JP2630590B2 - Zero detector for magnetic encoder - Google Patents
Zero detector for magnetic encoderInfo
- Publication number
- JP2630590B2 JP2630590B2 JP62068622A JP6862287A JP2630590B2 JP 2630590 B2 JP2630590 B2 JP 2630590B2 JP 62068622 A JP62068622 A JP 62068622A JP 6862287 A JP6862287 A JP 6862287A JP 2630590 B2 JP2630590 B2 JP 2630590B2
- Authority
- JP
- Japan
- Prior art keywords
- zero
- zero point
- magnetoresistive element
- incremental
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気抵抗素子を用いたインクリメンタル磁
気エンコーダの零点検出装置に関する。Description: TECHNICAL FIELD The present invention relates to a zero point detecting device for an incremental magnetic encoder using a magnetoresistive element.
(従来の技術) 従来、磁気抵抗素子を用いたインクリメンタル磁気エ
ンコーダとして、零点検出用磁石と、所定の着磁ピッチ
で配列された複数のインクリメンタル検出用磁石を有す
る移動自在の磁気符号記録部材と、前記両磁石にそれぞ
れ対向し且つ所定距離をおいて零点検出用磁気抵抗素子
とインクリメンタル検出用磁気抵抗素子を配設し、該零
点検出用磁気抵抗素子の抵抗の変化により得られる零点
信号を例えばコンパレータを通して零点パルスに変換す
るようにしたものが知られている。(Prior Art) Conventionally, as an incremental magnetic encoder using a magnetoresistive element, a movable magnetic code recording member having a zero point detecting magnet and a plurality of incremental detecting magnets arranged at a predetermined magnetization pitch, A magnetoresistive element for zero point detection and a magnetoresistive element for incremental detection are disposed opposite to the two magnets at a predetermined distance, and a zero point signal obtained by a change in resistance of the magnetoresistive element for zero point detection is compared with, for example, a comparator. Is known to be converted into a zero-point pulse through.
前記零点検出用磁石の着磁幅Wはインクリメンタル検
出用磁石の着磁ピッチλの1/2で、該零点検出用磁気抵
抗素子にはバイアス磁界が印加されている。第11図は、
このものの零点信号を示している。The magnetizing width W of the zero point detecting magnet is 1/2 of the magnetizing pitch λ of the incremental detecting magnet, and a bias magnetic field is applied to the zero point detecting magnetic resistance element. FIG.
This shows a zero point signal.
(発明が解決しようとする問題点) 上述した従来の磁気エンコーダは、構造が複雑である
と共に、許容電流の点から電源電圧を余り高くできな
い。(Problems to be Solved by the Invention) The above-described conventional magnetic encoder has a complicated structure, and the power supply voltage cannot be made too high in terms of allowable current.
すなわち、1個の磁気抵抗素子では抵抗を余り大きく
できないから、印加電圧が高くなる(例えば12V、24V特
に24V)と、許容電流を越えてしまい磁気抵抗素子を破
壊してしまう。そこで、一般に、磁気抵抗素子に印加す
る電圧は5Vであり、例えば24Vの電源電圧では使用でき
ない。That is, since the resistance cannot be increased so much with one magnetoresistive element, if the applied voltage is increased (for example, 12 V, 24 V, especially 24 V), the allowable current is exceeded and the magnetoresistive element is destroyed. Therefore, generally, the voltage applied to the magnetoresistive element is 5 V, and cannot be used with a power supply voltage of 24 V, for example.
本発明は、従来のこのような不都合を解消すると共に
電源電圧の変動等の外乱に影響されずに確実に零点を検
出できる磁気エンコーダの零点検出装置を提供すること
をその目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a zero point detecting device for a magnetic encoder which can solve the conventional inconvenience and can reliably detect a zero point without being affected by disturbances such as fluctuations in power supply voltage. .
