement. A window of 4 × 5 mm was formed in this bovine tooth block using a nail polish, and used as a sample for measuring the amount of fluorine taken into enamel. The enamel in the window portion of this sample was demineralized with 0.2 ml of a 0.1 molar perchloric acid solution for 2 minutes, and then dehydrated.
The solution was immediately neutralized with 0.1 ml of a 5 molar sodium citrate solution, and the amount of fluorine in the solution was measured using a fluoride ion electrode, and the amount of calcium was measured using atomic absorption spectrometry. Then, from the calcium content in the enamel and the specific gravity of the enamel, calculate the depth and fluorine concentration of the part decalcified by perchloric acid, and subtract the value obtained by subtracting the fluorine concentration at the same depth in the control group of the same tooth. The amount of fluorine taken up by enamel due to covering the sample with cement was taken as the amount. The same sample was subjected to a decalcification operation five times, and the amount of fluorine taken up to an average depth of 50 μm was measured. The results are shown in Table 1.

(実施例6) 実施例1で使用した粉剤を、実施例2で使用した粉剤
(フッ化カルシウムを30重量%含有する)に替えた以外
は実施例5と同様の操作、測定を行った。結果を第2図
に示す。
(Example 6) The same operation and measurement as in Example 5 were performed except that the powder used in Example 1 was replaced with the powder (containing 30% by weight of calcium fluoride) used in Example 2. The results are shown in FIG.

(実施例7) 実施例1で使用した粉剤を、実施例3で使用した粉剤
(フッ化ストロンチウムを2重量%含有する)に替えた
以外は実施例5と同様の操作、測定を行った。結果を第
3図に示す。
(Example 7) The same operation and measurement as in Example 5 were performed except that the powder used in Example 1 was changed to the powder used in Example 3 (containing 2% by weight of strontium fluoride). The results are shown in FIG.

(実施例8) 牛前歯を切り出し後、表層を研磨により除去した。こ
の牛歯ブロックに5×10mmのウインドをワックスを用い
て作成した後、脱灰液(0.1モル乳酸及び1.6重量%のヒ
ドロキシエチルセルロースを含有する)に2日間浸漬し
脱灰処理を行った。次に、牛歯ブロックのウインドの半
分を実施例2で使用した粉剤(フッ化カルシウムを30重
量%含有する)と製造例2で調整した液剤とを粉液比1.
3で練和したセメントで被い、水酸化カリウム溶液で水
素イオン濃度を7.0に調整した人工唾液〔塩化カリウム3
0ミリモル、4−(2−ヒドロキシエチル)−1−ピペ
ラジン−エタンスルホン酸50ミリモル、塩化カルシウム
1.5ミリモル、リン酸二水素カリウム0.9ミリモル及びフ
ッ化カリウム0.05ミリモルを含有する〕に浸漬し、16日
後に取り出し、セメントを彫刻刀で除去し、1規定水酸
化カリウム水溶液中に2日間浸漬して、残存している可
能性のあるセメントを完全に除去した。この牛歯ブロッ
クにホルマリンによる固定処理及びアセトンによる脱水
処理を施した後、ポリエステル樹脂で包埋して薄片試料
作成機(ヒューラー社製、ペトロシン)により顕微X線
写真撮影用の試料を作成し、ソフロンSRO−405を使用し
て次の条件で顕微X線写真を撮影した。
(Example 8) After cutting out the cow front teeth, the surface layer was removed by polishing. A window of 5 × 10 mm was formed in this bovine tooth block using wax, and then immersed in a demineralizing solution (containing 0.1 mol lactic acid and 1.6% by weight of hydroxyethyl cellulose) for 2 days to perform a demineralizing treatment. Next, the powder (containing 30% by weight of calcium fluoride) used in Example 2 and the liquid prepared in Production Example 2 in a half of the window of the bovine block had a powder-liquid ratio of 1.
Artificial saliva (potassium chloride 3) covered with cement kneaded in 3 and adjusted to a hydrogen ion concentration of 7.0 with potassium hydroxide solution
0 mmol, 4- (2-hydroxyethyl) -1-piperazine-ethanesulfonic acid 50 mmol, calcium chloride
1.5 mmol, containing 0.9 mmol of potassium dihydrogen phosphate and 0.05 mmol of potassium fluoride], taken out 16 days later, removing the cement with a chisel, and immersing it in a 1 N aqueous solution of potassium hydroxide for 2 days. Any remaining cement was completely removed. After performing a fixing treatment with formalin and a dehydration treatment with acetone, the bovine tooth block is embedded in a polyester resin, and a sample for microscopic radiography is prepared using a slice sample preparing machine (Petrocin, manufactured by Hueller Co.) Micrographs were taken using Soflon SRO-405 under the following conditions.