(問題点を解決するための手段) 本発明は、上述の目的を達成するために、零点検出用
磁石と所定の着磁ピッチで配列された複数のインクリメ
ンタル検出用磁石を有する移動自在の磁気符号記録部材
と、前記両磁石にそれぞれ対向し且つ所定距離をおいて
零点検出用磁気抵抗素子とインクリメンタル検出用磁気
抵抗素子を配設した磁気エンコーダの零点検出装置にお
いて、前記零点検出用磁石の着磁幅Wはインクリメンタ
ル検出用磁石の着磁ピッチλに対してλ<W<3λにな
るように設定し、前記零点検出用磁気抵抗素子は磁気符
号記録部材の移動方向に沿って0.5λ、0.25λ及び0.5λ
の間隔で順次配列された第1磁気抵抗素子、第2磁気抵
抗素子、第3磁気抵抗素子及び第4磁気抵抗素子から成
り、該第1乃至第4磁気抵抗素子は第1、第4、第3及
び第2の磁気抵抗素子の順で直列に接続され、第4磁気
抵抗素子と第3磁気抵抗素子の接続部を出力端子とする
と共に該直列に接続された磁気抵抗素子の回路の両端に
電源電圧を印加するようにしたことを特徴とする。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a movable magnetic code having a zero point detecting magnet and a plurality of incremental detecting magnets arranged at a predetermined magnetization pitch. In a zero point detecting device for a magnetic encoder, wherein a recording member and a zero point detecting magnetoresistive element and an incremental detecting magnetoresistive element are disposed opposite to each other and at a predetermined distance from each other, the magnetizing of the zero point detecting magnet may be performed. The width W is set so that λ <W <3λ with respect to the magnetizing pitch λ of the incremental detection magnet, and the zero point detection magnetoresistive element is 0.5λ, 0.25λ along the moving direction of the magnetic code recording member. And 0.5λ
, A first magnetoresistive element, a second magnetoresistive element, a third magnetoresistive element, and a fourth magnetoresistive element, which are sequentially arranged at an interval of 1, and the first to fourth magnetoresistive elements are first, fourth, and fourth magnetoresistive elements. The third and second magneto-resistive elements are connected in series in this order, and the connection between the fourth and third magneto-resistive elements is used as an output terminal, and at both ends of the circuit of the series-connected magneto-resistive elements. A power supply voltage is applied.
(作 用) 4個の磁気抵抗素子が直列に接続された回路の抵抗は
大きくなり、該回路に流れる電流は例えば24Vのように
該回路の両端に印加される電源電圧が高くても磁気抵抗
素子の許容電流以下となる。また、発明者は実験を重ね
た結果、前述の構成により、電源電圧の変動等の外乱に
よって零点検出のためのリセットができなくなったり、
あるいは零点検出点が変って誤差が生ずることがない零
点パルスが前記出力端子に接続されたコンパレータから
得られることが判った。(Operation) The resistance of a circuit in which four magnetoresistive elements are connected in series becomes large, and the current flowing through the circuit is increased even if the power supply voltage applied to both ends of the circuit is high, for example, 24V. The current is less than the allowable current of the element. In addition, as a result of repeated experiments, the inventor has found that due to the above-described configuration, resetting for zero point detection cannot be performed due to disturbance such as power supply voltage fluctuation,
Alternatively, it has been found that a zero-point pulse in which an error does not occur due to a change in the zero-point detection point is obtained from the comparator connected to the output terminal.
(実施例) 本発明の実施例を図面につき説明する。(Example) An example of the present invention will be described with reference to the drawings.