Target Mo(Be−Filtered) Voltage 12KVp Current 5.0mA Target−Specimen Distance 50mm Specimen Thickness 90μm Exposure Time 24min. Film Kodack 649−0 顕微X線写真のフィルムを現像後、ミクロフォトメー
ター(理学電機製)を使用して、セメント処理部と未処
理部の石灰化度の測定を行った。尚、石灰化度は牛歯エ
ナメル質の最も石灰化の高い部分を100%とした。
Film Modack 649-0 Target Mo (Be-Filtered) Voltage 12KVp Current 5.0mA Target-Specimen Distance 50mm Specimen Thickness 90μm Exposure Time 24min. Then, the calcification degree of the cement treated part and the untreated part was measured. The degree of calcification was defined as 100% for the highest calcified portion of bovine tooth enamel.

〔発明の効果〕 本発明のリン酸カルシウムセメント系小窩裂溝填塞材
は、ラバーダム防湿が困難な萌出直後の歯への適用が可
能であり、幼若な永久歯の小窩裂溝部に填塞することに
より、臼歯の小窩裂溝部を口腔環境から隔絶して萌出途
上の臼歯をウ蝕から守ることができる。又、填塞部でカ
ルシウムとリンを高能動に維持しながら、低濃度のフッ
素を歯質に供給することにより、萌出後の歯質の成熟を
促進すると共に、初期ウ蝕病巣をも石灰化させる効果及
び歯質を強化する効果を有する。
[Effect of the Invention] The calcium phosphate cement-based pit and fissure filling material of the present invention can be applied to a tooth immediately after eruption, which is difficult to prevent rubber dam, and by filling the pit or fissure of a young permanent tooth. In addition, the pit and fissure of the molar can be isolated from the oral environment to protect the erupting molar from caries. In addition, by supplying low-concentration fluorine to the dentin while maintaining calcium and phosphorus at a high level at the filling part, the maturation of the dentin after eruption is promoted and the initial caries lesion is also calcified. It has an effect and an effect of strengthening the tooth quality.

【図面の簡単な説明】[Brief description of the drawings]

第1図はフッ化カルシウムを2重量%配合したセメント
による、牛歯健全エナメル質のフッ素取り込み量を表す
グラフ、第2図はフッ化カルシウムを30重量%配合した
セメントによる、牛歯健全エナメル質のフッ素取り込み
量を表すグラフ、第3図はフッ化ストロンチウムを2重
量%配合したセメントによる、牛歯健全エナメル質のフ
ッ素取り込み量を表すグラフである。第1〜3図に於い
て、白抜きは4日後の結果、斜線は8日後の結果であ
る。又、第4図はフッ化カルシウムを30重量%配合した
セメントによる、牛歯脱灰エナメル質の石灰化を表すグ
ラフである。第4図中、実線はセメント処理部の石灰化
度を表し、破線は未処理部の石灰化度を表す。
FIG. 1 is a graph showing the amount of fluorine uptake in healthy bovine tooth enamel by a cement containing 2% by weight of calcium fluoride. FIG. 2 is a graph showing healthy bovine tooth enamel by a cement containing 30% by weight of calcium fluoride. And FIG. 3 is a graph showing the amount of fluorine uptake in healthy bovine tooth enamel by a cement containing 2% by weight of strontium fluoride. In FIGS. 1 to 3, the outlines are the results after 4 days, and the hatched lines are the results after 8 days. FIG. 4 is a graph showing the calcification of bovine tooth demineralized enamel by a cement containing 30% by weight of calcium fluoride. In FIG. 4, the solid line represents the degree of calcification of the cement treated part, and the broken line represents the degree of calcification of the untreated part.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リン酸四カルシウム粉末、フッ化物、有機
酸水溶液及び不飽和カルボン酸共重合体水溶液からなる
リン酸カルシウムセメント系小窩裂溝填塞材。
1. A calcium phosphate cement-based pit and fissure filling material comprising tetracalcium phosphate powder, fluoride, an aqueous solution of an organic acid and an aqueous solution of an unsaturated carboxylic acid copolymer.
【請求項2】フッ化物がフッ化カルシウム、フッ化スト
ロンチウムである特許請求の範囲第(1)項記載の填塞
材。
2. The filling material according to claim 1, wherein the fluoride is calcium fluoride or strontium fluoride.
【請求項3】有機酸がリンゴ酸、トリカルバリル酸であ
る特許請求の範囲第(1)項記載の填塞材。
3. The filling material according to claim 1, wherein the organic acid is malic acid or tricarballylic acid.
【請求項4】不飽和カルボン酸共重合体がアクリル酸−
イタコン酸共重合体である特許請求の範囲第(1)項記
載の填塞材。
4. An unsaturated carboxylic acid copolymer comprising acrylic acid
The filling material according to claim 1, which is an itaconic acid copolymer.
JP63286649A 1988-11-15 1988-11-15 Calcium phosphate cement pit fissure cold material Expired - Lifetime JP2630640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286649A JP2630640B2 (en) 1988-11-15 1988-11-15 Calcium phosphate cement pit fissure cold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286649A JP2630640B2 (en) 1988-11-15 1988-11-15 Calcium phosphate cement pit fissure cold material