第1図において、1は零点検出用磁石で、該磁石1は
従来のものと同じようにインクリメンタル検出用磁石2
と共に矢示の方向に移動自在の磁気符号記録部材3を構
成する。前記零点検出用磁石1の着磁幅Wは例えば0.25
mmで、インクリメンタル検出用磁石2の着磁ピッチλに
対してλ<W<3λになるように設定されている。41,4
2,43,44は零点検出用磁石1のトラック5の内に該磁石
2の移動方向に沿って0.5λ、0.25λ及び0.5λの間隔で
順次配列された磁気抵抗素子で、該磁気抵抗素子41,42,
43,44は図示しないインクリメンタル検出用磁気抵抗素
子と共に磁気符号記録部材3から所定距離例えば前記着
磁ピッチλ離れた位置に設けた例えばガラス基板6の下
面に配設され、図示のように、磁気抵抗素子41,44,43,4
2の順序で直列に接続され、第1磁気抵抗素子41は例え
ば12V直流電流の端子7に接続され、、第2磁気抵抗素
子42は接地され、第3及び第4磁気抵抗素子43及び44の
接続端子8は、第2図に示すように、コンパレータ9に
接続されている。In FIG. 1, reference numeral 1 designates a magnet for detecting a zero point.
Together with this, a magnetic code recording member 3 movable in the direction of the arrow is formed. The magnetization width W of the zero point detecting magnet 1 is, for example, 0.25.
In mm, it is set so that λ <W <3λ with respect to the magnetization pitch λ of the incremental detection magnet 2. 4 1 , 4
2, 4 3, 4 4 0.5 [lambda along the moving direction of the magnet 2 within the track 5 zeros detecting magnets 1, magnetoresistive elements which are sequentially arranged at intervals of 0.25λ and 0.5 [lambda, magnetic Resistance elements 4 1 , 4 2 ,
4 3 and 4 4 are disposed together with an incremental detection magnetoresistive element (not shown) on the lower surface of, for example, a glass substrate 6 provided at a predetermined distance from the magnetic code recording member 3, for example, at the aforementioned magnetic pitch λ. , Magnetoresistive elements 4 1 , 4 4 , 4 3 , 4
Is connected in series with a second order, the first magneto resistive element 4 1 is for example 12V DC second magnetoresistance element 4 2 ,, is connected to the terminal 7 of the current is grounded, the third and fourth magnetoresistance elements 4 3 and 4 4 connecting terminals 8, as shown in FIG. 2, is connected to the comparator 9.
ここで、前記磁気抵抗素子41,42,43,44は例えば第12
図に示すように電流の方向に対して直交する方向への磁
界Hの強さによって抵抗値Rが変化し、無磁界の時抵抗
値が最大で磁界の強さが増加すると抵抗値が小さくなっ
ていく特性を有する。Here, the magnetoresistive elements 4 1 , 4 2 , 4 3 , 4 4 are, for example, twelfth.
As shown in the figure, the resistance value R changes according to the strength of the magnetic field H in a direction orthogonal to the direction of the current. When no magnetic field is applied, the resistance value is maximum, and when the strength of the magnetic field increases, the resistance value decreases. It has the characteristics to go.
前記接続端子8に接続されるコンパレータ9の基準レ
ベルは、電源電圧が変動して該レベルが第3図示のよう
に上下(上下幅p)しても該コンパレータ9から出力す
る零点パルスZpのパルス幅が大きく変化しにくく、且つ
ノイズnが零点信号Z5に混入しても誤った零点パルスZ
p′が出力しない余裕yをもたせたレベルL1に設定され
る。(レベルL2では零点パルスZpのパルス幅が大きく変
化し、レベルL3では誤った零点パルスZp′を出力す
る。) 尚、第3図〜第8図及び第10図、第11図の縦軸では、
第2図示の接続端子8の中点電位(直流電源電圧の1/2
の電位)を零点電位として示した。The reference level of the comparator 9 connected to the connection terminal 8 is the pulse of the zero-point pulse Zp output from the comparator 9 even if the power supply voltage fluctuates and the level rises and falls (up and down width p) as shown in FIG. width hardly changes significantly, and noise n is zero signal Z 5 to zero pulse Z incorrect be mixed
p 'is set to a level L 1 remembering a margin y is not output. (Level L pulse width of 2 in the zero point pulse Zp greatly changes, and outputs the erroneous Level L 3 zeros pulse Zp '.) Note that Figure 3 - Figure 8 and Figure 10, the vertical Figure 11 On the axis,
The midpoint potential of the connection terminal 8 shown in FIG.