Publications (2)

Publication Number Publication Date
JPH02134306A JPH02134306A (en) 1990-05-23
JP2630640B2 true JP2630640B2 (en) 1997-07-16

Family

ID=17707159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286649A Expired - Lifetime JP2630640B2 (en) 1988-11-15 1988-11-15 Calcium phosphate cement pit fissure cold material

Country Status (1)

Country Link
JP (1) JP2630640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2493812C2 (en) * 2008-02-08 2013-09-27 Колгейт-Палмолив Компани Dental seal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208996A (en) * 1990-11-30 1992-07-30 Fujita Corp Visual information transmitting device
JPH04318809A (en) * 1991-04-18 1992-11-10 Seiko Epson Corp Image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208996A (en) * 1990-11-30 1992-07-30 Fujita Corp Visual information transmitting device
JPH04318809A (en) * 1991-04-18 1992-11-10 Seiko Epson Corp Image display device

Also Published As

Publication number Publication date
JPH02134306A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
Dickinson et al. Effect of surface penetrating sealant on wear rate of posterior composite resins
Ratanapridakul et al. Effect of finishing on the in vivo wear rate of a posterior composite resin
JPH026358A (en) Photosetting ionomer cement
Schneider et al. The effect of enamel surface reduction in vitro on the bonding of composite resin to permanent human enamel
Subramaniam et al. Evaluation of solubility and microleakage of glass carbomer sealant
Macchi et al. Influence of endodontic materials on the bonding of composite resin to dentin
EP2902006A1 (en) Curable composition for dentistry, and method for producing same
Yesilyurt et al. Bond strengths of two conventional glass-ionomer cements to irradiated and non-irradiated dentin
Esberard et al. pH changes at the surface of root dentin when using root canal sealers containing calcium hydroxide
EP2829262B1 (en) Dental filling composition comprising zirconia powder
JP2630640B2 (en) Calcium phosphate cement pit fissure cold material
JP2630645B2 (en) Calcium phosphate cement based pit and fissure filling material
JPH0248479A (en) Hardening of hardenable composition
Naeem et al. The influence of different root canal irrigants on the push-out bond strength of AH plus and Bioceramic sealers
Leidal et al. A clinical and scanning electron microscopic study of a new restorative material for use in posterior teeth
CN113304057A (en) Dental composition and preparation method thereof
Köprülü et al. Marginal seal of a resin-modified glass-ionomer restorative material: An investigation of placement techniques.
Sadeghian Marnani et al. Investigation of Fluoride Release Patterns of Glass Ionomer Lining Materials: A Comparative Study of Chemical, Resin Modified, and Single-Component Glass Ionomer Cements
Yoshikawa et al. Setting time and sealing ability of α-tricalcium Phosphate cement containing titanic oxide
Kambhu et al. An in vitro evaluation of artificial caries-like lesions on restored overdenture abutments
Valcke Observations on a composite resin filling material
Gee A comparison of five methods of root canal obturation by means of dye penetration
JPH02250810A (en) Dental cement composition
JP2644082B2 (en) Medical and dental curable materials
JPH05286823A (en) Plugging material for small cavity/crack based on calcium phosphate cement