Is shown as the zero point potential.
今、零点検出用磁石1の着磁幅Wをインクリメンタル
検出用磁石2の着磁ピッチλに対してW=1.5λとした
時、接続端子8から得られる零点信号は第4図示のよう
になり、6mVの余裕yをもたせた基準レベルL1で0.66λ
のパルス幅の零点パルスが得られた。Now, when the magnetization width W of the zero point detection magnet 1 is set to W = 1.5λ with respect to the magnetization pitch λ of the incremental detection magnet 2, the zero point signal obtained from the connection terminal 8 is as shown in FIG. , 0.66Ramuda the reference level L 1 remembering the margin y of 6mV
A zero-point pulse having a pulse width of
また、W=2λ及びW=2.5λとした時、それぞれ第
5図及び第6図示のような零点信号並びに0.85λ及び1.
1λのパルス幅の零点パルスが得られた。When W = 2λ and W = 2.5λ, the zero point signals as shown in FIGS. 5 and 6 and 0.85λ and 1.
A zero pulse with a pulse width of 1λ was obtained.
以上のパルス幅0.66λ、0.85λ及び1.1λの零点パル
スは電源電圧の変動等の外乱に影響されないで確実に零
点を検出することができる零点パルスである。The above-mentioned zero-point pulses having pulse widths of 0.66λ, 0.85λ, and 1.1λ are zero-point pulses that can reliably detect a zero point without being affected by disturbance such as a fluctuation in power supply voltage.
比較例 零点検出用磁石1の着磁幅Wをインクリメンタル検出
用磁石2の着磁ピッチλに対してW=0.8λ及びW=λ
とした時、第7図及び第8図に示すような零点信号並び
に0.2λ及び0.46λのパルス幅PWの零点パルスZpが得ら
れた。Comparative Example The magnetization width W of the zero point detection magnet 1 is set to be W = 0.8λ and W = λ with respect to the magnetization pitch λ of the incremental detection magnet 2.
Then, a zero point signal as shown in FIGS. 7 and 8, and a zero point pulse Zp having a pulse width PW of 0.2λ and 0.46λ were obtained.
PW<0.5λのときは、第9図に示すように、インクリ
メンタル信号Isの立上り部B1が零点パルスZpのパルス幅
PW内に設定されているとすると、外乱によってインクリ
メンタル信号Isの立上り部がB2の位置になり、零点パル
スZpの立上り部がC1からC2の位置になって、インクリメ
ンタル信号Isの立上り部B2が零点パルスZpのパルス幅PW
内に位置しなくなって、零点検出のためのリセットがで
きなくなる恐れがある。PW <When the 0.5 [lambda, as shown in FIG. 9, the rising portion B 1 is a pulse width of zero pulse Zp incremental signal Is
When set to the PW, will position the rising portion of the B 2 incremental signal Is by the disturbance, the rising portion of the zero point pulse Zp becomes the position of C 2 from C 1, the rising portion of the incremental signal Is pulse width PW of B 2 is zero pulse Zp
And resetting for zero detection may not be possible.
また、前記着磁幅Wを前記着磁ピッチλに対してW=
3λとした時には、第10図に示すような零点信号及びPW
=1.1λのパルス幅の零点パルスZpが得られた。Further, the magnetization width W is defined as W = W
When 3λ is set, the zero point signal and PW as shown in FIG.
A zero point pulse Zp with a pulse width of = 1.1λ was obtained.
この場合のコンパレータ9の基準パルスL1は零点信号
Zsの最大振幅に近いところに位置し、したがって電源電
圧の変動によって基準レベルが上下に変動したとき零点
パルスのパルス幅PWが大きく変動し、インクリメンタル
信号Isの立上り部(第9図符号B1参照。)が零点パルス
のパルス巾PW内からはずれてリセットできないことがあ
る。Reference pulse L 1 of the comparator 9 in this case zero point signal
Located closer to the maximum amplitude of zs, hence the reference level greatly varies the pulse width PW of the zero point pulse when varied up and down by variation of the power supply voltage, the rising portion of the incremental signal Is (9 see FIG numeral B 1 ) May be out of the pulse width PW of the zero point pulse and reset may not be possible.
(発明の効果) 以上説明したように、本発明によるときは、電源電圧
を例えば24Vのように高くすることができ、また何等構
造を複雑化することなく電源電圧の変動等の外乱に影響
されずに確実に零点を検出することができる効果を有す
る。(Effect of the Invention) As described above, according to the present invention, the power supply voltage can be increased to, for example, 24 V, and the power supply voltage can be affected by disturbances such as fluctuations of the power supply voltage without complicating the structure. Therefore, there is an effect that the zero point can be detected without fail.
第1図は本発明の1実施例の要部の斜視図、第2図はそ
の回路図、第3図(A)(B)はその作動説明図、第4
図、第5図及び第6図の(A)及び(B)はそれぞれ本
発明の実施例の零点信号及び零点パルスの波形図、第7
図及び第8図の(A)及び(B)はそれぞれ比較例の零
点信号及び零点パルスの波形図、第9図(A)及び
(B)は1比較例の作動説明図、第10図(A)及び
(B)は他の比較例の零点信号及び零点パルスの波形
図、第11図は従来例の零点信号の波形図、第12図は磁気
抵抗素子の磁界Hに対する抵抗値R特性を示す図であ
る。 1……零点検出用磁石 2……インクリメンタル検出用磁石 41,42,43,44……磁気抵抗素子 9……コンパレータFIG. 1 is a perspective view of a main part of one embodiment of the present invention, FIG. 2 is a circuit diagram thereof, FIGS.
(A) and (B) of FIG. 5, FIG. 5 and FIG. 6 are waveform diagrams of the zero point signal and the zero point pulse of the embodiment of the present invention, respectively.
FIGS. 8A and 8B are waveform diagrams of a zero-point signal and a zero-point pulse of a comparative example, respectively, and FIGS. 9A and 9B are operation explanatory diagrams of one comparative example, and FIGS. 11A and 11B are waveform diagrams of a zero-point signal and a zero-point pulse of another comparative example, FIG. 11 is a waveform diagram of a zero-point signal of a conventional example, and FIG. FIG. 1 ...... zero detecting magnet 2 ...... incremental detecting magnet 4 1, 4 2, 4 3, 4 4 ...... magnetoresistive element 9 ...... comparator
Claims (1)
された複数のインクリメンタル検出用磁石を有する移動
自在の磁気符号記録部材と、前記両磁石にそれぞれ対向
し且つ所定距離をおいて零点検出用磁気抵抗素子とイン
クリメンタル検出用磁気抵抗素子を配設した磁気エンコ
ーダの零点検出装置において、前記零点検出用磁石の着
磁幅Wはインクリメンタル検出用磁石の着磁ピッチλに
対してλ<W<3λになるように設定し、前記零点検出
用磁気抵抗素子は磁気符号記録部材の移動方向に沿って
0.5λ、0.25λ及び0.5λの間隔で順次配列された第1磁
気抵抗素子、第2磁気抵抗素子、第3磁気抵抗素子及び
第4磁気抵抗素子から成り、該第1乃至第4磁気抵抗素
子は第1、第4、第3及び第2の磁気抵抗素子の順で直
列に接続され、第4磁気抵抗素子と第3磁気抵抗素子の
接続部を出力端子とすると共に該直列に接続された磁気
抵抗素子の回路の両端に電源電圧を印加するようにした
ことを特徴とする磁気エンコーダの零点検出装置。1. A movable magnetic code recording member having a plurality of incremental detection magnets arranged at a predetermined magnetization pitch with a zero detection magnet, and a zero point which is respectively opposed to the two magnets and is separated by a predetermined distance. In the zero point detecting device of the magnetic encoder provided with the detecting magnetic resistance element and the incremental detecting magnetic resistance element, the magnetization width W of the zero detection magnet is λ <W with respect to the magnetization pitch λ of the incremental detection magnet. <3λ, and the zero point detecting magnetoresistive element is moved along the moving direction of the magnetic code recording member.
A first magnetoresistive element, a second magnetoresistive element, a third magnetoresistive element and a fourth magnetoresistive element which are sequentially arranged at intervals of 0.5λ, 0.25λ and 0.5λ; Are connected in series in the order of the first, fourth, third and second magnetoresistive elements, and the connection between the fourth and third magnetoresistive elements is used as an output terminal and connected in series. A zero point detecting device for a magnetic encoder, wherein a power supply voltage is applied to both ends of a circuit of a magnetoresistive element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62068622A JP2630590B2 (en) | 1987-03-23 | 1987-03-23 | Zero detector for magnetic encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62068622A JP2630590B2 (en) | 1987-03-23 | 1987-03-23 | Zero detector for magnetic encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63234109A JPS63234109A (en) | 1988-09-29 |
JP2630590B2 true JP2630590B2 (en) | 1997-07-16 |
Family
ID=13379037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62068622A Expired - Lifetime JP2630590B2 (en) | 1987-03-23 | 1987-03-23 | Zero detector for magnetic encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2630590B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2720681B2 (en) * | 1992-01-06 | 1998-03-04 | 株式会社村田製作所 | Mobile object movement detection device |
CN113028961B (en) * | 2021-02-26 | 2023-06-06 | 浙江禾川科技股份有限公司 | Linear encoder |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59166812A (en) * | 1983-03-14 | 1984-09-20 | Fanuc Ltd | One rotation detecting system of motor |
JPH0762621B2 (en) * | 1984-05-21 | 1995-07-05 | 株式会社井上ジャパックス研究所 | Zero point detector for magnetic encoder |
-
1987
- 1987-03-23 JP JP62068622A patent/JP2630590B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63234109A (en) | 1988-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5574364A (en) | Position detector including a reference position wherein the sensor is saturating the MR sensor for preventing hysteresis and in a bridge circuit | |
JP3605880B2 (en) | Non-contact rotation sensor | |
CA1085484A (en) | Magnetoresistive displacement transducer | |
KR100497467B1 (en) | Magnetic encoder with an index pulse | |
EP0048983B1 (en) | Rotation detecting means for a rotating body | |
US20020030487A1 (en) | Magnetic detection device | |
JP2002530638A (en) | Magnetoresistive sensor with intermeshing elements | |
CA1138957A (en) | Magnetoresistive position transducer | |
US6459261B1 (en) | Magnetic incremental motion detection system and method | |
JP2630590B2 (en) | Zero detector for magnetic encoder | |
US5043660A (en) | Signal processing circuit for movement tracking encoder including positive and negative feedback means to reduce distortion | |
JPH0432970B2 (en) | ||
JPS6243483B2 (en) | ||
JPH0778528B2 (en) | Magnetic sensor | |
US6356076B1 (en) | System for outputting a plurality of signals as a collective representation of incremental movements of an object | |
JPH11316134A (en) | Magnetism detecting device | |
JPS60244813A (en) | Zero-point detecting device for magnetic encoder | |
JPH069306Y2 (en) | Position detector | |
JPH074986A (en) | Reference position detector | |
JP3106711B2 (en) | Long magnetic sensor | |
JP2810695B2 (en) | Zero detection method for incremental magnetic encoder | |
JPS62180216A (en) | Origin detecting device for magnetic encoder | |
JP2546233B2 (en) | Origin detection unit of magnetic head for magnetic encoder | |
JPH0473316B2 (en) | ||
JP2546281B2 (en) | Origin detection part of magnetic head for magnetic encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |